
A Calculus for Cryptographic Protocols

The Spi Calculus

Mart��n Abadi

Digital Equipment Corporation

Systems Research Center

ma�pa�dec�com

Andrew D� Gordon

University of Cambridge

Computer Laboratory

adg�cl�cam�ac�uk

Abstract

We introduce the spi calculus� an extension of the pi cal�
culus designed for the description and analysis of crypto�
graphic protocols� We show how to use the spi calculus�
particularly for studying authentication protocols� The pi
calculus �without extension� su�ces for some abstract pro�
tocols� the spi calculus enables us to consider cryptographic
issues in more detail� We represent protocols as processes in
the spi calculus and state their security properties in terms
of coarse�grained notions of protocol equivalence�

� Security and the Pi Calculus

The spi calculus is an extension of the pi calculus �MPW	
�
with cryptographic primitives� It is designed for the descrip�
tion and analysis of security protocols� such as those for au�
thentication and for electronic commerce� These protocols
rely on cryptography and on communication channels with
properties like authenticity and privacy� Accordingly� cryp�
tographic operations and communication through channels
are the main ingredients of the spi calculus�
We use the pi calculus �without extension� for describ�

ing protocols at an abstract level� The pi calculus primitives
for channels are simple but powerful� Channels can be cre�
ated and passed� for example from authentication servers to
clients� The scoping rules of the pi calculus guarantee that
the environment of a protocol �the attacker� cannot access
a channel that it is not explicitly given� scoping is thus the
basis of security� In sum� the pi calculus appears as a fairly
convenient calculus of protocols for secure communication�
However� the pi calculus does not express the crypto�

graphic operations that are commonly used for implement�
ing channels in distributed systems� it does not include any
constructs for encryption and decryption� and these do not
seem easy to represent� Since the use of cryptography is
notoriously error�prone� we prefer not to abstract it away�
We dene the spi calculus in order to permit an explicit
representation of the use of cryptography in protocols�
There are by now many other notations for describing

security protocols� Some� which have long been used in
the authentication literature� have a fairly clear connection

to the intended implementations of those protocols �see�
e�g�� �NS��� Lie	���� Their main shortcoming is that they
do not provide a precise and solid basis for reasoning about
protocols� Other notations �e�g�� �BAN�	�� are more formal�
but their relation to implementations may be more tenuous
or subtle� The spi calculus is a middle ground� it is directly
executable and it has a precise semantics�
Because the semantics of the spi calculus is not only pre�

cise but intelligible� the spi calculus provides a setting for
analysing protocols� Specically� we can express security
guarantees as equivalences between spi calculus processes�
For example� we can say that a protocol keeps secret a piece
of data X by stating that the protocol with X is equiva�
lent to the protocol with X �� for any X �� Here� equivalence
means equivalence in the eyes of an arbitrary environment�
The environment can interact with the protocol� perhaps
attempting to create confusion between di�erent messages
or sessions� This denition of equivalence yields the desired
properties for our security applications� Moreover� in our
experience� equivalence is not too hard to prove�
Although the denition of equivalence makes reference

to the environment� we do not need to give a model of the
environment explicitly� This is one of the main advantages
of our approach� Writing such a model can be tedious and
can lead to new arbitrariness and error� In particular� it
is always di�cult to express that the environment can in�
vent random numbers but is not lucky enough to guess the
random secrets on which a protocol depends� We resolve
this con�ict by letting the environment be an arbitrary spi
calculus process�
Our approach has some similarities with other recent ap�

proaches for reasoning about protocols� Like work based on
temporal logics or process algebras �e�g�� �GM	�� Low	��
Sch	���� our method builds on a standard concurrency for�
malism� this has obvious advantages but it also implies that
our method is less intuitive than some based on ad hoc for�
malisms �e�g�� �BAN�	��� As in some modal logics �e�g��
�ABLP	�� LABW	
��� we emphasise reasoning about chan�
nels and their utterances� As in state�transition models
�e�g�� �DY��� MCF��� Mil	�� Kem�	� Mea	
��� we are in�
terested in characterising the knowledge of an environment�
The unique features of our approach are its reliance on the
powerful scoping constructs of the pi calculus� the radical
denition of the environment as an arbitrary spi calculus
process� and the representation of security properties� both
integrity and secrecy� as equivalences�
Our model of protocols is simpler� but poorer� than some

models developed for informal mathematical arguments be�



cause the spi calculus does not include any notion of prob�
ability or complexity �cf� �BR	���� It would be interesting
to bridge the gap between the spi calculus and those mod�
els� perhaps by giving a probabilistic interpretation for our
results�

Contents of this Paper

Section 
 introduces the pi calculus and our method of spec�
ifying security properties as equations� Section � extends
the pi calculus with primitives for shared�key cryptography�
Sections � denes the formal semantics of the spi calculus�
Section � discusses how to add primitives for hashing and
public�key cryptography to the pi calculus� and Section �
o�ers some conclusions� An extended version of this work
includes additional material� in particular proof techniques
and proofs for examples�

� Protocols using Restricted Channels

In this section we review the denition of the pi calculus
informally� �We give a more formal presentation in Sec�
tion ��� We then introduce a new application of the pi cal�
culus� namely its use for the study of security�

��� Basics

The pi calculus is a small but extremely expressive program�
ming language� It is an important result of the search for
a calculus that could serve as a foundation for concurrent
computation� in the same way in which the lambda calculus
is a foundation for sequential computation�
Pi calculus programs are systems of independent� parallel

processes that synchronise via message�passing handshakes
on named channels� The channels a process knows about
determine the communication possibilities of the process�
Channels may be restricted� so that only certain processes
may communicate on them� In this respect the pi calculus
is similar to earlier process calculi such as CSP �Hoa��� and
CCS �Mil�	��
What sets the pi calculus apart from earlier calculi is

that the scope of a restriction�the program text in which
a channel may be used�may change during computation�
When a process sends a restricted channel as a message to
a process outside the scope of the restriction� the scope is
said to extrude� that is� it enlarges to embrace the process
receiving the channel� Processes in the pi calculus are mo�
bile in the sense that their communication possibilities may
change over time� they may learn the names of new chan�
nels via scope extrusion� Thus� a channel is a transferable
capability for communication�
A central technical idea of this paper is to use the re�

striction operator and scope extrusion from the pi calculus
as a formal model of the possession and communication of
secrets� such as cryptographic keys� These features of the pi
calculus are essential in our descriptions of security proto�
cols�

��� Outline of the Pi Calculus

There are in fact several versions of the pi calculus� Here
we review the syntax and semantics of a particular version

of the pi calculus� The di�erences with other versions are
mostly orthogonal to our concerns�
We assume an innite set of names� to be used for com�

munication channels� and an innite set of variables� We let
m� n� p� q� and r range over names� and let x� y� and z range
over variables� The set of terms is dened by the grammar�

L�M�N ��� terms
n name
�M�N� pair
� zero
suc�M� successor
x variable

In the standard pi calculus� names are the only terms� For
convenience we have added constructs for pairing and num�
bers� �M�N�� �� and suc�M�� and have also distinguished
variables from names�
The set of processes is dened by the grammar�

P�Q�R ��� processes
MhNi�P output
M�x��P input
P j Q composition
��n�P restriction
�P replication
�M is N � P match
� nil
let �x� y� �M in P pair splitting
case M of � � P suc�x� � Q integer case

In ��n�P � the name n is bound in P � InM�x��P � the variable
x is bound in P � In let �x� y� � M in P � the variables x
and y are bound in P � In case M of � � P suc�x� � Q�
the variable x is bound in the second branch� Q� We write
P �M�x� for the outcome of replacing each free occurrence of
x in process P with the term M � and identify processes up
to renaming of bound variables and names� We adopt the
abbreviation MhNi for MhNi���
Intuitively� the constructs of the pi calculus have the fol�

lowing meanings�

� The basic computation and synchronisation mecha�
nism in the pi calculus is interaction� in which a term
N is communicated from an output process to an input
process via a named channel� m�

� An output process mhNi�P is ready to output on
channel m� If an interaction occurs� term N is
communicated on m and then process P runs�

� An input process m�x��P is ready to input from
channel m� If an interaction occurs in which N is
communicated on m� then process P �N�x� runs�

�The general forms M hNi�P and M�x��P of output
and input allow for the channel to be an arbitrary term
M � The only useful cases are for M to be a name� or
a variable that gets instantiated to a name��

� A composition P j Q behaves as processes P and Q
running in parallel� Each may interact with the other
on channels known to both� or with the outside world�
independently of the other�

� A restriction ��n�P is a process that makes a new� pri�
vate name n� which may occur in P � and then behaves
as P �



� A replication �P behaves as an innite number of copies
of P running in parallel�

� A match �M isN �P behaves as P provided that terms
M and N are the same� otherwise it is stuck� that is�
it does nothing�

� The nil process � does nothing�

Since we added pairs and integers� we have two new process
forms�

� A pair splitting process let �x� y� � M in P behaves
as P �N�x��L�y� if term M is the pair �N� L�� and oth�
erwise it is stuck�

� An integer case process case M of � � P suc�x� � Q
behaves as P if termM is �� as Q�N�x� ifM is suc�N��
and otherwise is stuck�

We write P � Q to mean that the behaviours of the
processes P and Q are indistinguishable� In other words� a
third process R cannot distinguish running in parallel with
P from running in parallel with Q� as far as R can tell� P
and Q have the same properties �more precisely� the same
safety properties�� We dene the relation � in Section ��

as a form of testing equivalence� For now� it su�ces to
understand � informally�

��� Examples using Restricted Channels

Next we show how to express some abstract security proto�
cols in the pi calculus� In security protocols� it is common
to nd channels on which only a given set of principals is
allowed to send data or listen� The set of principals may
expand in the course of a protocol run� for example as the
result of channel establishment� Remarkably� it is easy to
model this property of channels in the pi calculus� via the
restriction operation� the expansion of the set of principals
that can access a channel corresponds to scope extrusion�

����� A �rst example

Our rst example is extremely basic� In this example� there
are two principals A and B that share a channel� cAB � only A
and B can send data or listen on this channel� The protocol
is simply that A uses cAB for sending a single message M
to B� In informal notation� we may write this protocol as
follows�

Message � A� B � M on cAB

A rst pi calculus description of this protocol is�

A�M�
�
� cABhMi

B
�
� cAB�x���

Inst�M�
�

� ��cAB��A�M� j B�

The processes A�M� and B describe the two principals� and
Inst�M� describes �one instance of� the whole protocol� The
channel cAB is restricted� intuitively� this achieves the e�ect
that only A and B have access to cAB �
In these denitions� A�M� and Inst�M� are processes pa�

rameterised by M � More formally� we view A and Inst as
functions that map terms to processes� called abstractions�

and treat the M �s on the left of
�
� as bound parameters�

Abstractions can of course be instantiated �applied�� for ex�
ample� the instantiation A��� yields cABh�i� The standard
rules of substitution govern application� forbidding param�
eter captures� for example� expanding Inst�cAB� would re�
quire a renaming of the bound occurrence of cAB in the
denition of Inst �
The rst pi calculus description of the protocol may seem

a little futile because� according to it� B does nothing with
its input� A more useful and general description says that
B runs a process F with its input� We revise our denitions
as follows�

A�M�
�
� cABhMi

B
�

� cAB�x��F �x�

Inst�M�
�
� ��cAB��A�M� j B�

Informally� F �x� is simply the result of applying F to x�
More formally� F is an abstraction� and F �x� is an instanti�
ation of the abstraction� We adopt the convention that the
bound parameters of the protocol �in this case� M � cAB � and
x� cannot occur free in F �
This protocol has two important properties�

� Authenticity �or integrity�� B always applies F to the
message M that A sends� an attacker cannot cause B
to apply F to some other message�

� Secrecy� The message M cannot be read in transit
from A to B� if F does not reveal M � then the whole
protocol does not reveal M �

The secrecy property can be stated in terms of equiva�
lences� if F �M� � F �M ��� for any M � M �� then Inst�M� �
Inst�M ��� This means that if F �M� is indistinguishable from
F �M ��� then the protocol with message M is indistinguish�
able from the protocol with message M ��
There are many sensible ways of formalising the authen�

ticity property� In particular� it may be possible to use no�
tions of renement or a suitable program logic� However�
we choose to write authenticity as an equivalence� for econ�
omy� This equivalence compares the protocol with another
protocol� Our intent is that the latter protocol serves as a
specication� In this case� the specication is�

A�M�
�
� cABhMi

Bspec�M�
�
� cAB�x��F �M�

Inst spec�M�
�
� ��cAB��A�M� j Bspec�M��

The principal A is as usual� but the principal B is replaced
with a variant Bspec�M�� this variant receives an input from
A and then acts like B when B receives M � We may say
that Bspec�M� is a �magical� version of B that knows the
message M sent by A� and similarly Instspec is a �magical�
version of Inst �
Although the specication and the protocol are similar in

structure� the specication is more evidently �correct� than
the protocol� Therefore� we take the following equivalence
as our authenticity property� Inst�M� � Inst spec�M�� for
any M �
In summary� we have�

Authenticity� Inst�M� � Inst spec�M��
for any M �

Secrecy� Inst�M� � Inst�M �� if F �M� � F �M ���
for any M � M ��



��
��

A ��
��

B

��
��

S

�

�� data on new channel

�
�
�
�
�
��

�� new channel
�
�
�
�
�
�R


� new channel

Figure �� Structure of the Wide Mouthed Frog Protocol

Each of these equivalences means that two processes being
equated are indistinguishable� even when an active attacker
is their environment� Neither of these equivalences would
hold without the restriction of channel cAB �

����� An example with channel

establishment

Amore interesting variant of our rst example is obtained by
adding a channel establishment phase� In this phase� before
communication of data� the principals A and B obtain a new
channel with the help of a server S�
There are many di�erent ways of establishing a channel�

even at the abstract level at which we work here� The one
we describe is inspired by the Wide Mouthed Frog proto�
col �BAN�	�� which has the basic structure shown in Fig�
ure ��
We consider an abstract and simplied version of the

Wide Mouthed Frog protocol� Our version is abstract in that
we deal with channels instead of keys� it is simplied in that
channel establishment and data communication happen only
once �so there is no need for timestamps�� In the next section
we show how to treat keys and how to allow many instances
of the protocol� with an arbitrary number of messages�
Informally� our version is�

Message � A� S � cAB on cAS
Message 
 S � B � cAB on cSB
Message � A� B � M on cAB

Here cAS is a channel that A and S share initially� cSB is a
channel that S and B share initially� and cAB is a channel
that A creates for communication with B� After passing the
channel cAB to B through S� A sends a message M on cAB �
Note that S does not use the channel� but only transmits it�
In the pi calculus� we formulate this protocol as follows�

A�M�
�
� ��cAB�cAShcABi�cABhMi

S
�
� cAS�x��cSBhxi

B
�

� cSB�x��x�y��F �y�

Inst�M�
�

� ��cAS���cSB��A�M� j S j B�

Here we write F �y� to represent what B does with the mes�
sage y that it receives� as in the previous example� The
restrictions on the channels cAS � cSB � and cAB re�ect the
expected privacy guarantees for these channels� The most
salient new feature of this specication is the use of scope
extrusion� A generates a fresh channel cAB � and then sends
it out of scope to B via S� We could not have written this
description in formalisms such as CCS or CSP� the use of
the pi calculus is important�
For discussing authenticity� we introduce the following

specication�

A�M�
�
� ��cAB�cAShcABi�cABhMi

S
�
� cAS�x��cSBhxi

Bspec�M�
�
� cSB�x��x�y��F �M�

Instspec�M�
�
� ��cAS���cSB��A�M� j S j Bspec�M��

According to this specication� the message M is communi�
cated �magically�� the process F is applied to the message
M that A sends independently of whatever happens during
the rest of the protocol run�
We obtain the following authenticity and secrecy prop�

erties�

Authenticity� Inst�M� � Inst spec�M��
for any M �

Secrecy� Inst�M� � Inst�M �� if F �M� � F �M ���
for any M � M ��

Again� these properties hold because of the scoping rules of
the pi calculus�

� Protocols using Cryptography

Just as there are several versions of the pi calculus� there
are several versions of the spi calculus� These di�er in par�
ticular in what cryptographic constructs they include� In
this section we introduce a relatively simple spi calculus�
namely the pi calculus extended with primitives for shared�
key cryptography� We then write several protocols that use
shared�key cryptography in this calculus�



Throughout the paper� we often refer to the calculus pre�
sented in this section as �the� spi calculus� but we dene
other versions of the spi calculus in Section ��

��� The Spi Calculus with Shared�Key

Cryptography

The syntax of the spi calculus is an extension of that of the
pi calculus� In order to represent encrypted messages� we
add a clause to the syntax of terms�

L�M�N ��� terms
� � � as in Section 
�

fMgN shared�key encryption

In order to represent decryption� we add a clause to the
syntax of processes�

P�Q ��� processes
� � � as in Section 
�

case L of fxgN in P shared�key decryption

The variable x is bound in P �
Intuitively� the meaning of the new constructs is as fol�

lows�

� The term fMgN represents the ciphertext obtained
by encrypting the term M under the key N using a
shared�key cryptosystem such as DES �DES����

� The process case L of fxgN in P attempts to decrypt
the term L with the key N � If L is a ciphertext of
the form fMgN � then the process behaves as P �M�x��
Otherwise the process is stuck�

Implicit in this denition are some standard but signi�
cant assumptions about cryptography�

� The only way to decrypt an encrypted packet is to
know the corresponding key�

� An encrypted packet does not reveal the key that was
used to encrypt it�

� There is su�cient redundancy in messages so that the
decryption algorithm can detect whether a ciphertext
was encrypted with the expected key�

It is not assumed that all messages contain information
that allows each principal to recognise its own messages
�cf� �BAN�	���
The semantics of the spi calculus can be formalised in

much the same way as the semantics of the pi calculus� We
carry out this formalisation in Section �� Again� we write
P � Q to mean that the behaviours of the processes P and
Q are indistinguishable� The notion of indistinguishability is
complicated by the presence of cryptography� As an example
of these complications� consider the following process�

P �M�
�
� ��K�chfMgKi

This process simply sendsM under a new keyK on a public
channel c� the key K is not transmitted� Intuitively� we
would like to equate P �M� and P �M ��� for any M and M ��
because an observer cannot discover K and hence cannot
tell whether M or M � is sent under K� On the other hand�
P �M� and P �M �� are clearly di�erent� since they transmit
di�erent messages on c� Our equivalence � is coarse�grained
enough to equate P �M� and P �M ���

��� Examples using Shared�Key

Cryptography

The spi calculus enables more detailed descriptions of secu�
rity protocols than the pi calculus� While the pi calculus
enables the representation of channels� the spi calculus also
enables the representation of the channel implementations
in terms of cryptography� In this section we show a few
example cryptographic protocols�
As in the pi calculus� scoping is the basis of security

in the spi calculus� In particular� restriction can be used to
model the creation of fresh� unguessable cryptographic keys�
Restriction can also be used to model the creation of fresh
nonces of the sort used in challenge�response exchanges�
Security properties can still be expressed as equivalences�

although the notion of equivalence is more delicate� as we
have discussed�

����� A �rst cryptographic example

Our rst example is a cryptographic version of the example
of Section 
����� We consider two principals A and B that
share a key KAB � in addition� we assume there is a public
channel cAB that A and B can use for communication� but
which is in no way secure� The protocol is simply that A
sends a message M under KAB to B� on cAB �
Informally� we write this protocol as follows�

Message � A� B � fMgKAB on cAB

In the spi calculus� we write�

A�M�
�
� cABhfMgKAB i

B
�
� cAB�x��case x of fygKAB in F �y�

Inst�M�
�
� ��KAB��A�M� j B�

According to this denition� A sends fMgKAB on cAB while
B listens for a message on cAB � Given such a message� B at�
tempts to decrypt it using KAB � if this decryption succeeds�
B applies F to the result� The assumption that A and B
shareKAB gives rise to the restriction onKAB � which is syn�
tactically legal and meaningful although KAB is not used as
a channel� On the other hand� cAB is not restricted� since it
is a public channel� Other principals may send messages on
cAB � so B may attempt to decrypt a message not encrypted
under KAB � in that case� the protocol will get stuck� We
are not concerned about this possibility� but it would be
easy enough to avoid it by writing a slightly more elaborate
program for B�
We use the following specication�

A�M�
�

� cABhfMgKAB i

Bspec�M�
�
� cAB�x��case x of fygKAB in F �M�

Instspec�M�
�

� ��KAB��A�M� j Bspec�M��

and we obtain the properties�

Authenticity� Inst�M� � Inst spec�M��
for any M �

Secrecy� Inst�M� � Inst�M �� if F �M� � F �M ���
for any M � M ��



Intuitively� authenticity holds even if the key KAB is
somehow compromised after its use� Many factors can con�
tribute to key compromise� for example incompetence on the
part of protocol participants� and malice and brute force on
the part of attackers� We cannot model all these factors�
but we can model deliberate key publication� which is in a
sense the most extreme of them� It su�ces to make a small
change in the denitions of B and Bspec � so that they send
KAB on a public channel after receiving fMgKAB � This
change preserves the authenticity equation� but clearly not
the secrecy equation�

����� An example with key establishment

In cryptographic protocols� the establishment of new chan�
nels often means the exchange of new keys� There are many
methods �most of them �awed� for key exchange� The fol�
lowing example is the cryptographic version of that of Sec�
tion 
���
� it uses a simplied �one�shot� form of the Wide
Mouthed Frog key exchange�
In the Wide Mouthed Frog protocol� the principals A

and B share keys KAS and KSB respectively with a server
S� When A and B want to communicate securely� A creates
a new key KAB � sends it to the server under KAS� and
the server forwards it to B under KSB� All communication
being protected by encryption� it can happen through public
channels� which we write cAS � cSB� and cAB � Informally� a
simplied version of this protocol is�

Message � A� S � fKABgKAS on cAS
Message 
 S � B � fKABgKSB on cSB
Message � A� B � fMgKAB on cAB

In the spi calculus� we can express this message sequence
as follows�

A�M�
�
� ��KAB��cAShfKABgKAS i�cABhfMgKAB i�

S
�
� cAS�x��case x of fygKAS in cSBhfygKSB i

B
�
� cSB�x��case x of fygKSB in

cAB�z��case z of fwgy in F �w�

Inst�M�
�
� ��KAS���KSB��A�M� j S j B�

where F �w� is a process representing the rest of the be�
haviour of B upon receiving a message w� Notice the essen�
tial use of scope extrusion� A generates the key KAB and
sends it out of scope to B via S�
In the usual pattern� we introduce a specication for dis�

cussing authenticity�

A�M�
�
� ��KAB��cAShfKABgKAS i�cABhfMgKAB i�

S
�
� cAS�x��case x of fygKAS in cSBhfygKSB i

Bspec�M�
�

� cSB�x��case x of fygKSB in
cAB�z��case z of fwgy in F �M�

Inst spec�M�
�
� ��KAS���KSB��A�M� j S j Bspec�M��

One may be concerned about the apparent complexity of
this specication� On the other hand� despite its complex�
ity� the specication is still more evidently �correct� than
the protocol� In particular� it is still evident that Bspec�M�
applies F to the data M from A� rather than to some other
message chosen as the result of error or attack�
We obtain the usual properties of authenticity and se�

crecy�

Authenticity� Inst�M� � Inst spec�M��
for any M �

Secrecy� Inst�M� � Inst�M �� if F �M� � F �M ���
for any M � M ��

����� A complete authentication example

�with a �aw	

In the examples discussed so far� channel establishment and
data communication happen only once� As we demonstrate
now� it is a simple matter of programming to remove this re�
striction and to represent more sophisticated examples with
many sessions between many principals� However� as the
intricacy of our examples increases� so does the opportunity
for error� This should not be construed as a limitation of
our approach� but rather as the sign of an intrinsic di�culty�
many of the mistakes in authentication protocols arise from
confusion between sessions�
We consider a system with a server S and n other prin�

cipals� We use the terms suc���� suc�suc����� � � � � which we
abbreviate to �� 
� � � � � as the names of these other princi�
pals� We assume that each principal has an input channel�
these input channels are public and have the names c�� c��
� � � � cn and cS� We also assume that the server shares a pair
of keys with each other principal� one key for each direction�
principal i uses key KiS to send to S and key KSi to receive
from S� for � � i � n�
We extend our standard example to this system of n��

principals� with the following message sequence�

Message � A� S � A� fB�KABgKAS on cS
Message 
 S � B � fA�KABgKSB on cB
Message � A� B � A� fMgKAB on cB

Here A and B range over the n principals� The names A
and B appear in messages in order to avoid ambiguity� when
these names appear in clear� they function as hints that help
the recipient choose the appropriate key for decryption of
the rest of the message� The intent is that the protocol can
be used by any pair of principals� arbitrarily often� concur�
rent runs are allowed� As it stands� the protocol has obvious
�aws� we discuss it in order to explain our method for rep�
resenting it in the spi calculus�
In our spi calculus representation� we use several con�

venient abbreviations� Firstly� we rely on pair splitting on
input and on decryption�

c�x�� x���P
�
� c�y��let �x�� x�� � y in P

case L of fx�� x�gN in P
�
� case L of fygN in

let �x�� x�� � y in P

where variable y is fresh� Secondly� we need the standard no�
tation for the composition of a nite set of processes� Given
a nite family of processes P�� � � � � Pk� we let

Q
i����k

Pi be

their k�way composition P� j � � � j Pk� Finally� we omit
the inner parentheses from an encrypted pair of the form
f�N�N ��gN�� � and simply write fN�N �gN�� � as is common in
informal descriptions�
Informally� an instance of the protocol is determined by a

choice of parties �who is A and who is B� and by the message
sent after key establishment� More formally� an instance I
is a triple �i� j�M� such that i and j are principals and M
is a message� We say that i is the source address and j the



destination address of the instance� Moreover� we assume
that there is an abstraction F representing the behaviour of
any principal after receipt of Message � of the protocol� For
an instance �i� j�M� that runs as intended� the argument to
F is the triple �i� j�M��

Given an instance �i� j�M�� the following process corre�
sponds to the role of A�

Send �i� j�M�
�
� ��K��cSh�i� fj� KgKiS �i j cjh�i� fMgK �i�

The sending process creates a key K and sends it to the
server� along with the names i and j of the principals of the
instance� The sending process also sends M under K� along
with its name i� We have put the two messages in parallel�
somewhat arbitrarily� putting them in sequence would have
much the same e�ect�
The following process corresponds to the role of B for

principal j�

Recv�j�
�

� cj�ycipher ��case ycipher of fxA� xkeygKSj in
cj�zA� zcipher ���xA is zA�
case zcipher of fzplaingxkey in F �xA� j� zplain�

The receiving process waits for a message ycipher from the
server� extracts a key xkey from this message� then waits for
a message zcipher under this key� and nally applies F to the
name xA of the presumed sender� to its own name j� and
to the contents zplain of the message� The variables xA and
zA are both intended as the name of the sending process� so
they are expected to match�
The server S is the same for all instances�

S
�
� cS�xA� xcipher ��Q

i����n
�xA is i� case xcipher of fxB� xkeygKiS inQ

j����n
�xB is j� cjhfxA� xkeygKSj i

The variable xA is intended as the name of the sending pro�
cess� xB as the name of the receiving process� xkey as the
new key� and xcipher as the encrypted part of the rst mes�
sage of the protocol� In the code for the server� we program
an n�way branch on the name xA by using a parallel compo�
sition of processes indexed by i � ���n� We also program an
n�way branch on the name xB � similarly� �This casual use of
multiple threads is characteristic of the pi calculus� in prac�
tice the branch could be implemented more e�ciently� but
here we are interested only in the behaviour of the server�
not in its e�cient implementation��
Finally we dene a whole system� parameterised on a list

of instances�

Sys�I�� � � � � Im�
�
� �� �KiS��� �KSj�

�Send�I�� j � � � j Send�Im� j
�S j
�Recv��� j � � � j �Recv�n��

where �� �KiS��� �KSj� stands for�

��K�S� � � � ��KnS���KS�� � � � ��KSn�

The expression Sys�I�� � � � � Im� represents a system with m
instances of the protocol� The server is replicated� in addi�
tion� the replication of the receiving processes means that
each principal is willing to play the role of receiver in any
number of runs of the protocol in parallel� Thus� any two

runs of the protocol can be simultaneous� even if they involve
the same principals�
As before� we write a specication by modifying the pro�

tocol� For this specication� we revise the sending and the
receiving processes� but not the server�

Send spec�i� j�M�
�
� ��p��Send�i� j� p� j p�x��F �i� j�M��

Recv spec�j�
�
� cj�ycipher ��

case ycipher of fxA� xkeygKSj in
cj�zA� zcipher ���xA is zA�
case zcipher of fzplaingxkey in
zplainh�i

Sysspec�I�� � � � � Im�
�
� �� �KiS��� �KSj�

�Send spec�I�� j � � � j Send spec�Im� j
�S j
�Recv spec��� j � � � j �Recv spec�n��

In this specication� the sending process for instance �i� j�M�
is as in the implementation� except that it sends a fresh
channel name p instead of M � and runs F �i� j�M� when it
receives any message on p� The receiving process in the
specication is identical to that in the implementation� ex�
cept that F �yA� j� zplain � is replaced with zplainh�i� where
the symbol � represents a xed but arbitrary message� The
variable zplain will be bound to the fresh name p for the
corresponding instance of the protocol� Thus� the receiv�
ing process will signal on p� triggering the execution of the
appropriate process F �i� j�M��
A crucial property of this specication is that the only

occurrences of F are bundled into the description of the
sending process� There� F is applied to the desired parame�
ters� �i� j�M�� Hence it is obvious that an instance �i� j�M�

will cause the execution of F �i�� j��M �� only if i� is i� j� is j�

and M � is M � Therefore� despite its complexity� the speci�
cation is more obviously �correct� than the implementation�
Much as in previous examples� we would like the protocol

to have the following authenticity property�

Sys�I�� � � � � Im� � Sysspec�I�� � � � � Im��
for any instances I�� � � � � Im�

Unfortunately� the protocol is vulnerable to a replay attack
that invalidates the authenticity equation� Consider the sys�
tem Sys�I� I �� where I � �i� j�M� and I � � �i� j�M ��� An
attacker can replay messages of one instance and get them
mistaken for messages of the other instance� causingM to be
passed twice to F � Thus� Sys�I� I �� can be made to execute
two copies of F �i� j�M�� In contrast� no matter what an

attacker does� Sysspec�I� I
�� will run each of F �i� j�M� and

F �i� j�M �� at most once� The authenticity equation there�

fore does not hold� �We can disprove it formally by dening
an attacker that distinguishes Sys�I� I �� and Sysspec�I� I

���
within the spi calculus��

����
 A complete authentication example

�repaired	

Now we improve the protocol of the previous section by
adding nonce handshakes as protection against replay at�
tacks� The Wide Mouthed Frog protocol uses timestamps
instead of handshakes� The treatment of timestamps in



Send�i� j�M�
�
� cShii j

ci�xnonce����K��cSh�i� fi� i� j�K� xnoncegKiS �i j cjh�i� fMgK �i�

S
�
� cS�xA��

Q
i����n

�xA is i� ��NS��cihNSi j
cS�x

�

A� xcipher ���x
�

A is i�
case xcipher of fyA� zA� xB� xkey � xnoncegKiS inQ

j����n
�yA is i� �zA is i� �xB is j� �xnonce is NS �

�cjh�i j cS�ynonce��cjhfS� i� j� xkey � ynoncegKSj i��

Recv�j�
�
� cj�w����NB��cShNBi j

cj�ycipher ��
case ycipher of fxS � xA� xB� xkey � ynoncegKSj inQ

i����n
�xS is S� �xA is i� �xB is j� �ynonce is NB �

cj�zA� zcipher ���zA is xA�
case zcipher of fzplaingxkey in F �i� j� zplain��

Sys�I�� � � � � Im�
�
� �� �KiS��� �KSj�

�Send�I�� j � � � j Send�Im� j
�S j
�Recv ��� j � � � j �Recv �n��

Figure 
� Formalisation of the Seven�Message Protocol

the spi calculus is possible� but it requires additional ele�
ments� including at least a rudimentary account of clock
synchronisation� Protocols that use handshakes are funda�
mentally more self�contained than protocols that use times�
tamps� therefore� handshakes make for clearer examples�
Informally� our new protocol is�

Message � A� S � A on cS
Message 
 S � A � NS on cA
Message � A� S � A� fA�A�B�KAB � NSgKAS on cS
Message � S � B � � on cB
Message � B � S � NB on cS
Message � S � B � fS�A�B�KAB � NBgKSB on cB
Message � A� B � A� fMgKAB on cB

Messages � and 
 are the request for a challenge and the
challenge� respectively� The challenge is NS� a nonce cre�
ated by S� the nonce must not have been used before for
this purpose� Obviously the nonce is not secret� but it must
be unpredictable �for otherwise an attacker could simulate a
challenge and later replay the response �AN	���� In Message
�� A says that A and B can communicate under KAB � some�
time after receipt of NS � All the components A� B� KAB �
NS appear explicitly in the message� for safety �AN	��� but
A could perhaps be elided� The presence of NS in Message
� proves the freshness of the message� In Message �� � rep�
resents a xed but arbitrary message� S uses � to signal that
it is ready for a nonce challenge NB from B� In Message ��
S says that A says that A and B can communicate under
KAB � sometime after receipt of NB � The rst eld of the en�
crypted portions of Messages � and � �A or S� is included in
order to distinguish these messages� it serves as a �direction
bit�� Finally� Message � is the transmission of data under
KAB �
The messages of this protocol have many components�

For the spi calculus representation it is therefore convenient
to generalise our syntax of pairs and pair splitting to arbi�
trary tuples� We use the following standard abbreviations�

�N�� � � � � Nk���
�

� ��N�� � � � � Nk�� Nk���

let �x�� � � � � xk��� � N in P
�
� let �y� xk��� � N in

let �x�� � � � � xk� � y in P

where variable y is fresh�
In the spi calculus� we represent the nonces of this pro�

tocol as newly created names� We obtain the spi calcu�
lus expressions given in Figure 
� In those expressions� the
names NS and NB represent the nonces� The variable sub�
scripts are hints that indicate what the corresponding vari�
ables should represent� for example� xA� x

�

A� yA� and zA
are all expected to be the name of the sending process� and
xnonce and ynonce are expected to be the nonces generated
by S and B� respectively�
The denition of Sysspec is exactly analogous to that of

the previous section� so we omit it� We obtain the authen�
ticity property�

Sys�I�� � � � � Im� � Sysspec�I�� � � � � Im��
for any instances I�� � � � � Im�

This property holds because of the use of nonces� In partic�
ular� the replay attack of Section ��
�� can no longer distin�
guish Sys�I�� � � � � Im� and Sysspec�I�� � � � � Im��
As a secrecy property� we would like to express that there

is no way for an external observer to tell apart two execu�
tions of the system with identical participants but di�erent
messages� The secrecy property should therefore assert that
the protocol does not reveal any information about the con�
tents of exchanged messages if none is revealed after the key
exchange�
In order to express that no information is revealed after

the key exchange� we introduce the following denition� We
say that a pair of instances �i� j�M� and �i�� j��M �� is indis�
tinguishable if the two instances have the same source and
destination addresses �i � i� and j � j�� and if F �i� j�M� �

F �i� j�M ���

Our denition of secrecy is that� if each pair �I�� J���
� � � � �Im� Jm� is indistinguishable� then Sys�I�� � � � � Im� �
Sys�J�� � � � � Jm�� This means that an observer cannot dis�



tinguish two systems parameterised by two sets of indistin�
guishable instances� This property holds for our protocol�
In summary� we have�

Authenticity� Sys�I�� � � � � Im� � Sysspec�I�� � � � � Im��
for any instances I�� � � � � Im�

Secrecy� Sys�I�� � � � � Im� � Sys�J�� � � � � Jm��
if each pair �I�� J��� � � � � �Im� Jm�
is indistinguishable�

We could ask for a further property of anonymity� namely
that the source and the destination addresses of instances
be protected from eavesdroppers� However� anonymity holds
neither for our protocol nor for most current� practical pro�
tocols� It would be easy enough to specify anonymity� should
it be relevant�

����� Discussion

As these examples show� writing a protocol in the spi cal�
culus is essentially analogous to writing it in any program�
ming language with suitable communication and encryption
libraries� The main advantage of the spi calculus is its for�
mal precision�
Writing a protocol in the spi calculus may be a little

harder than writing it in some of the notations common in
the literature� On the other hand� the spi calculus versions
are more detailed� They make clear not only what messages
are sent but how the messages are generated and how they
are checked� These aspects of the spi calculus descriptions
add complexity� but they enable ner analysis�


 Formal Semantics of the Spi Calculus

In this section we give a brief formal treatment of the spi
calculus� In Section ��� we introduce the reaction relation�
P � Q means there is a reaction amongst the subprocesses
of P such that the whole can take a step to process Q�
Reaction is the basic notion of computation in both the pi
calculus and the spi calculus� In Section ��
 we give a precise
denition of the equivalence relation �� which we have used
for expressing security properties�

Syntactic Conventions

We write fn�M� and fn�P � for the sets of names free in term
M and process P respectively� Similarly� we write fv�M� and
fv�P � for the sets of variables free in M and P respectively�
We say that a term or process is closed to mean that it has
no free variables� �To be able to communicate externally� a
process must have free names�� The set Proc � fP j fv�P � �
�g is the set of closed processes�


�� The Reaction Relation

The reaction relation is a concise account of computation
in the pi calculus introduced by Milner �Mil	
�� inspired by
the Chemical Abstract Machine of Berry and Boudol �BB	���
One thinks of a process as consisting of a chemical solution
of molecules waiting to react� A reaction step arises from the
interaction of the adjacent molecules mhNi�P and m�x��Q�
as follows�

mhNi�P j m�x��Q � P j Q�N�x�

Just as one might stir a chemical solution to allow non�
adjacent molecules to react� we dene a relation� structural
equivalence� that allows processes to be rearranged so that
the rule above is applicable� We rst dene the reduction
relation � on closed processes�

�P � P j �P
�M is M � P � P

let �x� y� � �M�N� in P � P �M�x��N�y�
case � of � � P suc�x� � Q � P

case suc�M� of � � P suc�x� � Q � Q�M�x�
case fMgN of fxgN in P � P �M�x�

We let structural equivalence� 	� be the least relation on
closed processes that satises the following equations and
rules�

P j � 	 P
P j Q 	 Q j P

P j �Q j R� 	 �P j Q� j R
��m���n�P 	 ��n���m�P

��n�� 	 �
��n��P j Q� 	 P j ��n�Q if n �� fn�P �

P � Q

P 	 Q P 	 P

P 	 Q

Q 	 P

P 	 Q Q 	 R

P 	 R

P 	 P �

P j Q 	 P � j Q

P 	 P �

��m�P 	 ��m�P �

Now we can complete the formal description of the reac�
tion relation� We let the reaction relation��� be the least re�
lation on closed processes that satises mhNi�P j m�x��Q�
P j Q�N�x� and the following rules�

P 	 P � P � � Q� Q� 	 Q

P � Q

P � P �

P j Q� P � j Q

P � P �

��n�P � ��n�P �

This denition of the reaction relation corresponds to the in�
formal description of process behaviour given in Sections 
�

and ����
As an example� we can use the denition of the reac�

tion relation to show the behaviour of the protocol of Sec�
tion ��
�
�

Inst�M� 	 ��KAS���KSB��A�M� j S j B�

� ��KAS���KSB���KAB�

�cABhfMgKAB i j cSBhfKABgKSB i j B�

� ��KAS���KSB���KAB�

�cABhfMgKAB i j

cAB�z��case z of fwgKAB in F �w��

� ��KAS���KSB���KAB�F �M�

	 F �M�

The last step in this calculation is justied by our general
convention that none of the bound parameters of the pro�
tocol �including� in this case� KAS � KSB� and KAB� occurs
free in F �




�� Testing Equivalence

In order to dene equivalence� we rst dene a predicate
that describes the channels on which a process can commu�
nicate� We let a barb� �� be an input or output channel�
that is� either a name m �representing input� or a co�name
m �representing output�� For a closed process P � we dene
the predicate P exhibits barb �� written P 
 �� by the two
axioms�

m�x��P 
 m mhMi�P 
 m

and the three rules�

P 
 �

P j Q 
 �

P 
 � � �� fm�mg

��m�P 
 �

P 	 Q Q 
 �

P 
 �

Intuitively� P 
 � holds just if P is a closed process that may
input or output immediately on barb �� The convergence
predicate P � � holds if P is a closed process that exhibits
� after some reactions�

P 
 �

P � �

P � Q Q � �

P � �

We let a test consist of any closed process R and any
barb �� A closed process P passes the test if and only if
�P j R� � �� The notion of testing gives rise to a testing
equivalence on the set Proc of closed processes�

P � Q
�
� for any test �R� ���

�P j R� � � if and only if �Q j R� � �

The idea of testing equivalence comes from the work of
De Nicola and Hennessy �DH���� Despite supercial di�er�
ences� we can show that our relation � is a version of De
Nicola and Hennessy�s may�testing equivalence� As De Ni�
cola and Hennessy have explained� may�testing corresponds
to partial correctness �or safety�� while must�testing corre�
sponds to total correctness� Like much of the security lit�
erature� our work focuses on safety properties� hence our
denitions�
A test neatly formalises the idea of a generic experiment

or observation another process �such as an attacker� might
perform on a process� so testing equivalence captures the
concept of equivalence in an arbitrary environment� One
possible drawback of testing equivalence is that it is sensi�
tive to the choice of language �BN	��� However� our results
appear fairly robust in that they carry over smoothly to
some extensions of our calculus�

� Further Cryptographic Primitives

Although so far we have discussed only shared�key cryptog�
raphy� other kinds of cryptography are also easy to treat
within the spi calculus� In this section we show how to han�
dle cryptographic hashing� public�key encryption� and digi�
tal signatures� We add syntax for these operations to the spi
calculus and give their semantics� We thus provide evidence
that our ideas are applicable to a wide range of security
protocols� beyond those that rely on shared�key encryption�

We believe that we may be able to deal similarly with Di�e�
Hellman techniques and with secret sharing� However� pro�
tocols for oblivious transfer and for zero�knowledge proofs�
for example� are probably beyond the scope of our approach�

��� Hashing

A cryptographic hash function has the properties that it
is very expensive to recover an input from its image or to
nd two inputs with the same image� Functions such as
SHA and RIPE�MD are generally believed to have these
properties �Sch	���
When we represent hash functions in the spi calculus�

we pretend that operations that are very expensive are alto�
gether impossible� We simply add a construct to the syntax
of terms of the spi calculus�

L�M�N ��� terms
� � � as in Section ���
H�M� hashing

The syntax of processes is unchanged� Intuitively� H�M�
represents the hash of M � The absence of a construct for re�
coveringM from H�M� corresponds to the assumption that
H cannot be inverted� The lack of any equations H�M� �
H�M �� corresponds to the assumption that H is free of col�
lisions�

��� Public�Key Encryption and Digital
Signatures

Traditional public�key encryption systems are based on key
pairs� Normally� one of the keys in each pair is private to one
principal� while the other key is public� Any principal can
encrypt a message using the public key� only a principal that
has the private key can then decrypt the message �DH���
RSA����
We assume that neither key can be recovered from the

other� We could just as easily deal with the case where the
public key can be derived from the private one� Much as
in Section ���� we also assume that the only way to decrypt
an encrypted packet is to know the corresponding private
key� that an encrypted packet does not reveal the public
key that was used to encrypt it� and that there is su�cient
redundancy in messages so that the decryption algorithm
can detect whether a ciphertext was encrypted with the ex�
pected public key�
We arrive at the following syntax for the spi calculus

with public�key encryption� �This syntax is concise� rather
than memorable��

L�M�N ��� terms
� � � as in Section ���
M� public part
M� private part
f�M �gN public�key encryption

P�Q ��� processes
� � � as in Section ���
case L of f�x�gN in P decryption

If M represents a key pair� then M� represents its public
half and M� represents its private half� Given a public key
N � the term f�M �gN represents the result of the public�key
encryption of M with N � In case L of f�x�gN in P � the



variable x is bound in P � This construct is useful when N
is a private key K�� then it binds x to the M such that
f�M �gK� is L� if such an M exists�
It is also common to use key pairs for digital signatures�

Private keys are used for signing� while public keys are used
for checking signatures� We can represent digital signatures
through the following extended syntax�

L�M�N ��� terms
� � � as above
�fMg�N private�key signature

P�Q ��� processes
� � � as above
case N of �fxg�M in P signature check

Given a private keyN � the term �fMg�N represents the result
of the signature ofM with N � Again� the variable x is bound
in P in the construct case N of �fxg�M in P � This construct
is dual to case L of f�x�gN in P � The new construct is
useful when N is a public key K�� then it binds x to the M
such that �fMg�K� is L� if such an M exists� �Thus� we are
assuming thatM can be recovered from the result of signing
it� but there is no di�culty in dropping this assumption��
Formally� the semantics of the new constructs is captured

with two new rules for the reduction relation�

case f�M �gN� of f�x�gN� in P � P �M�x�
case �fMg�N� of �fxg�N� in P � P �M�x�

As a small example� we can write the following public�
key analogue for the protocol of Section ��
���

A�M�
�
� cABhf�M� �fH�M�g�

K
�

A

�g
K
�

B

i

B
�
� cAB�x��case x of f�y�g

K
�

B

in

let �y�� y�� � y in
case y� of �fzg�K�

A

in

�H�y�� is z� F �y��

Inst�M�
�
� ��KA���KB��A�M� j B�

In this protocol� A sends M on the channel cAB � signed
with A�s private key and encrypted under B�s public key�
the signature is applied to a hash of M rather than to M
itself� On receipt of a message on cAB � B decrypts using
its private key� checks A�s signature using A�s public key�
checks the hash� and applies F to the body of the message
�to M�� The key pairs KA and KB are restricted� but there
would be no harm in sending their public parts K�

A and K
�

B

on a public channel�
Undoubtedly� other formalisations of public�key cryptog�

raphy are possible� perhaps even desirable� In particular� we
have represented cryptographic operations at an abstract
level� and do not attempt to model closely the properties of
any one algorithm� We are concerned with public�key en�
cryption and digital signatures in general rather than with
their RSA implementations� say� The RSA system satises
equations that our formalisation does not capture� For ex�
ample� in the RSA system� �ff�M �gK� g�K� equals M � We
leave the treatment of those equations for future work�

� Conclusions

We have applied both the standard pi calculus and the new
spi calculus in the description and analysis of security proto�
cols� We showed how to represent protocols and how to ex�
press their security properties� Our model of protocols takes

into account the possibility of attacks� but does not require
writing explicit specications for an attacker� In particu�
lar� we express secrecy properties as simple equations that
mean indistinguishability from the point of view of an arbi�
trary attacker� To our knowledge� this sharp treatment of
attacks has not been previously possible�
As examples� we chose protocols of the sort commonly

found in the authentication literature� Although our exam�
ples are small� we have found them instructive and encour�
aging� In particular� there seems to be no fundamental dif�
culty in writing other kinds of examples� such as protocols
for electronic commerce� Unfortunately� the specications
for those protocols do not yet seem to be fully understood�
even in informal terms �Mao	���
In both the pi calculus and the spi calculus� restriction

and scope extrusion play a central role� The pi calculus
provides an abstract treatment of channels� while the spi
calculus expresses the cryptographic operations that usu�
ally underlie channels in systems for distributed security�
Thus� the pi calculus and the spi calculus are appropriate
at di�erent levels� Still� it should be possible and useful to
relate those levels� enabling the formal development of cryp�
tographic protocols from non�cryptographic specications�

Acknowledgements

Peter Sewell and Phil Wadler suggested improvements to a
draft of this paper�

References

�ABLP	�� M� Abadi� M� Burrows� B� Lampson� and
G� Plotkin� A calculus for access control in dis�
tributed systems� ACM Transactions on Pro�
gramming Languages and Systems� ����������
���� �		��

�AN	�� M� Abadi and R� Needham� Prudent engineer�
ing practice for cryptographic protocols� IEEE
Transactions on Software Engineering� 

������
��� January �		��

�BAN�	� M� Burrows� M� Abadi� and R� M� Needham� A
logic of authentication� Proceedings of the Royal
Society of London A� �
��
���
��� �	�	� A
preliminary version appeared as Digital Equip�
ment Corporation Systems Research Center re�
port No� �	� February �	�	�

�BB	�� G� Berry and G� Boudol� The chemical abstract
machine� In Conference Record of the Seven�
teenth ACM Symposium on Principles of Pro�
gramming Languages� pages ���	�� �		��

�BN	�� M� Boreale and R� De Nicola� Testing equiv�
alence for mobile processes� Information and
Computation� �
��
��
�	����� August �		��

�BR	�� M� Bellare and P� Rogaway� Provably secure
session key distribution� The three party case�
In Proceedings of the ��th Annual ACM Sympo�
sium on Theory of Computing� �		��

�DES��� Data encryption standard� Fed� Inform� Pro�
cessing Standards Pub� ��� National Bureau of
Standards� Washington DC� January �	���



�DH��� W� Di�e and M� Hellman� New directions in
cryptography� IEEE Transactions on Informa�
tion Theory� IT�

������������ November �	���

�DH��� R� De Nicola and M� C� B� Hennessy� Test�
ing equivalences for processes� Theoretical Com�
puter Science� ���������� �	���

�DY��� D� Dolev and A� C� Yao� On the security of
public key protocols� In Proc� ��th IEEE Sym�
posium on Foundations of Computer Science�
pages �������� �	���

�GM	�� J� Gray and J� McLean� Using temporal logic
to specify and verify cryptographic protocols
�progress report�� In Proceedings of the �th
IEEE Computer Security Foundations Work�
shop� pages �������� �		��

�Hoa��� C� A� R� Hoare� Communicating Sequential Pro�
cesses� Prentice�Hall International� �	���

�Kem�	� R� A� Kemmerer� Analyzing encryption proto�
cols using formal verication techniques� IEEE
Journal on Selected Areas in Communications�
�� �	�	�

�LABW	
� B� Lampson� M� Abadi� M� Burrows� and
E� Wobber� Authentication in distributed sys�
tems� Theory and practice� ACM Transactions
on Computer Systems� ������
������� Novem�
ber �		
�

�Lie	�� A� Liebl� Authentication in distributed systems�
A bibliography� ACM Operating Systems Re�
view� 
����������� �		��

�Low	�� G� Lowe� Breaking and xing the Needham�
Schroeder public�key protocol using FDR� In
Tools and Algorithms for the Construction and
Analysis of Systems� volume ���� of Lecture
Notes in Computer Science� pages ��������
Springer Verlag� �		��

�Mao	�� W� Mao� On two proposals for on�line bankcard
payments using open networks� Problems and
solutions� In IEEE Symposium on Security and
Privacy� pages 
���
��� �		��

�MCF��� J� K� Millen� S� C� Clark� and S� B� Freed�
man� The Interrogator� Protocol security anal�
ysis� IEEE Transactions on Software Engineer�
ing� SE����
��
���
��� February �	���

�Mea	
� C� Meadows� Applying formal methods to the
analysis of a key management protocol� Journal
of Computer Security� ���������� �		
�

�Mil�	� R� Milner� Communication and Concurrency�
Prentice�Hall International� �	�	�

�Mil	
� R� Milner� Functions as processes� Mathemati�
cal Structures in Computer Science� 
���	�����
�		
�

�Mil	�� J� K� Millen� The Interrogator model� In IEEE
Symposium on Security and Privacy� pages 
���

��� �		��

�MPW	
� R� Milner� J� Parrow� and D� Walker� A calcu�
lus of mobile processes� parts I and II� Informa�
tion and Computation� pages ���� and ������
September �		
�

�NS��� R� M� Needham and M� D� Schroeder� Using
encryption for authentication in large networks
of computers� Communications of the ACM�

���
��		��			� December �	���

�RSA��� R� L� Rivest� A� Shamir� and L� Adleman�
A method for obtaining digital signatures and
public�key cryptosystems� Communications of
the ACM� 
��
���
���
�� February �	���

�Sch	�� B� Schneier� Applied Cryptography� Protocols�
Algorithms� and Source Code in C� John Wiley
 Sons� Inc�� �		��

�Sch	�� S� Schneider� Security properties and CSP�
In IEEE Symposium on Security and Privacy�
pages �������� �		��


