Wormhole detection

-- the wormhole attack
-- centralized and decentralized wormhole detection algorithms

Introduction

- many wireless networking mechanisms require that the nodes be aware of their neighborhood
- a simple neighbor discovery protocol:
 - every node broadcasts a neighbor discovery request
 - each node that hear the request responds with a neighbor discovery reply
 - messages carry node identifiers → neighboring nodes discover each other's ID
- an adversary may try to thwart the execution of the protocol
 - prevent two neighbors to discover each other by jamming
 - create a neighbor relationship between far-away nodes
 - by spoofing neighbor discovery messages (can be prevented by message authentication techniques)
 - by installing a wormhole (cannot be prevented by cryptographic techniques alone)
What is a wormhole?

- a wormhole is an out-of-band connection, controlled by the adversary, between two physical locations in the network
 - the adversary installs radio transceivers at both ends of the wormhole
 - it transfers packets (possibly selectively) received from the network at one end of the wormhole to the other end via the out-of-band connection, and re-injects the packets there into the network

- notes:
 - adversary’s transceivers are not regular nodes (no node is compromised by the adversary)
 - adversary doesn’t need to understand what it tunnels (e.g., encrypted packets can also be tunneled through the wormhole)
 - it is easy to mount a wormhole, but it may have devastating effects on routing

Effects of a wormhole

- at the data link layer: distorted network topology

 (a)

 (b)

 (c)

 (d)

 (e)

 (f)

- at the network layer:
 - routing protocols may choose routes that contain wormhole links
 - typically those routes appear to be shorter
 - flooding based routing protocols (e.g., DSR, Ariadne) may not be able to discover other routes but only through the wormhole
 - adversary can then monitor traffic or drop packets (DoS)
Wormholes are not unique to ad hoc networks

Classification of wormhole detection methods

- centralized mechanisms
 - data collected from the local neighborhood of every node are sent to a central entity
 - based on the received data, a model of the entire network is constructed
 - the central entity tries to detect inconsistencies (potential indicators of wormholes) in this model
 - can be used in sensor networks, where the base station can play the role of the central entity

- decentralized mechanisms
 - each node constructs a model of its own neighborhood using locally collected data
 - each node tries to detect inconsistencies on its own
 - advantage: no need for a central entity (fits well some applications)
 - disadvantage: nodes need to be more complex
Statistical wormhole detection

- each node reports its list of believed neighbors to the base station
- the base station reconstructs the connectivity graph (model)
- a wormhole always increases the number of edges in the connectivity graph
- this increase may change the properties of the connectivity graph in a detectable way (anomaly)
- detection can be based on statistical hypothesis testing methods (e.g. the χ^2-test)

Examples

- a wormhole that creates many new edges may increase the number of neighbors of the affected nodes
 ⇒ distribution of node degrees will be distorted

- a wormhole is usually a shortcut that decreases the length of the shortest paths in the network
 ⇒ distribution of the length of the shortest paths will be distorted
Multi-dimensional scaling

- the nodes not only report their lists of neighbors, but they also estimate (inaccurately) their distances to their neighbors
- connectivity information and estimated distances are input to a multi-dimensional scaling (MDS) algorithm
- the MDS algorithm tries to determine the possible position of each node in such a way that the constraints induced by the connectivity and the distance estimation data are respected
 - the algorithm has a certain level of freedom in “stretching” the nodes within the error bounds of the distance estimation
- let us suppose that an adversary installed a wormhole in the network
 - if the estimated distances between the affected nodes are much larger than the nodes’ communication range, then the wormhole is detected
 - hence, the adversary must also falsify the distance estimation \(\rightarrow \) distances between far-away nodes become smaller
 - this will result in a distortion in the virtual layout constructed by the MDS algorithm

Examples

- in 1D:

 ![1D graph](image1.png)

 connectivity graph \hspace{1cm} reconstructed virtual layout

- in 2D:

 ![2D graph](image2.png)
Packet leashes

- packet leashes ensure that packets are not accepted “too far” from their source
- geographical leashes
 - each node is equipped with a GPS receiver
 - when sending a packet, the node puts its GPS position into the header
 - the receiving node verifies if the sender is really within communication range
- temporal leashes
 - nodes’ clocks are very tightly synchronized
 - when sending a packet, the node puts a timestamp in the header
 - the receiving node estimates the distance of the sender based on the elapsed time and the speed of light
 \[d_{\text{est}} < v_{\text{light}}(t_{\text{rcv}} - t_{\text{snd}} + \Delta t) \]
 - note: \(v_{\text{light}} \Delta t \) must be much smaller than the communication range

TESLA with Instant Key-disclosure (TIK)

idea: authentication delay of TESLA can be removed in an environment where the nodes’ clocks are tightly synchronized

- by the time the sender reveals the key, the receiver has already received the MAC
- security condition: \(t_f < t_i - \Delta t + \tau_{\text{pkt}} \)
- note: \(\Delta t \) must be very small or otherwise packets must be very long
Mutual Authentication with Distance-bounding (MAD)

--- initialization phase ---
\[r \in \{0, 1\}^t, s \in \{0, 1\}^t \]
compute commitment \(c_a = H(r|s|) \)
compute commitment \(c_b = H'(s|r) \)

--- distance-bounding phase ---
\(\alpha_i = r_i \)
\(\beta_i = s_i \)
\(\alpha_i = \alpha_i \oplus \beta_{i-1} \)
measure delay between \(\alpha_i \) and \(\beta_i \)
\(\beta_i = s_i \oplus \alpha_i \)
measure delay between \(\alpha_i \) and \(\beta_i \)

--- authentication phase ---
\(s_i = \alpha_i \oplus \beta_i \) (\(i = 1, \ldots, t \))
\(r_i = \alpha_i \) and \(r_i = \alpha_i \oplus \beta_{i-1} \) (\(i = 2, \ldots, t \))

\[\mu_a = \text{mac}_{k_a}(r|u|s|s_1|\ldots|s_t|s_1) \]
\[\mu_b = \text{mac}_{k_b}(r|u|s|s_1|\ldots|s_t|r_1) \]
\[\overrightarrow{\mu_a'} \overrightarrow{\mu_b'} \]
verify \(c_a \) and \(\mu_a \)
verify \(c_b \) and \(\mu_b \)

- MAD allows precise distance estimation without synchronized clocks

Wormhole detection

Using position information of anchors

- anchors are special nodes that know their own positions (GPS)
- there are only a few anchors randomly distributed among regular nodes
- two nodes consider each other neighbors only if
 - they hear each other and
 - they hear more than \(T \) common anchors
- anchors put their location data in their messages
- transmission range of anchors (\(R \)) is larger than that of regular nodes (\(r \))
- wormholes are detected based on the following two principles:
 1. a node should not hear two anchors that are 2\(R \) apart from each other
 2. a node should not receive the same message twice from the same anchor
Principle 1

- x hears anchors in A_x and in A_o
- P_1 is the probability that it hears two anchors that are farther away from each other than $2R$
- the probability that there is at least one anchor in an area of size S is $(1-e^{-\lambda S})$, where λ is the density of anchors
- $P_1 \geq (1-e^{-\lambda S_x})(1-e^{-\lambda S_O})$, where S'_x is the size of A'_x and S'_O is the size of A'_O
- this lower bound is maximum when $S'_x = S'_O$

Principle 2

- when x and O are closer than $2R$, the discs A_x and A_O overlap
- if there is an anchor in the intersection A_{xO}, then the messages of that anchor is heard twice by x
 - first directly and then from transceiver D who receives it from O through the wormhole
- the probability P_2 of detection is equal to the probability that there is at least one anchor in A_{xO}
- $P_2 = 1-e^{-\lambda S_{xO}}$
Wormhole detection with directional antennas

- when two nodes are within each other’s communication range, they must hear each other’s transmission from opposite directions
- if nodes x and y communicate through a wormhole, then this condition is not always satisfied:

 ![Diagram](image)

- but this doesn’t always work:

 ![Diagram](image)

Using verifiers – the idea

- if y and x were real neighbors and y heard x in zone 4, then every node in y’s zone 4 would be a neighbor of x
- if they are not real neighbors, then there may be a node v in y’s zone 4 that is not a neighbor of x (v and x don’t hear each other from opposite directions)
- such a v can be used by y as a verifier

![Diagram](image)
Conditions for being a verifier

- if node y hears v in the same zone in which it hears x, then y may hear both x and v through the wormhole
 - for a valid verifier v, y must hear v and x from different zones (i.e., $Z_{yx} \neq Z_{yx}$ must hold)

- if v hears x in the same zone in which y hears x (i.e., $Z_{vx} = Z_{yx}$), then they may both hear x through the wormhole’s transceiver
- if, in addition, x happens to hear the other transceiver of the wormhole in zone Z_{yx}, then x can establish neighbor relationships with both y and v
 - for a valid verifier v, v must hear x from a zone different from the one in which y hears x (i.e., $Z_{vx} \neq Z_{yx}$ must hold too).

Using verifiers – the mechanism

- y accepts x as a neighbor if
 - they hear each other from opposite zones
 - there’s at least one valid verifier v such that x and v hear each other from opposite zones
- how does this detect wormholes?
 - let us assume that y hears x through the wormhole
 - one end of the wormhole is near to x, the other end is in zone Z_{yx}
 - let us further assume that v is a valid verifier
 - first condition ($Z_{yv} \neq Z_{vy}$) is satisfied
 - y hears v directly (since y hears v from a zone different from Z_{vy})
 - x hears both y and v through the wormhole
 - second condition ($Z_{vx} = Z_{yx}$) is satisfied
 - x and v cannot hear each other from opposite zones
 - let’s assume that $Z_{vx} = Z_{yx}$
 - we know that x hears both y and v through the wormhole $\Rightarrow Z_{vx} = Z_{yx}$
 - in addition, we know that $Z_{vx} = Z_{yx}$ (otherwise y would not consider x as a potential neighbor)
 - $Z_{vx} = Z_{yx} = Z_{vy} \Rightarrow Z_{vx} = Z_{yx}$ (contradicts the second condition)
 - no valid verifier v exists such that x and v hear each other from opposite zones $\Rightarrow y$ will not accept x as a neighbor
Summary

- A wormhole is an out-of-band connection, controlled by the adversary, between two physical locations in the network.
- A wormhole distorts the network topology and may have a profound effect on routing.
- Wormhole detection is a complicated problem.
 - Centralized and decentralized approaches:
 - Statistical wormhole detection
 - Wormhole detection by multi-dimensional scaling and visualization
 - Packet leashes
 - Distance bounding techniques
 - Anchor assisted wormhole detection
 - Using directional antennas
 - Many approaches are based on strong assumptions:
 - Tight clock synchronization
 - GPS equipped nodes
 - Directional antennas
 - ...
- Wormhole detection is still an active research area.