
P����� Appendix E

Cryptographic Random Numbers

V���

November ��� ����

� Introduction

Although the term is appropriate and is used in the �eld� the phrase �random
numbers� can be misleading� To many people� it suggests random number
generator functions in the math libraries which come with one�s compiler�
Such generator functions are insecure and to be avoided for cryptographic
purposes�

What one needs for cryptography is values which can not be guessed by
an adversary any more easily than by trying all possibilities �that is� �brute
force��� There are several ways to acquire or generate such values� but none
of them is guaranteed� Therefore� selection of a random number source is
a matter of art and assumptions� as indicated below and in the RFC on
randomness by Eastlake� Crocker and Schiller�	��

� Need for random bits

One needs random bits 
or values� for several cryptographic purposes� but the
two most common are the generation of cryptographic keys 
or passwords�
and the blinding of values in certain protocols�

�



� Criterion for a random source

There are several de�nitions of randomness used by cryptographers� but in
general there is only one criterion for a random source  that any adversary
with full knowledge of your software and hardware� the money to build a
matching computer and run tests with it� the ability to plant bugs in your
site� etc�� must not know anything about the bits you are to use next even if
he knows all the bits you have used so far�

� Random Sources

Random sources can be classi�ed as either true�random or pseudo�random�
The latter are algorithms which immitate the former� However� the concept
of randomness is as much philosophical as physical or mathematical and is
far from resolved�

True�random sources can be considered unconditionally unguessable� even
by an adversary with in�nite computing resources� while pseudo�random
sources are good only against computationally limited adversaries�

��� True Random Sources

The process to obtain true�random bits typically involves the following steps�

����� Harvest bits

One �rst gathers some bits unknown to and unguessable by the adversary�
These must come from some I�O device�� Those bits are not necessarily
all independent� That is� one might be able to predict some one harvested
bit with probability greater than ���� given all the others� The adversary
might even know entire subsequences of the bits� What is important is that
the harvested bits contain information 
entropy� which is unavailable to the
adversary�

�The alternative is for them to be generated by program � but we have assumed that
the adversary knows all our software and can therefore run the same program�

�



����� Determine entropy

The second step is then to determine how many unguessable bits were thus
harvested� That is� one needs to know how many of the harvested bits are
independent and unguessable�� This number of bits is usually referred to as
entropy and is de�ned below in detail�

����� Reduce to independent bits

As a third step� one can compute a hash of the harvested bits to reduce them
to independent� random bits� The hash function for this stage of operation
needs to have each output bit functionally dependent on all input bits and
functionally independent of all other output bits� Barring formal analysis�
we assume that the hash functions which are claimed to be cryptographically
strong 
MD� and SHA� have this characteristic�

The output of this third step is a set of independent� unguessable bits�
These can be used with con�dence wherever random bits are called for� sub�
ject of course to the assumptions involved in the three steps above�

��� Pseudo�random Sources

In some cases� one needs more random bits than the available sources of
entropy can provide� In such cases� one resorts to pseudo�random number

bit� generators 
PRNGs�� A PRNG is a function which takes a certain
amount of true randomness 
called the seed of the PRNG� and generates a
stream of bits which can be used as if they were true�random� assuming the
adversary is computationally limited and that the seed is large enough to
thwart brute force attacks by that adversary�

A cryptographically strong PRNG� is an algorithm for which it has been
proved that an opponent who knows the algorithm and all of its output bits
up to a certain point but not its seed� can not guess the next output bit with
any higher probability than �

�
� � where � usually decreases exponentially

with some security parameter� s 
typically the length of the PRNG seed��

�With a proper hash function� it is not necessary to know which of the bits are
independent�

�as opposed to merely statistically random sources like the C rand�� function

�



As with any computational complexity argument� such proofs are based
on assumptions 
such as P �� NP �� A number of reasonable� strong PRNGs
are discussed in the literature� See the bibliography of this appendix as well
as �	� for some of these references�

� Determination of bits of entropy

��� Mathematical De�nitions

For our purposes� entropy is the information delivered within a stream of
bits� It is de�ned as�

H � �
X

x

px log�
px�

where x is a possible value in a stream of values 
e�g�� in this example� a
contiguous set of bits of some �xed size  a byte� a word� ��� bytes� ���� and
px is its probability of occurrence 
from an in�nite population of x values�
not just a �nite sample�� Typically� as the values x over which entropy is
computed increase in size� the entropy increases but not as rapidly as the
size�

What we care about is entropy bits 
unguessable bits� per bit of source�
So� let us also de�ne an entropy rate� J � as

J �
H

jxj

where jxj is the size of the symbol x in bits� We can also de�ne what might
be called the absolute entropy� E� as

E � min
��jxj��

J

the guaranteed minimum entropy 
unguessability� per bit of source� no mat�
ter what symbol size the adversary chooses�

This de�nition of E relies heavily on having an in�nite number of in�nite
length sequences to analyze� For example� any periodic sequence of bits will
result in E � � since when jxj equals the period of the sequence all the values

except for a set of measure �� are the same and so H � �� This means that
any PRNG output will result in E � � since a PRNG is a �nite state machine

�




FSM� and therefore forced to produce periodic output� That �nite period
might be very long  longer than any computer could compute� Therefore�
E can not be computed� numerically� from every actual sequence�

��� Attempts to Compute E

One is forced to compute an approximation of E from actual bit strings�
Some people use the best available compression algorithm and hope that the
compression ratio approximates E� since if there were a perfect compression
algorithm� its output would have E � � by de�nition� Others de�ne statisti�
cal tests����� to be applied to an output bit string from a hardware generator

such as a noisy resistor� believed to have limited computational ability to
fool the test�

If it were possible to compute an actual absolute entropy from a sample
string� the value would be the same no matter what the representation of the
sample string� That is� there are transformations of a string which preserve
all the string�s information  e�g�� a Fourier transform� Hadamard transform�
di�erence operation

yi � xi � xi��

etc�  and the number of absolutely unguessable bits in a bit string must
be invariant under such transformations� One can therefore evaluate the
quality of some approximation of E by performing the algorithm over several
transformations of the same string and comparing their results�

However one chooses to compute an approximation for E� one must fur�
ther reduce E to re�ect the fraction of these entropy bits which an adversary
might have acquired by guessing or measurement or bugging or creating some
bias in the generator process� For example� if one uses a system date and
time as a source of bits� then one can expect the adversary to know the date
and probably the hour and maybe the minute of the value chosen  leav�
ing only a few low order bits as possibly hidden from the adversary� If one
uses room sounds between ��KHz and �	KHz as the source� an adversary
could inject sounds in that frequency range through the room�s windows and
therefore bias the result� If one uses a mouse�drawn signature as an en�
tropy source� those elements of the track which actually follow the person�s
signature are guessable by the adversary� so only the noisy deviations from
that track count as entropy� If one uses disk head air turbulence��� as a

�



random source� poorly designed system or application code could degrade
the actual entropy signal 
e�g�� through very coarse time measurements� and
add signi�cant predictable noise to the air turbulence entropy 
e�g�� through
interference with disk completion interrupts by a non�random but random�
looking system interrupt�� masking the real entropy and making it necessary
to reduce E�

Once E is computed to the designer�s or user�s satisfaction� with whatever
allowance one prefers for the possibility of bugging or creation of bias� E
becomes the fraction of bits one can use of the source stream� Speci�cally�
if one is using a hash function to distill independent bits from the source
stream and that function produces K bits of output from each operation�
one needs to feed the function with K

E
bits of input from the source�

� Sources of Unguessable Values

Almost any input source is a source of entropy� Some are better than others
in unguessability and in being hidden from an adversary� Each has its own
rate of entropy� Some possible sources at the time of this writing are�

� radioactive source� emitting particles to an absorbing counter� There
are radioactive monitors available which have RS��� output�

� quantum e�ects in a semiconductor 
e�g�� a noisy diode�� Some
of the popular hardware random bit sources use noisy diodes or noisy
resistors� These can be very cost e�ective�

� photon polarization detection ��o out of phase  a source of
quantum uncertainty which currently requires a laboratory workbench�

� unplugged microphone� On some machines� an A�D converter with
an unplugged microphone yields electronic noise at a moderate rate�

� air turbulence within a sealed disk drive� dedicated to this
task ���� This mechanism shows promise� if one dedicates a drive to
that task and has special system level software to harvest the entropy� If
this is attempted without a dedicated drive or special system software�
it becomes the measurement of I�O completion times for a disk in
normal use� which is mentioned below�

�



� stereo microphones� subtracted� In a noisy room with moving
sound sources� the di�erence between stereo microphones whose ampli�
�cation is normalized to minimize that di�erence signal� is extremely
di�cult for an adversary to reconstruct� especially from a single micro�
phone in the same room�

� microphone� A normal mono microphone� in a room known not to
be bugged� will pick up a certain amount of usable entropy�

� video camera� A normal video camera can obtain entropy� at a fairly
low rate� if allowed to see unusual scenes 
a person making funny faces�
unusual objects� ����  in a room with no video bugs�

� timing between keystrokes  in which a user is asked to type non�
sense and the key stroke values are used along with the measured time
between strokes� Note that these times are quantized by system op�
erations and time resolution� so that E must be computed for each
particular system�

� mouse strokes and timing  e�g�� if a user is asked to use a mouse

or� even better� joystick� to sign his own name� This is probably the
most e�cient of the human�driven sources of entropy�

� �dev�random  a UNIX device available under some systems which
gathers entropy from system tables and events not available to any
user� so that if the adversary happens to be running a process on your
machine� the source entropy is still secret� Note that the system pro�
grammer will have made some estimate of E which might not be cor�
rect� so that one might need to gather many �dev�random bits and
hash them down�

The examples below are used frequently as sources of entropy� but can have
serious �aws in that they are observable� predictable or subject to in�uence
by a determined adversary� especially if one is using a time�shared computer�
That makes the determination of E for these sources especially di�cult�

� network statistics

� process statistics

�



� I�O completion timing and statistics

The following are almost worthless as sources of entropy� but they tend to
be used by some because they are convenient�

� TV or radio broadcasts  the e�ective entropy of which comes from
any electrical noise which is local to the point of reception� since the
bulk of the signal is available to the adversary

� published information on a CD or tape or in newspapers� mag	
azines or library books  likely to be worthless as entropy since the
adversary must be assumed to have access to the same publications�

� system date and time  extremely low entropy

� process runtime  probably worthless because a process will make
the call to fetch this runtime at the same runtime every time�

� multiple� free	running ring oscillators  a hardware version of
an elementary PRNG� yielding a periodic sequence which might look
random locally while still being predictable�

� Expansion of source bits

If one chooses not to use a proven cryptographically strong PRNG for ex�
pansion of a true�random seed� there are techniques which are believed good
enough for PRNG use� Mistakes in these assumptions can lead to a catas�
trophic reduction in security and any designer following this path should be
careful��

These techniques amount to a one�way function masking some easily
predictable 
weak� operation� That weak operation could be as simple as
counting or as complex as a long�period bit generator����� There are some
commonly used function combinations�

� a cryptographically strong hash function 
such as MD� or
SHA� computed over a true�random seed value concatenated with a

�One must be especially careful not to use a seed too small or use too few true�random
bits to form the seed�

�



counter which is incremented for each operation� �For example� one
could have ��� bits of true�random seed and a ���bit counter� all hashed
by SHA for each ��� bits 
or fewer� of output� with the counter incre�
mented by � for each output batch��

� a strong encryption algorithm� using a true	random key en�
crypting a stream generated by a long�period bit generator which had
been seeded by a true�random value� �For example� one could have
a Marsaglia���� chain addition generator feeding ��key triple�DES in
CBC mode��

� encryption of a counter with a true	random key  a simpler
version of the option above� One must be careful to use CBC mode
and�or to use only a fraction of the output block otherwise the output
stream would be recognizably non�random within on the order of the
square root of the counter period�

� signature of a unique value� This method� employed in TIS MOSS�
works for the generation of a session key which is to be transmitted
encrypted in a given public key� One assumes that the adversary does
not have access to the corresponding private key  otherwise there is
no possibility of security� Therefore� one can take a value unique to
that private key 
perhaps the date and time� and sign it with that
private key� yielding bits most of which are independent of each other
and unknown to the adversary� Those bits can be hashed down to form
the session key�

� Assumptions

Unfortunately� at our present level of knowledge� random number sources
are a matter of art more than science� We know that we can have adequate
random numbers if certain assumptions hold� but we don�t know if those
assumptions can hold� Speci�cally� we can have true random numbers if�

� we are able to compute a lower bound on the absolute entropy of a
source�

	



� we are able to know an upper bound on the fraction of absolute entropy
known to or guessable by an adversary�

� we have a hash function each of whose output bits is functionally depen�
dent on all input bits and functionally independent of all other output
bits

and we can have pseudo�random numbers if�

� we are able to obtain a full seed worth of true random numbers�

� we have a one�way hash function or an unbreakable encryption function�

	 Advice

Stepping back from academic reasoning� there are some things to avoid and
some things which are de�nitely good to do�

��� Things to avoid

� Chaos equations  a great deal of hype confuses what looks complex

therefore �random�� to a human for something truly random�

� math library ranno generators  these were never designed to be
cryptographically strong

� Linear	congruential PRNGs  the simplest and possibly worst of
the math library PRNG algorithms

� Chain addition  another simple and easily broken statistical PRNG

� CD ROMs� audio CDs or tapes� Recorded material has a large
volume of bits and that volume is sometimes confused for randomness�
However� the number of bits it takes to index into all the published
recordings in the world 
therefore the �seed� for this PRNG� is small
enough for an adversary to guess by brute force testing�

� USENET News feed� Again� high volume is confused with random�
ness� by some� USENET is delivered everywhere and entropy delivered
to the adversary is useless�

��



� E	mail  a potential source� if the e�mail is so well encrypted that
the adversary can not have seen it� but one doesn�t know what the
adversary has seen� Otherwise� it is as useless as a USENET feed�
since the adversary can be assumed to have wiretaps in place� If any
English text is used as an entropy source� Shannon�s estimate of � bit
of entropy per character should be a maximum limit for E�

��� Things to do

� Test for degeneration of the entropy source� Devices fail� If a
source of entropy fails but is used to feed a cryptographically strong
function� the output of that function would not immediately signal a
problem to the normal user but could still provide an entry for the
cryptanalyst� One needs to test the raw entropy source directly����
before it is hashed�

� Mix di�erent sources� if unsure about what the adversary
might tap� If the adversary is assumed possibly to have tapped one
or more sources of entropy� but his having tapped any entropy source is
assumed an independent probabilistic event� one can reduce the prob�
ability that a tap is successful by using multiple� independent sources
of entropy� driving each through its own harvesting and then hashing
all the harvest results together� The probability of adversary success is
then the product of the individual probabilities of tapping�

� Feed all bits to the initial hash function rather than try to
throw away known bits� If one�s hash function meets the criteria
speci�ed for reduction to independent random bits� then there is no
reason to use any other method for discarding dependent bits�

References

��� T� Beth and Zong�duo Dai� On the complexity of pseudo�random se�
quences � or� If you can describe a sequence it can�t be random� In
J�J� Quisquater and J� Vandewalle� editors� Advances in Cryptology �

Eurocrypt ���� pages ������� Berlin� �		�� Springer�Verlag�

��



��� L� Blum�M� Blum� and M� Shub� A simple unpredictable pseudo�random
number generator� SIAM J� Computing� ��
���������� May �	���

��� Lenore Blum� Manuel Blum� and Michael Shub� Comparison of two
pseudo�random number generators� In R� L� Rivest� A� Sherman� and
D� Chaum� editors� Proc� CRYPTO ��� pages ����� New York� �	���
Plenum Press�

��� M� Blum and S� Micali� How to generate cryptographically strong se�
quences of pseudo�random bits� SIAM J� Computing� ��
����������
November �	���

��� Joan Boyar� Inferring sequences produced by pseudo�random number
generators� Journal of the ACM� ��
�����	���� January �	�	�

��� B� Chor and O� Goldreich� Unbiased bits from sources of weak random�
ness and probabilistic communication complexity� In Proc� ��th IEEE

Symp� on Foundations of Comp� Science� pages ��	���� Portland� �	���
IEEE�

��� B� Chor and O� Goldreich� Unbiased bits from sources of weak random�
ness and probabilistic communication complexity� SIAM J� Computing�
��
���������� April �	���

��� Don Davis� Ross Ihaka� and Philip Fenstermacher� Cryptographic ran�
domness from air turbulence in disk drives� In Yvo G� Desmedt� editor�
Proc� CRYPTO ��� pages ������� Springer� �		�� Lecture Notes in
Computer Science No� ��	�

�	� D� Eastlake� S� Crocker� and J� Schiller� RFC 	
�� Randomness Rec�

ommendations for Security� Internet Activities Board� December �		��

���� R�C� Fair�eld� R�L� Mortenson� and K�B� Coulthart� An LSI random
number generator 
RNG�� In G� R� Blakley and D� C� Chaum� editors�
Proc� CRYPTO ��� pages ������� Springer� �	��� Lecture Notes in
Computer Science No� �	��

���� Russell Impagliazzo� Leonid A� Levin� and Michael Luby� Pseudo�
random generation from one�way functions� In Proc� ��st ACM Symp�

on Theory of Computing� pages ����� Seattle� �	�	� ACM�

��



���� Burton S� Kaliski� Jr� A pseudo�random bit generator based on elliptic
logarithms� In A�M� Odlyzko� editor� Proc� CRYPTO ��� pages ������
Springer�Verlag� �	��� Lecture Notes in Computer Science No� ����

���� Burton S� Kaliski� Jr� Elliptic Curves and Cryptography A Pseudoran�

dom Bit Generator and Other Tools� PhD thesis� MIT EECS Dept��
January �	��� Published as MIT LCS Technical Report MIT�LCS�TR�
��� 
Jan� �	����

���� J� C� Lagarias� Pseudorandom number generators in cryptography and
number theory� In Proc� of the AMS Symposia in Applied Mathemat�

ics Computational Number Theory and Cryptography� pages �������
American Mathematical Society� �		��

���� L� A� Levin� One�way functions and pseudorandom generators� In Proc�

��th ACM Symp� on Theory of Computing� pages ������� Providence�
�	��� ACM�

���� M� Luby� Pseudo�random generators from one�way functions� In
J� Feigenbaum� editor� Proc� CRYPTO �	� page ���� Springer� �		��
Lecture Notes in Computer Science No� ����

���� George Marsaglia and Arif Zaman� A new class of random number
generators� The Annals of Applied Probability� �
���������� �		��

���� Ueli M� Maurer� A universal statistical test for random bit generators�
In A�J� Menezes and S� A� Vanstone� editors� Proc� CRYPTO ��� pages
��	���� Springer�Verlag� �		�� Lecture Notes in Computer Science No�
����

��	� Ueli M� Maurer and James L� Massey� Perfect local randomness in
pseudo�random sequences� In G� Brassard� editor� Proc� CRYPTO ���
pages ������� Springer�Verlag� �		�� Lecture Notes in Computer Sci�
ence No� ����

���� S� Micali and C�P� Schnorr� E�cient� perfect random number generators�
In S� Goldwasser� editor� Proc� CRYPTO ��� pages ����		� Springer�
Verlag� �	��� Lecture Notes in Computer Science No� ����

��



���� J�H� Reif and J�D� Tygar� E�cient parallel pseudorandom number gen�
eration� SIAM J� Computing� ��
���������� April �	���

���� M� Santha and U� V� Vazirani� Generating quasi�random sequences
from semi�random sources� Journal of Computer and Systems Sciences�
�������� �	���

���� A� Shamir� On the generation of cryptographically strong pseudo�
random sequences� In Proc� ICALP� pages ������� Springer� �	���

���� Adi Shamir� The generation of cryptographically strong pseudo�random
sequences� In Allen Gersho� editor� Advances in Cryptology A Report

on CRYPTO �	� pages ��� U�C� Santa Barbara Dept� of Elec� and
Computer Eng�� �	��� Tech Report ������

���� U� V� Vazirani� Towards a strong communication complexity theory� or
generating quasi�random sequences from two communicating slightly�
random sources� In Proc� ��th ACM Symp� on Theory of Computing�
pages ������� Providence� �	��� ACM�

���� U�V� Vazirani and V�V� Vazirani� E�cient and secure pseudo�random
number generation� In Proc� ��th IEEE Symp� on Foundations of Comp�

Science� pages ������� Singer Island� �	��� IEEE�

���� U�V� Vazirani and V�V� Vazirani� E�cient and secure pseudo�random
number generation� In G� R� Blakley and D� C� Chaum� editors� Proc�
CRYPTO ��� pages �	����� Springer� �	��� Lecture Notes in Computer
Science No� �	��

��


