Secure Socket Layer (SSL)

-- architecture and services
-- SSL Record Protocol

-- SSL Handshake Protocol
-- analysis and attacks
-- SSL vs. TLS

(c) Levente Buttyan (buttyan@crysys.hu)

What is SSL?

= SSL — Secure Socket Layer

» it provides a secure transport connection between
applications (e.g., a web server and a browser)

= SSL was developed by Netscape

= SSL version 3.0 has been implemented in many web
browsers (e.g., Netscape Navigator and MS Internet
Explorer) and web servers and widely used on the Internet

= SSL v3.0 was specified in an Internet Draft (1996)

» jt evolved into RFC 2246 and was renamed to TLS v1.0
(Transport Layer Security)

= current version is TLS v1.1 (RFC 4346)

— modifications to handle CBC attacks: explicit IV and bad_record_mac
error message instead of decryption_failed

Secure Socket Layer (SSL) 2

SSL architecture

SSL SSL Change
Handshake Cipher Spec
Protocol Protocol

SSL
Alert
Protocol

applications
(e.g., HTTP)

SSL Record Protocol

TCP

IP

Secure Socket Layer (SSL)

SSL components

SSL Handshake Protocol

— negotiation of security algorithms and parameters

— key exchange

— server authentication and optionally client authentication

SSL Record Protocol
— fragmentation
— compression

— message authentication and integrity protection

— encryption

SSL Alert Protocol

— error messages (fatal alerts and warnings)

SSL Change Cipher Spec Protocol

— a single message that indicates the end of the SSL handshake

Secure Socket Layer (SSL)

Sessions and connections

= an SSL session is an association between a client and a
server

= sessions are stateful; the session state includes security
algorithms and parameters

= a session may include multiple secure connections between
the same client and server

= connections of the same session share the session state

= sessions are used to avoid expensive negotiation of new
security parameters for each connection

» there may be multiple simultaneous sessions between the
same two parties, but this feature is not used in practice

Secure Socket Layer (SSL)

Session state

session identifier
« arbitrary byte sequence chosen by the server to identify the session
— peer certificate
* X509 certificate of the peer
* may be null
— compression method
— cipher spec
» bulk data encryption algorithm (e.g., null, DES, 3DES, ...)
* MAC algorithm (e.g., MD5, SHA-1)
» cryptographic attributes (e.g., hash size, IV size, ...)
— master secret
» 48-byte secret shared between the client and the server
— is resumable
« a flag indicating whether the session can be used to initiate new connections
— connection states
* see next slide...

Secure Socket Layer (SSL)

Connection state

server and client random
« random byte sequences chosen by the server and the client for every connection
server write MAC secret
» secret key used in MAC operations on data sent by the server
client write MAC secret
» secret key used in MAC operations on data sent by the client
server write key
« secret encryption key for data encrypted by the server
client write key
» secret encryption key for data encrypted by the client
initialization vectors
» an |V is maintained for each encryption key if CBC mode is used
« initialized by the SSL Handshake Protocol
« final ciphertext block from each record is used as IV with the following record
sending and receiving sequence numbers
* sequence numbers are 64 bits long
* reset to zero after each Change Cipher Spec message

Secure Socket Layer (SSL)

State change

= operating state

currently used state

= pending state

state to be used
built using the current state

= operating state < pending state

at the transmission and reception of a Change Cipher Spec message

party A party B
(client or server) (server or client)

the sending part of the
pending state is copied

info the sending part Cha
) N .
of the operating state € Cipher S the receiving part of the
€c pending state is copied

into the receiving part
of the operating state

Secure Socket Layer (SSL)

SSL Record Protocol — processing overview

= fragmentation

= compression

= MAC computation

= padding

= encryption

- SSL Record Protocol message:

|'rype| version | length

application data
(compressed fragment)

MAC

padding p.len

Secure Socket Layer (SSL)

Header

= type
— the higher level protocol used to process the enclosed fragment
— possible types:
» change_cipher_spec
« alert
* handshake
« application_data

= version
— SSL version, currently 3.0
* length

— length (in bytes) of the enclosed fragment or compressed fragment
— max value is 24 + 2048

Secure Socket Layer (SSL)

10

MAC

MAC = hash(MAC_wr_sec | pad_2 |
hash(MAC_wr_sec | pad_1 | seq_num | type | length |frag))

similar to HMAC but the pads are concatenated

supported hash functions:

- MD5

— SHA-1

» pad_1 is 0x36 repeated 48 times (MD5) or 40 times (SHA-1)
» pad_2 is 0x5C repeated 48 times (MD5) or 40 times (SHA-1)

Secure Socket Layer (SSL) 11

Encryption

= supported algorithms
— block ciphers (in CBC mode)
« RC2_40
« DES_40
- DES_56
- 3DES_168
- IDEA_128
* Fortezza 80
— stream ciphers
« RC4_40
« RC4_128

= if a block cipher is used, than padding is applied
— last byte of the padding is the padding length

Secure Socket Layer (SSL) 12

SSL Alert Protocol

= each alert message consists of 2 fields (bytes)
= first field (byte): “warning” or “fatal”

= second field (byte):
— fatal
* unexpected_message
* bad_record_MAC
» decryption_failure
— warning
 close_notify
» no_certificate
* bad_certificate
» unsupported_certificate
= in case of a fatal alert
— connection is terminated

— session ID is invalidated - no new connection can be established within this

session
Secure Socket Layer (SSL) 13
SSL Handshake Protocol — overview
client server
client_hello Phase 1: Negotiation of the session ID, key
server hello exchange algorithm, MAC algorithm, encryption
— algorithm, and exchange of initial random numbers
certificate
<k """"""" h """"""""""" Phase 2: Server may send its certificate and key
l,......Server_key_exchange . exchange message, and it may request the client
certificate_request to send a certificate. Server signals end of hello
[omommmmsomomomemosoToeonoeososononones phase.
server_hello_done
»»»»»»»»»»»»»» -CE[‘T-IT»'S?TE»--------»»» Phase 3: Client sends certificate if requested and
client_key_exchange may send an explicit certificate verification
. A message. Client always sends its key exchange
__________ certificate_verify .| message.
change_cipher_spec
finished
Phase 4: Change cipher spec and finish handshake
change_cipher_spec
finished
Secure Socket Layer (SSL) 14

Client hello message

— client_version
« the highest version supported by the client
— client_random
« current time (4 bytes) + pseudo random bytes (28 bytes)
— session_id
» empty if the client wants to create a new session, or
« the session ID of an old session within which the client wants to create the new
connection
— cipher_suites
« list of cryptographic options supported by the client ordered by preference
» a cipher suite contains the specification of the
— key exchange method, the encryption and the MAC algorithm

— the algorithms implicitly specify the hash_size, IV_size, and key_material parameters
(part of the Cipher Spec of the session state)

+ exmaple: SSL_RSA_with_3DES_EDE_CBC_SHA
— compression_methods
« list of compression methods supported by the client

Secure Socket Layer (SSL) 15

Server hello message

— server_version
» min(highest version supported by client, highest version supported by server)
— server_random
« current time + random bytes
« random bytes must be independent of the client random
— session_id
» session ID chosen by the server
« if the client wanted to resume an old session:
— server checks if the session is resumable
— if so, it responds with the session ID and the parties proceed to the finished messages
« if the client wanted a new session
— server generates a new session ID
— cipher_suite
« single cipher suite selected by the server from the list given by the client
— compression_method
» single compression method selected by the server

Secure Socket Layer (SSL) 16

Supported key exchange methods

RSA based (SSL_RSA with...)

— the secret key (pre-master secret) is encrypted with the server’s public RSA
key

— the server’s public key is made available to the client during the exchange
= fixed Diffie-Hellman (SSL_DH_RSA_with... or SSL_DH_DSS_with...)
— the server has fix DH parameters contained in a certificate signed by a CA

— the client may have fix DH parameters certified by a CA or it may send an
unauthenticated one-time DH public value in the client_key exchange
message

= ephemeral Diffie-Hellman (SSL_DHE_RSA with... or SSL_DHE_DSS_with...)
— both the server and the client generate one-time DH parameters
— the server signs its DH parameters with its private RSA or DSS key

— the client may authenticate itself (if requested by the server) by signing the
hash of the handshake messages with its private RSA or DSS key

» anonymous Diffie-Hellman (SSL_DH_anon_with...)
— both the server and the client generate one-time DH parameters
— they send their parameters to the peer without authentication

= Fortezza
— Fortezza proprietary key exchange scheme

Secure Socket Layer (SSL) 17

Server certificate and key exchange msgs

= certificate
— required for every key exchange method except for anonymous DH
— contains one or a chain of X.509 certificates (up to a known root CA)
— may contain
» public RSA key suitable for encryption, or
» public RSA or DSS key suitable for signing only, or
 fix DH parameters

= server_key_exchange
— sent only if the certificate does not contain enough information to complete
the key exchange (e.g., the certificate contains an RSA signing key only)

— may contain
» public RSA key (exponent and modulus), or
» DH parameters (p, g, public DH value), or
« Fortezza parameters

— digitally signed
» if DSS: SHA-1 hash of (client_random | server_random | server_params) is signed

« if RSA: MD5 hash and SHA-1 hash of (client_random | server_random |
server_params) are concatenated and encrypted with the private RSA key

Secure Socket Layer (SSL) 18

Cert request and server hello done msgs

= certificate_request
— sent if the client needs to authenticate itself

— specifies which type of certificate is requested (rsa_sign, dss_sign,
rsa_fixed_dh, dss_fixed_dh, ...)

= server_hello_done
— sent to indicate that the server is finished its part of the key exchange
— after sending this message the server waits for client response

— the client should verify that the server provided a valid certificate and
the server parameters are acceptable

Secure Socket Layer (SSL) 19

Client authentication and key exchange

= certificate
— sent only if requested by the server
— may contain
* public RSA or DSS key suitable for signing only, or
« fix DH parameters
= client_key_exchange
— always sent (but it is empty if the key exchange method is fix DH)
— may contain
* RSA encrypted pre-master secret, or
« client one-time public DH value, or
» Fortezza key exchange parameters
= certificate_verify
— sent only if the client sent a certificate
— provides client authentication
— contains signed hash of all the previous handshake messages
» if DSS: SHA-1 hash is signed
» if RSA: MD5 and SHA-1 hash is concatenated and encrypted with the private key
MD5(master_secret | pad_2 | MD5(handshake_messages | master_secret | pad_1))
SHA(master_secret | pad_2 | SHA(handshake_messages | master_secret | pad_1))

Secure Socket Layer (SSL) 20

Finished messages

» finished

sent immediately after the change_cipher_spec message

— used to authenticate all previous handshake messages

— first message that uses the newly negotiated algorithms, keys, Vs,
etc.

— contains the MD5 and SHA-1 hash of all the previous handshake
messages:
MD5(master_secret | pad_2 | MD5(handshake_messages | sender | master_secret | pad_1)) |
SHA(master_secret | pad_2 | SHA(handshake_messages | sender | master_secret | pad_1))
where “sender” is a code that identifies that the sender is the client or the
server (client: 0x434C4E54; server: 0x53525652)

Secure Socket Layer (SSL) 21

Cryptographic computations

= pre-master secret
— if key exchange is RSA based:
« generated by the client
» sent to the server encrypted with the server’s public RSA key
— if key exchange is Diffie-Hellman based:
» pre_master_secret = g¥¥ mod p

= master secret (48 bytes)
master_secret = MD5(pre_master_sec | SHA(“A” | pre_master_sec | client_random | server_random)) |
MD5(pre_master_sec | SHA(“BB” | pre_master_sec | client_random | server_random)) |
MD5(pre_master_sec | SHA(“CCC” | pre_master_sec | client_random | server_random))

= keys, MAC secrets, IVs
MD5(master_secret | SHA(“A” | master_secret | client_random | server_random)) |
MD5(master_secret | SHA(“BB” | master_secret | client_random | server_random)) |
MD5(master_secret | SHA(“CCC” | master_secret | client_random | server_random)) | ...

1

key block :

’ client write MAC sec | server write MAC sec client write key server write key

Secure Socket Layer (SSL) 22

Key exchange alternatives

= RSA / no client authentication

server sends its encryption capable RSA public key in
server_certificate

server_key exchange is not sent
client sends encrypted pre-master secret in client_key_exchange
client_certificate and certificate_verify are not sent

server sends its RSA or DSS public signature key in
server_certificate

server sends a temporary RSA public key in server_key_exchange
client sends encrypted pre-master secret in client_key_exchange
client_certificate and certificate_verify are not sent

Secure Socket Layer (SSL) 23

Key exchange alternatives cont’d

= RSA /client is authenticated

server sends its encryption capable RSA public key in
server_certificate

server_key exchange is not sent
client sends its RSA or DSS public signature key in client_certificate
client sends encrypted pre-master secret in client_key_exchange

client sends signature on all previous handshake messages in
certificate_verify

server sends its RSA or DSS public signature key in
server_certificate

server sends a one-time RSA public key in server_key_exchange
client sends its RSA or DSS public signature key in client_certificate
client sends encrypted pre-master secret in client_key_exchange

client sends signature on all previous handshake messages in
certificate_verify

Secure Socket Layer (SSL) 24

Key exchange alternatives cont’d

= fix DH / no client authentication

server sends its fix DH parameters in server_certificate
server_key exchange is not sent

client sends its one-time DH public value in client_key exchange
client_ certificate and certificate_verify are not sent

» fix DH / client is authenticated
— server sends its fix DH parameters in server_certificate
— server_key_exchange is not sent
— client sends its fix DH parameters in client_certificate
— client_key_exchange is sent but empty
— certificate_verify is not sent

Secure Socket Layer (SSL) 25

Key exchange alternatives cont’d

= ephemeral DH / no client authentication

server sends its RSA or DSS public signature key in server_certificate
server sends signed one-time DH parameters in server_key_exchange
client sends one-time DH public value in client_key_exchange

— client_certificate and certificate_verify are not sent

= ephemeral DH / client is authenticated
— server sends its RSA or DSS public signature key in server_certificate
— server sends signed one-time DH parameters in server_key_exchange
— client sends its RSA or DSS public signature key in client_certificate
— client sends one-time DH public value in client_key_exchange

— client sends signature on all previous handshake messages in
certificate_verify

Secure Socket Layer (SSL) 26

Key exchange alternatives cont’d

= anonymous DH / no client authentication
— server_certificate is not sent

— server sends (unsigned) one-time DH parameters in
server_key exchange

— client sends one-time DH public value in client_key_exchange
— client_certificate and certificate_verify are not sent

» anonymous DH / client is authenticated
— not allowed

Secure Socket Layer (SSL) 27

Eavesdropping

+ all application data is encrypted with a short term connection
key

+ short term key is derived from per-connection salts (client
and server randoms) and a strong shared secret (master
secret) by hashing (one-way operation)

+ even if connection keys are compromised the master secret remains
intact

+ different keys are used in each connection and in each
direction of the connection

+ supported encryption algorithms are strong

Secure Socket Layer (SSL) 28

Traffic analysis

- SSL doesn’t attempt to protect against traffic analysis
— padding length is not random
— no padding if a stream cipher is used (this is the default option)

- if SSL is used to protect HTTP traffic, then an attacker
— can learn the length of a requested URL
— can learn the length of the HTML data returned
— could find out which URL was requested with high probability

Secure Socket Layer (SSL) 29

Replay attacks

+ SSL protects against replay attacks by including an implicit
sequence number in the MAC computation
+ prevents re-order and deletion of messages
+ sequence numbers are 64 bit long
+ practically never wraps around

Secure Socket Layer (SSL) 30

Message authentication

+/- SSL uses a HMAC-like MAC
— it actually uses an obsolete version of HMAC
+ HMAC is provably secure

+ MAC secret is 128 bits long

+ different MAC secrets are used in different directions and
connections

- the MAC doesn’t involve the version number (part of the
message)

- if the version number is ever used, then it should be covered by the
MAC

- if the version number is never used, then it should not be sent

Secure Socket Layer (SSL) 31

CBC encryption with padding in SSL/TLS

25

5

P P, P3 Pn E. -§.
| | | | l []

'é Cni—*

K— E I K— E

(B

1
l
T S —

K%EI K—

m<—®<—

P
1 2 3 N

= SSL padding
— last byte is the length n of the padding (not including the last byte)
— all padding bytes have the value n
— examples for correct padding: 0, 11, 222, 3333, ...
= verification of SSL padding:
— if the last byte is n, then verify if the last n+1 bytes are all n

Secure Socket Layer (SSL) 32

Padding oracle attack (reminder)

= send a random message to a TLS server
= the server will drop the message with overwhelming probability
— either the padding is incorrect (the server responds with a
DECRYPTION_FAILED alert)
— or the MAC is incorrect with very high probability (the server responds with
BAD_RECORD_MAC alert)
= if the response is BAD_RECORD_MAC, then the padding was correct >
we get 1 bit of information !
= such an oracle can be used to decrypt any encrypted message (see
slides on block encryption modes)
= problems in practice
— alert messages are encrypted > BAD_RECORD_MAC and
DECRYPTION_FAILED cannot be distinguished
* measure timing between oracle call and oracle response
+ BAD_RECORD_MAC takes more time than DECRYPTION_FAILED

— BAD_RECORD_MAC and DECRYPTION_FAILED are fatal errors >
connection is closed after one oracle call
» a password can still be broken if it is sent periodically to a server using TLS (a
different session (and key) is used each time the password is sent, but the
password is always the same)

Secure Socket Layer (SSL) 33

Example: IMAP over TLS

= Qutlook Express checks for new mail on the server periodically (every 5 minutes)
= each time the same password is sent for every folder

XXXX LOGIN “username” “password’<0D><0A>
» it is possible to uncover the password using the attack as follows:

client man-in-the-middle server
[T T |
X X X X L OG
IN butty
an kiska
c s a
[—I* r, r,r, r, r, r, r, ry
an kiska
At DECRYPTION_FAILED
DECRYPTION_FAILED | { | _F

Secure Socket Layer (SSL) 34

Cipher suite rollback attack

= in SSL 2.0, an attacker could force the use of an export-weakened
encryption algorithm by modifying the list of supported cipher suites in
the hello messages

= this is prevented in SSL 3.0 by authenticating all handshake messages
with the master secret (in the finished messages)

= the master secret itself is authenticated by other means

— for the client:
< implicit authentication via the server certificate
— only the server could decrypt the RSA encrypted pre-master secret
— only the server could compute the pre-master secret from the client’s public DH value
» explicit authentication via the server_key_exchange message (if sent)
— ephemeral DH parameters are signed by the server
— for the server:
 explicit authentication via the certificate_verify message (if sent)
— certificate_verify is signed by the client
— itinvolves the master secret

Secure Socket Layer (SSL) 35

Dropping the change_cipher_spec msg

= authentication in the finished message does not protect the
change_cipher_spec message (it is not part of the handshake protocol !)

= this may allow the following attack:

— assume that the negotiated cipher suite includes only message
authentication (no encryption)

client first 3 phases of the handshake: server
setup of MAC secrets k1 and k2

P o
< »

man-in-the-middle
change_cipher_spec

sending state ---

isupdated | finished,, mac,,(finished,) receiving state

is not yet updated:
-- finish, is accepted

finished,

change_cipher_spec

-- sending state
finisheds, mac,,(finisheds)| is updated

i finishedg
receiving state ---
is not updated: data, mac,,(data) -
finishg is modified data
accepted

Secure Socket Layer (SSL) 36

Dropping the change_cipher_spec msg

= if the negotiated cipher suite includes encryption, then the attacks doesn’t
work
— client sends encrypted finished message
— server expects clear finished message
— the attacker cannot decrypt the encrypted finished message

= simplest fix: require reception of change_cipher_spec before processing
the finished message
— this seems to be obvious, but...

— even Netscape'’s reference SSL implementation SSLRef 3.0b1 allows
processing finished messages without checking if a change_cipher_spec has
been received

— SSLRef 3.0b3 contains the fix

= another fix: include the change_cipher_spec message in the computation
of the finished message
— this would require a more radical change in the SSL specification

Secure Socket Layer (SSL) 37
Key-exchange algorithm rollback
client man-in-the-middle server
client_hello: SSL_RSA_...
client_hello: SSL_DHE_...
server_hello: SSL_DHE_...
server_hello: SSL_RSA_...
certificate: server signing key | certificate: server signing key
server_key_exchange: server_key_exchange:
p. g, 9" mod p, signature p. 9, 9" mod p, signature
RSA modulus = p --
RSA exponent = g client_key_exchange:
sec mod p client_key_exchange:
X mod
g mocp -- sec’' = (g*)Y mod p
recover sec by -1-- compute sec’ as (g¥)* mod p
computing g-th root
(this is easy since p is prime)
F— finished:
inished: { hash(msgs, sec’), macg,.(...) Yeeer
{ hash(msgs', sec), mac,(...) Ysec 2 ma
Secure Socket Layer (SSL) 38

Key-exchange algorithm rollback

= SSL authenticates only the server’s (RSA or DH) parameters
in the server_key exchange message

» it doesn’t authenticate the context (key exchange algorithm
in use) in which those parameters should be interpreted

= this is not compliant with the Horton principle !

» afix:
— hash all messages exchanged before the server_key exchange
message
— include the hash in the signature in server_key exchange message

Secure Socket Layer (SSL) 39

Version rollback attacks

= SSL 3.0 implementations may still support SSL 2.0

= an attacker may change the client_hello message so that it looks like an
SSL 2.0 client_hello

= as a result the client and the server will run SSL 2.0
= SSL 2.0 has serious security flaws
— among other things, there are no finished messages to authenticate the
handshake
- the version rollback attack will go undetected

= fortunately, SSL 3.0 can detect version rollback
— pre-master secret generated on SSL 3.0 enabled clients:

struct{
ProtocolVersion client_version; // latest version supported by the client
opaque random[46]; // random bytes
} PreMasterSecret;
— an SSL 3.0 enabled server detects the version rollback attack, when it runs
an SSL 2.0 handshake but receives a pre-master secret that includes version
3.0 as the latest version supported by the client

Secure Socket Layer (SSL) 40

MAC usage

= while the SSL Record Protocol uses HMAC (an early
version), the SSL Handshake Protocol uses ad-hoc MACs at
several points

— certificate_verify:
hash(master_secret | pad_2 | hash(handshake_messages | master_secret | pad_1))

— finished:
hash(master_secret | pad_2 | hash(handshake_messages | sender | master_secret | pad_1))

= in addition, these ad-hoc MACs involve the master secret
» this is dangerous, and SSL should use HMAC consistently

Secure Socket Layer (SSL) 41

Analysis summary

= SSL Record Protocol
+ good protection against passive eavesdropping and active attacks
— should better protect against traffic analysis (e.g., apply random padding)
— should use the latest version of HMAC

» SSL Handshake Protocol

+ some active attacks are foiled
« cipher suite rollback
 version rollback

— other active attacks could still be possible depending on how an

implementation interprets the SSL specification

» dropping change_cipher_spec messages
» key-exchange algorithm rollback

— ad-hoc MAC constructions should be replaced with HMAC

= overall: SSL 3.0 was an extremely important step toward practical
communication security for Internet applications

Secure Socket Layer (SSL) 42

SSL vs. TLS

» version number
— for TLS 1.1 the version number is 3.2
= cipher suites
— TLS doesn’t support Fortezza key exchange and Fortezza encryption
= padding
— variable length padding is allowed (max 255 padding bytes)
= MAC
— TLS uses the latest version of HMAC
— the MAC covers the version field of the record header too
= certificate_verify message
— in SSL, the hash contains the master_secret
— in TLS, the hash is computed only over the handshake messages
more alert codes

Secure Socket Layer (SSL) 43

New pseudorandom function (PRF)

= P _hash(secret, seed) = HMAC_hash(secret, A(1) | seed) |
HMAC _hash(secret, A(2) | seed) |
HMAC_hash(secret, A(3) | seed) | ...
where
A(0) = seed
A(i) = HMAC_hash(secret, A(i-1))

= PRF(secret, label, seed) =
P_MD5(secret_left, label | seed) ® P_SHA(secret_right, label | seed)

Secure Socket Layer (SSL) 44

P_hash illustrated

seed

secret — HMAC

||)e— seed secret— HMAC

secret — HMAC A@)

@4— seed secret—| HMAC

A(3)

®<— seed

secret — HMAC

secret —| HMAC

| |

Secure Socket Layer (SSL)

45

Usage of the new PRF

= finished message

PRF(master_secret,

“client finished”,
MD5(handshake_messages) | SHA(handshake_messages))

= cryptographic computations
— pre-master secret is calculated in the same way as in SSL
— master secret:
PRF(pre_master_secret,
“master secret”,
client_random | server_random)
— key block:
PRF(master_secret,
“key expansion”,
server_random | client_random)

Secure Socket Layer (SSL)

46

Further readings

= The TLS protocol v1.1, available on-line as RFC 4346

= D. Wagner, B. Schneier, Analysis of the SSL 3.0 protocol,
2nd USENIX Workshop on Electronic Commerce, 1996.

Secure Socket Layer (SSL)

47

