P1363: Appendix E
Cryptographic Random Numbers

V1.0
November 11, 1995

1 Introduction

Although the term is appropriate and is used in the field, the phrase “random
numbers” can be misleading. To many people, it suggests random number
generator functions in the math libraries which come with one’s compiler.
Such generator functions are insecure and to be avoided for cryptographic
purposes.

What one needs for cryptography is values which can not be guessed by
an adversary any more easily than by trying all possibilities [that is, “brute
force”]. There are several ways to acquire or generate such values, but none
of them is guaranteed. Therefore, selection of a random number source is
a matter of art and assumptions, as indicated below and in the RFC on
randomness by Eastlake, Crocker and Schiller[9].

2 Need for random bits

One needs random bits (or values) for several cryptographic purposes, but the
two most common are the generation of cryptographic keys (or passwords)
and the blinding of values in certain protocols.

3 Criterion for a random source

There are several definitions of randomness used by cryptographers, but in
general there is only one criterion for a random source — that any adversary
with full knowledge of your software and hardware, the money to build a
matching computer and run tests with it, the ability to plant bugs in your
site, etc., must not know anything about the bits you are to use next even if
he knows all the bits you have used so far.

4 Random Sources

Random sources can be classified as either true-random or pseudo-random.
The latter are algorithms which immitate the former. However, the concept
of randomness is as much philosophical as physical or mathematical and is
far from resolved.

True-random sources can be considered unconditionally unguessable, even
by an adversary with infinite computing resources, while pseudo-random
sources are good only against computationally limited adversaries.

4.1 True Random Sources

The process to obtain true-random bits typically involves the following steps.

4.1.1 Harvest bits

One first gathers some bits unknown to and unguessable by the adversary.
These must come from some I/O device'. Those bits are not necessarily
all independent. That is, one might be able to predict some one harvested
bit with probability greater than 1/2, given all the others. The adversary
might even know entire subsequences of the bits. What is important is that
the harvested bits contain information (entropy) which is unavailable to the

adversary.

!The alternative is for them to be generated by program — but we have assumed that
the adversary knows all our software and can therefore run the same program.

4.1.2 Determine entropy

The second step is then to determine how many unguessable bits were thus
harvested. That is, one needs to know how many of the harvested bits are
independent and unguessable?. This number of bits is usually referred to as
entropy and is defined below in detail.

4.1.3 Reduce to independent bits

As a third step, one can compute a hash of the harvested bits to reduce them
to independent, random bits. The hash function for this stage of operation
needs to have each output bit functionally dependent on all input bits and
functionally independent of all other output bits. Barring formal analysis,
we assume that the hash functions which are claimed to be cryptographically
strong (MD5 and SHA) have this characteristic.

The output of this third step is a set of independent, unguessable bits.
These can be used with confidence wherever random bits are called for, sub-
ject of course to the assumptions involved in the three steps above.

4.2 Pseudo-random Sources

In some cases, one needs more random bits than the available sources of
entropy can provide. In such cases, one resorts to pseudo-random number
(bit) generators (PRNGs). A PRNG is a function which takes a certain
amount of true randomness (called the seed of the PRNG) and generates a
stream of bits which can be used as if they were true-random, assuming the
adversary is computationally limited and that the seed is large enough to
thwart brute force attacks by that adversary.

A cryptographically strong PRNG? is an algorithm for which it has been
proved that an opponent who knows the algorithm and all of its output bits
up to a certain point but not its seed, can not guess the next output bit with
any higher probability than % + ¢ where ¢ usually decreases exponentially
with some security parameter, s (typically the length of the PRNG seed).

?With a proper hash function, it is not necessary to know which of the bits are
independent.
3as opposed to merely statistically random sources like the C rand() function

As with any computational complexity argument, such proofs are based
on assumptions (such as P # N P). A number of reasonable, strong PRNGs
are discussed in the literature. See the bibliography of this appendix as well
as [9] for some of these references.

5 Determination of bits of entropy

5.1 Mathematical Definitions

For our purposes, entropy is the information delivered within a stream of
bits. It is defined as:

H = — pr logz(px)

where x is a possible value in a stream of values (e.g., in this example, a
contiguous set of bits of some fixed size — a byte, a word, 100 bytes, ...) and
pe 18 its probability of occurrence (from an infinite population of x values,
not just a finite sample). Typically, as the values & over which entropy is
computed increase in size, the entropy increases but not as rapidly as the
size.

What we care about is entropy bits (unguessable bits) per bit of source.
So, let us also define an entropy rate, J, as

H

]

J

where |2| is the size of the symbol x in bits. We can also define what might
be called the absolute entropy, F, as

EF= mm J

1<]z|< 00

the guaranteed minimum entropy (unguessability) per bit of source, no mat-
ter what symbol size the adversary chooses.

This definition of £ relies heavily on having an infinite number of infinite
length sequences to analyze. For example, any periodic sequence of bits will
result in £ = 0 since when |z| equals the period of the sequence all the values
(except for a set of measure 0) are the same and so H = 0. This means that
any PRNG output will result in £/ = 0 since a PRNG is a finite state machine

(FSM) and therefore forced to produce periodic output. That finite period
might be very long — longer than any computer could compute. Therefore,
E can not be computed, numerically, from every actual sequence.

5.2 Attempts to Compute E

One is forced to compute an approximation of F from actual bit strings.
Some people use the best available compression algorithm and hope that the
compression ratio approximates F, since if there were a perfect compression
algorithm, its output would have £ =1 by definition. Others define statisti-
cal tests[18], to be applied to an output bit string from a hardware generator
(such as a noisy resistor) believed to have limited computational ability to
fool the test.

If it were possible to compute an actual absolute entropy from a sample
string, the value would be the same no matter what the representation of the
sample string. That is, there are transformations of a string which preserve
all the string’s information — e.g., a Fourier transform, Hadamard transform,
difference operation

Yi=Ti — T4

etc. — and the number of absolutely unguessable bits in a bit string must
be invariant under such transformations. Omne can therefore evaluate the
quality of some approximation of £ by performing the algorithm over several
transformations of the same string and comparing their results.

However one chooses to compute an approximation for £, one must fur-
ther reduce F to reflect the fraction of these entropy bits which an adversary
might have acquired by guessing or measurement or bugging or creating some
bias in the generator process. For example, if one uses a system date and
time as a source of bits, then one can expect the adversary to know the date
and probably the hour and maybe the minute of the value chosen — leav-
ing only a few low order bits as possibly hidden from the adversary. If one
uses room sounds between 14KHz and 19KHz as the source, an adversary
could inject sounds in that frequency range through the room’s windows and
therefore bias the result. If one uses a mouse-drawn signature as an en-
tropy source, those elements of the track which actually follow the person’s
signature are guessable by the adversary, so only the noisy deviations from
that track count as entropy. If one uses disk head air turbulence[8] as a

random source, poorly designed system or application code could degrade
the actual entropy signal (e.g., through very coarse time measurements) and
add significant predictable noise to the air turbulence entropy (e.g., through
interference with disk completion interrupts by a non-random but random-
looking system interrupt), masking the real entropy and making it necessary
to reduce F.

Once FE is computed to the designer’s or user’s satisfaction, with whatever
allowance one prefers for the possibility of bugging or creation of bias, £
becomes the fraction of bits one can use of the source stream. Specifically,
if one is using a hash function to distill independent bits from the source
stream and that function produces K bits of output from each operation,
one needs to feed the function with % bits of input from the source.

6 Sources of Unguessable Values

Almost any input source is a source of entropy. Some are better than others
in unguessability and in being hidden from an adversary. Each has its own
rate of entropy. Some possible sources at the time of this writing are:

e radioactive source, emitting particles to an absorbing counter. There
are radioactive monitors available which have RS232 output.

e quantum effects in a semiconductor (e.g., a noisy diode). Some
of the popular hardware random bit sources use noisy diodes or noisy
resistors. These can be very cost effective.

e photon polarization detection 45° out of phase - a source of
quantum uncertainty which currently requires a laboratory workbench.

e unplugged microphone. On some machines, an A-D converter with
an unplugged microphone yields electronic noise at a moderate rate.

e air turbulence within a sealed disk drive, dedicated to this
task [8]. This mechanism shows promise, if one dedicates a drive to
that task and has special system level software to harvest the entropy. If
this is attempted without a dedicated drive or special system software,
it becomes the measurement of 1/O completion times for a disk in
normal use, which is mentioned below.

e stereo microphones, subtracted. In a noisy room with moving
sound sources, the difference between stereo microphones whose ampli-
fication is normalized to minimize that difference signal, is extremely
difficult for an adversary to reconstruct, especially from a single micro-
phone in the same room.

e microphone. A normal mono microphone, in a room known not to
be bugged, will pick up a certain amount of usable entropy.

e video camera. A normal video camera can obtain entropy, at a fairly
low rate, if allowed to see unusual scenes (a person making funny faces,
unusual objects, ...) — in a room with no video bugs.

e timing between keystrokes — in which a user is asked to type non-
sense and the key stroke values are used along with the measured time
between strokes. Note that these times are quantized by system op-
erations and time resolution, so that £ must be computed for each
particular system.

e mouse strokes and timing - e.g., if a user is asked to use a mouse
(or, even better, joystick) to sign his own name. This is probably the
most efficient of the human-driven sources of entropy.

e /dev/random — a UNIX device available under some systems which
gathers entropy from system tables and events not available to any
user, so that if the adversary happens to be running a process on your
machine, the source entropy is still secret. Note that the system pro-
grammer will have made some estimate of £ which might not be cor-
rect, so that one might need to gather many /dev/random bits and
hash them down.

The examples below are used frequently as sources of entropy, but can have
serious flaws in that they are observable, predictable or subject to influence
by a determined adversary, especially if one is using a time-shared computer.
That makes the determination of F for these sources especially difficult.

e network statistics

e process statistics

e I/O completion timing and statistics

The following are almost worthless as sources of entropy, but they tend to
be used by some because they are convenient.

e TV or radio broadcasts — the effective entropy of which comes from
any electrical noise which is local to the point of reception, since the
bulk of the signal is available to the adversary

e published information on a CD or tape or in newspapers, mag-
azines or library books — likely to be worthless as entropy since the
adversary must be assumed to have access to the same publications.

e system date and time — extremely low entropy

e process runtime — probably worthless because a process will make
the call to fetch this runtime at the same runtime every time.

e multiple, free-running ring oscillators — a hardware version of
an elementary PRNG, yielding a periodic sequence which might look
random locally while still being predictable.

7 Expansion of source bits

If one chooses not to use a proven cryptographically strong PRNG for ex-
pansion of a true-random seed, there are techniques which are believed good
enough for PRNG use. Mistakes in these assumptions can lead to a catas-
trophic reduction in security and any designer following this path should be
careful?.

These techniques amount to a one-way function masking some easily
predictable (weak) operation. That weak operation could be as simple as
counting or as complex as a long-period bit generator[17]. There are some
commonly used function combinations:

e a cryptographically strong hash function (such as MD5 or
SHA) computed over a true-random seed value concatenated with a

*One must be especially careful not to use a seed too small or use too few true-random
bits to form the seed.

8

counter which is incremented for each operation. [For example, one
could have 256 bits of true-random seed and a 64-bit counter, all hashed
by SHA for each 160 bits (or fewer) of output, with the counter incre-
mented by 1 for each output batch.]

a strong encryption algorithm, using a true-random key en-
crypting a stream generated by a long-period bit generator which had
been seeded by a true-random value. [For example, one could have
a Marsaglia[17] chain addition generator feeding 3-key triple-DES in
CBC mode.]

encryption of a counter with a true-random key — a simpler
version of the option above. One must be careful to use CBC mode
and/or to use only a fraction of the output block otherwise the output
stream would be recognizably non-random within on the order of the
square root of the counter period.

signature of a unique value. This method, employed in TIS MOSS,
works for the generation of a session key which is to be transmitted
encrypted in a given public key. One assumes that the adversary does
not have access to the corresponding private key — otherwise there is
no possibility of security. Therefore, one can take a value unique to
that private key (perhaps the date and time) and sign it with that
private key, yielding bits most of which are independent of each other
and unknown to the adversary. Those bits can be hashed down to form
the session key.

Assumptions

Unfortunately, at our present level of knowledge, random number sources

are a matter of art more than science. We know that we can have adequate

random numbers if certain assumptions hold, but we don’t know if those

assumptions can hold. Specifically, we can have true random numbers if:

e we are able to compute a lower bound on the absolute entropy of a

S0uUrce;

we are able to know an upper bound on the fraction of absolute entropy
known to or guessable by an adversary;

we have a hash function each of whose output bits is functionally depen-
dent on all input bits and functionally independent of all other output
bits

and we can have pseudo-random numbers if:

9

we are able to obtain a full seed worth of true random numbers;

we have a one-way hash function or an unbreakable encryption function.

Advice

Stepping back from academic reasoning, there are some things to avoid and
some things which are definitely good to do.

9.1

Things to avoid

Chaos equations — a great deal of hype confuses what looks complex
(therefore “random”) to a human for something truly random.

math library ranno generators — these were never designed to be
cryptographically strong

Linear-congruential PRNGs - the simplest and possibly worst of
the math library PRNG algorithms

Chain addition — another simple and easily broken statistical PRNG

CD ROMs, audio CDs or tapes. Recorded material has a large
volume of bits and that volume is sometimes confused for randomness.
However, the number of bits it takes to index into all the published
recordings in the world (therefore the “seed” for this PRNG) is small
enough for an adversary to guess by brute force testing.

USENET News feed. Again, high volume is confused with random-
ness, by some. USENET is delivered everywhere and entropy delivered
to the adversary is useless.

10

e E-mail — a potential source, if the e-mail is so well encrypted that

9.2

the adversary can not have seen it, but one doesn’t know what the
adversary has seen. Otherwise, it is as useless as a USENET feed,
since the adversary can be assumed to have wiretaps in place. If any
English text is used as an entropy source, Shannon’s estimate of 1 bit
of entropy per character should be a maximum limit for F.

Things to do

Test for degeneration of the entropy source. Devices fail. If a
source of entropy fails but is used to feed a cryptographically strong
function, the output of that function would not immediately signal a
problem to the normal user but could still provide an entry for the
cryptanalyst. One needs to test the raw entropy source directly[18]
before it is hashed.

Mix different sources, if unsure about what the adversary
might tap. If the adversary is assumed possibly to have tapped one
or more sources of entropy, but his having tapped any entropy source is
assumed an independent probabilistic event, one can reduce the prob-
ability that a tap is successful by using multiple, independent sources
of entropy, driving each through its own harvesting and then hashing
all the harvest results together. The probability of adversary success is
then the product of the individual probabilities of tapping.

Feed all bits to the initial hash function rather than try to
throw away known bits. If one’s hash function meets the criteria
specified for reduction to independent random bits, then there is no
reason to use any other method for discarding dependent bits.

References

1]

T. Beth and Zong-duo Dai. On the complexity of pseudo-random se-
quences - or: If you can describe a sequence it can’t be random. In
J.J. Quisquater and J. Vandewalle, editors, Advances in Cryptology —
FEurocrypt 89, pages 533-543, Berlin, 1990. Springer-Verlag.

11

2]

3]

[11]

L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random
number generator. STAM J. Computing, 15(2):364-383, May 1986.

Lenore Blum, Manuel Blum, and Michael Shub. Comparison of two
pseudo-random number generators. In R. L. Rivest, A. Sherman, and

D. Chaum, editors, Proc. CRYPTO 82, pages 61-78, New York, 1983.

Plenum Press.

M. Blum and 5. Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. STAM J. Computing, 13(4):850-863,
November 1984.

Joan Boyar. Inferring sequences produced by pseudo-random number

generators. Journal of the ACM, 36(1):129-141, January 1989.

B. Chor and O. Goldreich. Unbiased bits from sources of weak random-
ness and probabilistic communication complexity. In Proc. 26th [FEE
Symp. on Foundations of Comp. Science, pages 429-442, Portland, 1985.
IEEE.

B. Chor and O. Goldreich. Unbiased bits from sources of weak random-
ness and probabilistic communication complexity. SIAM J. Computing,

17(2):230-261, April 1988.

Don Davis, Ross Thaka, and Philip Fenstermacher. Cryptographic ran-
domness from air turbulence in disk drives. In Yvo G. Desmedt, editor,

Proc. CRYPTO 94, pages 114-120. Springer, 1994. Lecture Notes in
Computer Science No. 839.

D. Eastlake, S. Crocker, and J. Schiller. RFC 1750: Randomness Rec-

ommendations for Security. Internet Activities Board, December 1994.

R.C. Fairfield, R.L. Mortenson, and K.B. Coulthart. An LSI random
number generator (RNG). In G. R. Blakley and D. C. Chaum, editors,
Proc. CRYPTO 84, pages 203-230. Springer, 1985. Lecture Notes in
Computer Science No. 196.

Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-
random generation from one-way functions. In Proec. 21st ACM Symp.
on Theory of Computing, pages 12-24, Seattle, 1989. ACM.

12

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Burton S. Kaliski, Jr. A pseudo-random bit generator based on elliptic
logarithms. In A.M. Odlyzko, editor, Proc. CRYPTO 86, pages 84-103.
Springer-Verlag, 1987. Lecture Notes in Computer Science No. 263.

Burton S. Kaliski, Jr. FElliptic Curves and Cryptography: A Pseudoran-
dom Bit Generator and Other Tools. PhD thesis, MIT EECS Dept.,
January 1988. Published as MIT L.CS Technical Report MIT/LCS/TR-
411 (Jan. 1988).

J. C. Lagarias. Pseudorandom number generators in cryptography and
number theory. In Proc. of the AMS Symposia in Applied Mathemat-
ics: Computational Number Theory and Cryptography, pages 115-143.
American Mathematical Society, 1990.

L. A. Levin. One-way functions and pseudorandom generators. In Proc.
17th ACM Symp. on Theory of Computing, pages 363-365, Providence,
1985. ACM.

M. Luby. Pseudo-random generators from one-way functions. In
J. Feigenbaum, editor, Proc. CRYPTO 91, page 300. Springer, 1992.

Lecture Notes in Computer Science No. 576.

George Marsaglia and Arif Zaman. A new class of random number

generators. The Annals of Applied Probability, 1(3):462-480, 1991.

Ueli M. Maurer. A universal statistical test for random bit generators.
In A.J. Menezes and S. A. Vanstone, editors, Proc. CRYPTO 90, pages
409-420. Springer-Verlag, 1991. Lecture Notes in Computer Science No.
537.

Ueli M. Maurer and James L. Massey. Perfect local randomness in
pseudo-random sequences. In G. Brassard, editor, Proc. CRYPTO 89,
pages 100-112. Springer-Verlag, 1990. Lecture Notes in Computer Sci-
ence No. 435.

S. Micali and C.P. Schnorr. Efficient, perfect random number generators.
In S. Goldwasser, editor, Proc. CRYPTO &8, pages 173-199. Springer-
Verlag, 1988. Lecture Notes in Computer Science No. 403.

13

[21]

[22]

23]

[24]

[25]

[26]

[27]

J.H. Reif and J.D. Tygar. Efficient parallel pseudorandom number gen-
eration. SIAM J. Computing, 17(2):404-411, April 1988.

M. Santha and U. V. Vazirani. Generating quasi-random sequences
from semi-random sources. Journal of Computer and Systems Sciences,

33:75-87, 1986.

A. Shamir. On the generation of cryptographically strong pseudo-
random sequences. In Proc. I[CALP, pages 544-550. Springer, 1981.

Adi Shamir. The generation of cryptographically strong pseudo-random
sequences. In Allen Gersho, editor, Advances in Cryptology: A Report
on CRYPTO 81, pages 1-1. U.C. Santa Barbara Dept. of Elec. and
Computer Eng., 1982. Tech Report 82-04.

U. V. Vazirani. Towards a strong communication complexity theory, or
generating quasi-random sequences from two communicating slightly-
random sources. In Proc. 17th ACM Symp. on Theory of Computing,
pages 366-378, Providence, 1985. ACM.

U.V. Vazirani and V.V. Vazirani. Efficient and secure pseudo-random
number generation. In Proc. 25th IEEE Symp. on Foundations of Comp.
Science, pages 458-463, Singer Island, 1984. TEEE.

U.V. Vazirani and V.V. Vazirani. Efficient and secure pseudo-random
number generation. In G. R. Blakley and D. C. Chaum, editors, Proc.
CRYPTO 84, pages 193-202. Springer, 1985. Lecture Notes in Computer
Science No. 196.

14

