Outline

- five standardized modes (operation, properties)
 - Electronic Codebook (ECB) mode
 - Cipher Block Chaining (CBC) mode
 - Cipher Feedback (CFB) mode
 - Output Feedback (OFB) mode
 - Counter (CTR) mode

- attacks on CBC
 - simple attacks (content leak, cut and paste)
 - padding oracle attack by Vaudenay (2002)

- some exercises
Block Cipher Modes

ECB mode

- **encrypt**

```
+-----------------+-----------------+-----------------+
|                 | \( K \rightarrow E \) | \( K \rightarrow E \) |
|                 | \( \downarrow \)     | \( \downarrow \)   |
| \( X_1 \)       | \( \rightarrow Y_1 \) |
| \( X_2 \)       | \( \rightarrow Y_2 \) |
| \( \ldots \)    | \( \ldots \)         |
| \( X_N \)       | \( \rightarrow Y_N \) |
```

- **decrypt**

```
+-----------------+-----------------+-----------------+
|                 | \( K \rightarrow D \) | \( K \rightarrow D \) |
|                 | \( \downarrow \)     | \( \downarrow \)   |
| \( Y_1 \)       | \( \rightarrow X_1 \) |
| \( Y_2 \)       | \( \rightarrow X_2 \) |
| \( \ldots \)    | \( \ldots \)         |
| \( Y_N \)       | \( \rightarrow X_N \) |
```

Properties of the ECB mode

- Decrypting the same plaintext with the same key results in the same ciphertext
- Identical plaintext blocks result in identical ciphertext blocks (under the same key of course)
 - Messages to be encrypted often have very regular formats
 - Repeating fragments, special headers, string of 0s, etc. are quite common
 - Does not properly hide patterns in the plaintext
- Blocks are encrypted independently of other blocks
 - Reordering ciphertext blocks result in correspondingly reordered plaintext blocks
 - Ciphertext blocks can be cut from one message and pasted in another, possibly without detection
 - Additional integrity protection is essential
- Error propagation: one bit error in a ciphertext block affects only the corresponding plaintext block (results in garbage)
- Overall: not recommended for messages longer than one block, or if keys are reused for more than one block
Illustration of ECB in action

CBC mode

- Encrypt

\[
\begin{align*}
Y_1 &= E(X_1) \\
Y_2 &= E(Y_1) \\
Y_3 &= E(Y_2) \\
&\vdots \\
Y_N &= E(Y_{N-1})
\end{align*}
\]

- Decrypt

\[
\begin{align*}
X_1 &= D(Y_1) \\
X_2 &= D(X_1) \\
X_3 &= D(Y_2) \\
&\vdots \\
X_N &= D(Y_{N-1})
\end{align*}
\]
Properties of the CBC mode

- encrypting the same plaintext under the same key, but different IVs result in different ciphertexts
- ciphertext block Y_j depends on X_j and all preceding plaintext blocks
 - rearranging ciphertext blocks affects decryption
 - however, dependency on the preceding plaintext blocks is only via the previous ciphertext block Y_{j-1}
 - proper decryption of a correct ciphertext block needs a correct preceding ciphertext block only (see cut-and-paste attacks later in this slide set)
- error propagation:
 - one bit error in a ciphertext block Y_j has an effect on the j-th and $(j+1)$-st plaintext block
 - X_j' is complete garbage and X_{j+1}' has bit errors where Y_i had
 - an attacker may cause predictable bit changes in the $(j+1)$-st plaintext block (see the padding oracle attack later in this slide set)
- self-synchronizing property:
 - automatically recovers from loss of a ciphertext block
- parallel computation (only for decryption), random access, no pre-computation

Requirements on the IV

- the IV need not be secret (although secret IVs have some advantages), but it should be **unpredictable and non-manipulable** by the attacker
- the problem with predictable IVs (in the chosen plaintext attack model)
 - let $Y_i = E_K(Y_{i-1} + X_i)$ for some i (part of a CBC encrypted message), and let us assume that the attacker suspects that $X_i = X^*$; can he confirm this?
 - the attacker predicts the next IV, submits $X = IV + Y_{i-1} + X^*$ to the oracle, and receives $Y = E_K(IV + X) = E_K(Y_{i-1} + X^*)$; if $Y = Y_i$, than $X_i = X^*$ is confirmed
- the problem with manipulable IVs
 - if an attacker can directly manipulate the IV (e.g., flip a selected bit of it), then he can make specific changes to the first plaintext block recovered (e.g., flip a selected bit of it)
Generating unpredictable IVs

- \(IV = E_K(N) \)
 - where \(N \) is a nonce (non-repeating value)
 - \(N \) may be a counter or a message ID (unique to the message)
 - to ensure non-manipulability, the sender should send \(N \) to the receiver
 (perhaps at the beginning of the CBC encrypted message), who should
 then compute the IV locally
 - \(N \) may be changed by an attacker, but he cannot control the effects made on the
 value of the IV

- \(IV = \) output of a cryptographic random number generator
 - random number generators available in standard programming libraries
 (e.g., \(\text{rand} \), \(\text{rand} \), …) are not unpredictable, therefore they are not appropriate
 here!
 - to ensure non-manipulability the sender should send the IV in an encrypted
 form (e.g., \(E_K(IV) \)) to the receiver
 - \(E_K(IV) \) may be changed, but the attacker cannot control the effects made on the
 recovered IV

- both approaches also ensure the secrecy of the IV, which is advantageous

Padding

- the length of the message may not be a multiple of the cipher’s block size
- we must add some extra bytes to the short end block such that it reaches
 the correct size – this is called padding
- the receiver must be able to unambiguously recognize and remove the
 padding
- common examples for padding schemes:
 - append a \(x01 \) byte and then as many \(x00 \) bytes as needed (i.e., 1000…)
 - indicate the length of the padding in the last added byte

- note: padding is always used, even in the case when the length of the original
 message is a multiple of the block size: in this case, an entire extra block is
 added to the message
Example: TLS Record Protocol

- TLS padding:
 - last byte is the length n of the padding (not including the last byte)
 - all padding bytes have value n
 - examples for correct message tails: x00, x01x01, x02x02x02, ...
 - verification: if the last byte is n, then verify if the last n+1 bytes are all n
 - if verification is successful, remove the last n+1 bytes, and proceed with the verification of the MAC

CFB mode

- encrypt
 - initialized with IV
 - shift register (n)
 - select s MSB bits
 - K → E
 - m_i → c_i

- decrypt
 - initialized with IV
 - shift register (n)
 - select s MSB bits
 - K → E
 - c_i → m_i
Properties of the CFB mode

- encrypting the same plaintexts under the same key, but different IVs results in different ciphertexts

- ciphertext character c_i depends on m_i and all preceding plaintext characters
 - rearranging ciphertext characters affects decryption
 - proper decryption of a correct ciphertext character requires that the preceding n/s ciphertext characters are correct

- error propagation:
 - one bit error in a ciphertext character c_i has an effect on the decryption of that and the next n/s ciphertext characters (the error remains in the shift register for n/s steps)
 - m_i has bit errors where C_j had, all the other erroneous plaintext characters are garbage
 - an attacker may cause predictable bit changes in the j-th plaintext character!

- self-synchronizing property:
 - recovers from loss of a ciphertext character after n/s steps

- parallel computation (only for decryption), random access, no pre-computation

Another view on CFB

- if $s = n$, then...
 - encrypt
 - $E\ Y_1 = X_1 \oplus E\ Y_2 = X_2 \oplus \ldots \oplus E\ Y_N = X_N \oplus K\ E\ IV$
 - decrypt
 - $K\ E\ Y_1 \oplus X_1 \rightarrow E\ Y_2 \oplus X_2 \rightarrow \ldots \rightarrow E\ Y_N \oplus X_N$
OFB mode

- **encrypt**

 - initialized with IV

 \[
 \begin{align*}
 &\text{input register (n)} \quad (n) \\
 &K \quad (n) \\
 &\text{select s MSB bits} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 &m_i \quad (s) \\
 &\oplus \\
 &c_i \quad (k) \\
 \end{align*}
 \]

- **decrypt**

 - initialized with IV

 \[
 \begin{align*}
 &\text{input register (n)} \quad (n) \\
 &K \quad (n) \\
 &\text{select s MSB bits} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 &c_i \quad (s) \\
 &\oplus \\
 &m_i \quad (k) \\
 \end{align*}
 \]

Properties of the OFB mode

- a different IV should be used for every new message, otherwise messages will be encrypted with the same key stream

- the IV can be sent in clear
 - however, if the IV is modified by the attacker, then the cipher will never recover (unlike CFB)

- ciphertext character \(c_i \) depends on \(m_i \) only (does not depend on the preceding plaintext characters)
 - however, rearranging ciphertext characters affects decryption
 - statistical properties of the plaintext is hidden due to the random output of the block cipher

- error propagation:
 - one bit error in a ciphertext character \(c_i \) has an effect on the decryption of only that ciphertext character
 - \(m_i \) has bit errors where \(c_i \) had
 - an attacker may cause predictable bit changes in the \(j \)-th plaintext character !!!

- needs synchronization
 - cannot automatically recover from a loss of a ciphertext character

- sequential computation only, no random access, pre-computation is possible
Another view on OFB

- if \(s = n \), then...
 - encrypt
 \[
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 X_1 \rightarrow Y_1 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 X_2 \rightarrow Y_2 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 X_3 \rightarrow Y_3 \\
 \end{array}
 \quad\ldots
 \quad
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 X_N \rightarrow Y_N \\
 \end{array}
 \]
 - decrypt
 \[
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 Y_1 \rightarrow X_1 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 Y_2 \rightarrow X_2 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 Y_3 \rightarrow X_3 \\
 \end{array}
 \quad\ldots
 \quad
 \begin{array}{c}
 \text{IV} \\
 K \rightarrow E \\
 Y_N \rightarrow X_N \\
 \end{array}
 \]

CTR mode

- encrypt
 \[
 \begin{array}{c}
 \text{ctr}_1 \\
 K \rightarrow E \\
 X_1 \rightarrow Y_1 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{ctr}_2 \\
 K \rightarrow E \\
 X_2 \rightarrow Y_2 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{ctr}_3 \\
 K \rightarrow E \\
 X_3 \rightarrow Y_3 \\
 \end{array}
 \quad\ldots
 \quad
 \begin{array}{c}
 \text{ctr}_N \\
 K \rightarrow E \\
 X_N \rightarrow Y_N \\
 \end{array}
 \]

- decrypt
 \[
 \begin{array}{c}
 \text{ctr}_1 \\
 K \rightarrow E \\
 Y_1 \rightarrow X_1 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{ctr}_2 \\
 K \rightarrow E \\
 Y_2 \rightarrow X_2 \\
 \end{array}
 \quad
 \begin{array}{c}
 \text{ctr}_3 \\
 K \rightarrow E \\
 Y_3 \rightarrow X_3 \\
 \end{array}
 \quad\ldots
 \quad
 \begin{array}{c}
 \text{ctr}_N \\
 K \rightarrow E \\
 Y_N \rightarrow X_N \\
 \end{array}
 \]
Properties of the CTR mode

- similar to OFB, but ...
- parallel computation and random access (unlike OFB), and pre-computation is possible too

Generating counter blocks

- it is crucial that counter values do not repeat, otherwise...
 - given \(Y = E(\text{ctr})X \) and \(Y' = E(\text{ctr})X' \), the attacker can compute \(Y + Y' = X + X' \); if \(X \) (or part of it) is known then \(X' \) (or part of it) is disclosed to the attacker

 this requires:
 - incrementing function for generating the counter blocks from any initial counter block must ensure that counter blocks do not repeat within a given message
 - the initial counter blocks must be chosen to ensure that counters are unique across all messages that are encrypted under the given key

- a typical approach:
 - divide the counter block into two sub-blocks \(\text{ctr} = \text{ctr}'|\text{ctr}'' \), where \(\text{ctr}'' \) is \(b \) bits long and \(\text{ctr}' \) is \(n-b \) bits long (\(n \) is the block size of the cipher)
 - \(\text{ctr}' \) is a nonce (e.g., a unique message ID) or it is a counter incremented with each new message (\(\Rightarrow \) max number of messages is \(2^{nb} \))
 - \(\text{ctr}'' \) is a counter incremented with every block within the message (\(\Rightarrow \) max message length is \(2^n \) blocks)
Summary of properties

- **ECB:** used to encipher a single plaintext block (e.g., an AES key or an IV)
- **CBC:** repeated use of the block cipher to encrypt long messages
 - IV should be changed for every message
 - the unpredictability and the non-manipulability of the IV is important
 - only the decryption can be parallelized, random access, no pre-computation
 - limited error propagation, self-synchronizing property
- **CFB, OFB, CTR:**
 - can be used to convert a block cipher into a stream cipher (s < n)
 - OFB and CTR ⇒ synchronous stream ciphers
 - CFB ⇒ self-synchronizing stream-cipher
 - only the encryption algorithm is used, that is why some block ciphers (e.g., Rijndael) are optimized for encryption
- **none of these modes provide integrity protection !**
- encrypted message is longer than clear message due to padding (except if s < n in CFB, OFB, and CTR modes)

Summary of properties

- **CFB:**
 - IV should be changed for every message
 - only the decryption can be parallelized, random access, no pre-computation
 - extended error propagation, self-synchronizing property
- **OFB:**
 - changing the IV for every message is very important
 - cannot be parallelized, no random access, pre-computation is possible
 - no error propagation, needs synchronization
- **CTR:**
 - non-repeating counters are very important
 - parallelizable, random access, pre-computation
 - no error propagation, needs synchronization
- **none of these modes provide integrity protection !**
- encrypted message is longer than clear message due to padding (except if s < n in CFB, OFB, and CTR modes)
Ciphertext stealing (CTS) in CBC

- **encryption:**
 - $Y_i = E_k(X_i + Y_{i-1})$ for $i = 1..n-1$
 - $Y_n = E_k(X_n|0^* + Y_{n-1})$
 - ciphertext: $Y_1 | Y_2 | ... | Y_{n-2} | Y_n | Y_n| \text{trunc}(|X_n|)$

- **decryption:**
 - $X_i = D_k(Y_i) + Y_{i-1}$ for $i = 1..n-2$
 - $X_n = D_k(Y_n) \text{trunc}(|X_n|) + Y_{n-1} \text{trunc}(|X_n|)$
 - $Y_{n-1} = D_k(Y_n) + X_n|0^*$
 - $X_{n-1} = D_k(Y_{n-1}) + Y_{n-2}$

Some attacks on CBC

- content leak attack
- cut-and-paste attack
- padding oracle attack
Content leak attack on CBC

- Let's assume that we have two encrypted blocks:
 - $Y_i = E_K(X_i + Y_{i-1})$
 - $Y_j = E_K(X_j + Y_{j-1})$

 That happen to be equal:
 - $Y_i = Y_j$

- This means that:
 - $D_K(Y_i) = D_K(Y_j)$
 - $X_i + X_j = Y_{i-1} + Y_{j-1}$

- The attacker knows the difference between X_i and X_j
- If X_i (or part of it) is known to the attacker, then X_j (or part of it) is also disclosed.

Probability of a matching pair

- $\Pr(Y_i = Y_j) = ?$
- Assume that the block cipher works as a random function.
- Let P_k be the probability of having no matching pairs among k outputs (size of output space is $N = 2^n$)
 - $P_1 = 1$
 - $P_2 = (N-1)/N$
 - $P_3 = ((N-1)/N)((N-2)/N)$
 - \ldots
 - $P_k = ((N-1)/N)((N-2)/N) \ldots ((N-k+1)/N) = (1/N^k)(N! / (N-k)!)$

- $\Pr(Y_i = Y_j) = 1 - P_k$

![Graph showing the probability of a matching pair]
Cut-and-paste attack on CBC

- given two encrypted messages $Y_1Y_2...Y_p$ and $Y_1'Y_2'...Y_q'$ we can construct $Y_1...Y_iY_1'...Y_qY_{i+1}...Y_p$
- this will decrypt into $X_1...X_iRX_2'...X_q'R*X_{i+2}...X_p$
- R and R^* are garbage, but the receiver may actually expect random numbers at those positions of the message

$C \rightarrow S: \begin{array}{c}
\text{pass}
\end{array}$

$S \rightarrow C: \begin{array}{c}
\text{http://w w.crysy s.hu/ind ex.html}
\end{array}$

The padding oracle attack on CBC

- padding oracle
 - assume that a system uses CBC encryption/decryption with MAC and padding (in this order!)
 - the receiver of a CBC encrypted message may respond differently in the case of “incorrect padding” and in the case of “correct padding but incorrect MAC”
 - we get 1 bit of information!
- example padding oracle in practice: a TLS server
 - send a random message to a TLS server (chosen ciphertext attack model)
 - the server will drop the message with overwhelming probability
 - either the padding is incorrect (the server responds with a DECRYPTION_FAILED alert)
 - or the MAC is incorrect with very high probability (the server responds with BAD_RECORD_MAC)
- how to exploit this?
 - an attack discovered by Vaudenay in 2002 uses such a padding oracle to decrypt any CBC encrypted message efficiently!
 - vulnerable protocols: SSL/TLS, WTLS, IPsec, …
Recovering the last byte(s)

- assume we have an encrypted block $y_1 y_2 \ldots y_8 = E_K(x_1 x_2 \ldots x_8)$
- we want to compute x_8 (the last byte of x)
- idea:
 1. choose a random block $r_1 r_2 \ldots r_8$; let $i = 0$
 2. send $r_1 r_2 \ldots r_7 (r_8 \oplus i) y_1 y_2 \ldots y_8$ to the server (oracle)
 3. if there’s a padding error, then increment i and go back to step 2
 4. if there’s no padding error, then $r_1 r_2 \ldots r_7 (r_8 \oplus i)$ ends with 0 or 11 or 222 …
 - the most likely is that $(r_8 \oplus i) \oplus x_8 = 0$, and hence $x_8 = r_8 \oplus i$

```
\begin{array}{c}
\text{r_1 r_2 \ldots r_7 (r_8 \oplus i)} \\
\downarrow \\
Y_1 Y_2 \ldots Y_8 \\
\downarrow \\
k \rightarrow D_k \\
\text{K} \\
\downarrow \\
IV \\
\downarrow \\
\text{garbage (r_1 \oplus x_1)(r_2 \oplus x_2) \ldots (r_8 \oplus i \oplus x_8)}
\end{array}
```

Recovering the last byte(s)

- assume we get that $x \oplus r$ has a correct padding, but we don’t know if it is 0 or 11 or 222 …
- algorithm:
 1. let $j = 1$
 2. change r_j and send $r_1 r_2 \ldots r_8 y_1 y_2 \ldots y_8$ to the server again
 3. if the padding is still correct then the j-th byte was not a padding byte; increment j and go back to step 2
 4. if the padding becomes incorrect then the j-th byte was the first padding byte;
 - $x_j \oplus r \oplus r_j \oplus r_{j+1} \oplus r_{j+2} \oplus \ldots \oplus r_8 = 0$, and hence $x_j x_{j+1} \ldots x_8 = r_j \oplus r_{j+1} \oplus r_{j+2} \oplus \ldots \oplus r_8$

```
x = DE AD BE EF DE AD BE EF
r = 01 23 45 67 DD AE BD EC
r \oplus x = DF BE FB 88 03 03 03 03
j \oplus r \oplus x
<table>
<thead>
<tr>
<th>j</th>
<th>r \oplus x</th>
<th>padding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00 23 45 67 DD AE BD EC</td>
<td>DE BE FB 88 03 03 03 03</td>
</tr>
<tr>
<td>2</td>
<td>00 22 45 67 DD AE BD EC</td>
<td>DE BF FA 88 03 03 03 03</td>
</tr>
<tr>
<td>3</td>
<td>00 22 44 66 DD AE BD EC</td>
<td>DE BF FA 89 03 03 03 03</td>
</tr>
<tr>
<td>4</td>
<td>00 22 44 66 DD AE BD EC</td>
<td>DE BF FA 89 02 03 03 03</td>
</tr>
<tr>
<td>5</td>
<td>00 22 44 66 DD AE BD EC</td>
<td>DE BF FA 89 02 03 03 03</td>
</tr>
</tbody>
</table>

k_0, k_1, x_1, x_8 = DD \oplus 03 AD \oplus 03 BD \oplus 03 EC \oplus 03 = DE AD BE EF
```
Decrpyting an entire block

- Assume we have an encrypted block $y_1y_2...y_8 = E_K(x_1x_2...x_8)$ and we know the value of $x_{j+1}x_{j+2}...x_8$ (using the method for recovering the last byte(s)).
- We want to compute x_j.
- Algorithm:
 1. Choose a random block $r_1r_2...r_8$ such that $r_j = x_j \oplus (9-j)$; $r_{j+1} = x_{j+1} \oplus (9-j)$; ... $r_8 = x_8 \oplus (9-j)$.
 2. Let $i = 0$.
 3. Send $r_1r_2...r_j(r_{j+1} \oplus i)r_{j+2}...r_8y_1y_2...y_8$ to the server (oracle).
 4. If there’s a padding error then increment i and go back to step 3.
 5. If there’s no padding error then $x_j = r_{j+1} \oplus (9-j)$.

Decrpyting an entire message

- Assume we have a CBC encrypted message $(Y_1, Y_2, ..., Y_N)$ where
 - $Y_1 = E_K(X_1 \oplus IV)$
 - $Y_i = E_K(X_i \oplus Y_{i-1})$ (for $1 < i < N$)
 - $Y_N = E_K([X_N|\text{pad}|\text{plen}] \oplus Y_{N-1})$
- We want to compute $X_1, X_2, ..., X_N$.
- Algorithm:
 - Decrypt Y_N using the block decryption method and XOR the result to Y_{N-1}; you get $X_N|\text{pad}|\text{plen}$.
 - Decrypt Y_i using the block decryption method and XOR the result to Y_{i-1}; you get X_i.
 - Decrypt Y_1 using the block decryption method and XOR the result to IV; you get X_1 (if the IV is secret you cannot get X_1).
- Complexity of the whole attack:
 - On average we need only $\frac{1}{2}*256*8*N = 1024*N$ oracle calls!
Lessons learned

- content leak attack → use a sufficiently large block size (e.g., 128 bits)
- cut-and-paste attack → use some integrity protection mechanism (e.g., MAC or authenticated encryption (next lecture))
- padding oracle attack → pay attention on how the MAC function is used (e.g., apply it on the encrypted message)