
Cryptanalytic Attacks on Pseudorandom

Number Generators

John Kelsey�� Bruce Schneier�� David Wagner�� and Chris Hall�

� Counterpane Systems
e�mail� fkelsey�schneier�hallg�counterpane�com

� University of California Berkeley
e�mail� daw�cs�berkeley�edu

Abstract� In this paper we discuss PRNGs� the mechanisms used by
real�world secure systems to generate cryptographic keys� initialization
vectors� �random� nonces� and other values assumed to be random� We
argue that PRNGs are their own unique type of cryptographic primitive�
and should be analyzed as such� We propose a model for PRNGs� discuss
possible attacks against this model� and demonstrate the applicability of
the model �and our attacks� to four real�world PRNGs� We close with
a discussion of lessons learned about PRNG design and use� and a few
open questions�

� Introduction and Motivation

It is hard to imagine a well�designed cryptographic application that doesn�t use
random numbers� Session keys� initialization vectors� salts to be hashed with
passwords� unique parameters in digital signature operations� and nonces in
protocols are all assumed to be random� by system designers� Unfortunately�
many cryptographic applications don�t have a reliable source of real random bits�
such as thermal noise in electrical circuits or precise timing of Geiger counter
clicks �FMK���Gud���Agn���Ric�	
� Instead� they use a cryptographic mecha�
nism� called a Pseudo�Random Number Generator �PRNG� to generate these
values� The PRNG collects randomness from various low�entropy input streams�
and tries to generate outputs that are in practice indistinguishable from truly
random streams �SV�
�LMS���DIF���ECS���Plu���Gut��
�

In this paper� we consider PRNGs from an attacker�s perspective� We discuss
the requirements for PRNGs� give a basic model of how such PRNGs must work�
and try to list the possible attacks against PRNGs� Speci�cally� we consider ways
that an attacker may cause a given PRNG to fail to appear random� or ways
he can use knowledge of some PRNG outputs �such as initialization vectors� to
guess other PRNG outputs �such as session keys��

� Note that �random� is a word that is easily misused� In this paper� unless we say
otherwise� the reader may assume that a �random value� is one sample of a random
variable which is uniformly distributed over the entire set of n�bit vectors� for some
n�



Cryptanalytic Attacks on Pseudorandom Number Generators 	
�

��� Applications of Results

This research has important practical and theoretical implications�

�� A PRNG is its own kind of cryptographic primitive� which has not so far
been examined in the literature� In particular� there doesn�t seem to be
any widespread understanding of the possible attacks on PRNGs� or of the
limitations on the uses of di�erent PRNG designs� A better understanding
of these primitives will make it easier to design and use PRNGs securely�

	� A PRNG is a single point of failure for many real�world cryptosystems�
An attack on the PRNG can make irrelevant the careful selection of good
algorithms and protocols�

�� Many systems use badly�designed PRNGs� or use them in ways that make
various attacks easier than they need be� We are aware of very little in the
literature to help system designers choose and use these PRNGs wisely�

�� We present results on real�world PRNGs� which may have implications for
the security of �elded cryptographic systems�

��� The Rest of This Paper

In Section 	� we de�ne our model of a PRNG� and discuss the set of possible
attacks on PRNGs that �t this model� In Section � discuss applications of those
attacks on several real�world PRNGs� Then� in Section �� we end with a discus�
sion of the lessons learned� and a consideration of some related open problems�

� De�nitions

In the context of this paper� a PRNG is a cryptographic algorithm used to gener�
ate numbers that must appear random� Examples of this include the ANSI X����
key generation mechanism �ANSI��
 and the RSAREF 	�� PRNG �RSA��
� A
PRNG has a secret state� S� Upon request� it must generate outputs that are
indistinguishable from random numbers to an attacker who doesn�t know and
cannot guess S� In this� it is very similar to a stream cipher� Additionally� how�
ever� a PRNG must be able to alter its secret state by processing input values
that may be unpredictable to an attacker� A PRNG often starts in an state that
is guessable to an attacker �usually unintentionally�� and must process many
inputs to reach a secure state� Sometimes� the input samples are processed each
time an output is generated� e�g�� ANSI X����� Other times� the input samples
are processed as they become available� e�g� RSAREF 	�� PRNG�

Note that the inputs are intended to carry some unknown �to an attacker� in�
formation into the PRNG� These are the values typically collected from physical
processes �like hard drive latencies �DIF��
�� user interactions with the machine
�Zim��
� or other external� hard�to�predict processes� Typically� system imple�
menters and designers will try to ensure that there is su�cient entropy in these
inputs to make them unguessable by any practical attacker�



	�
 John Kelsey� Bruce Schneier� David Wagner� Chris Hall

Note that the outputs are intended to stand in for random numbers in essen�
tially any cryptographic situation� Symmetric keys� initialization vectors� ran�
dom parameters in DSA signatures� and random nonces are commonapplications
for these outputs�

See Figure � for a high�level view of a PRNG� Also� Figure 	 re�nes the
terminology a bit� and Figure � shows a PRNG with periodic reseeding�

PRNGs are typically constructed from other cryptographic primitives� such
as block ciphers� hash functions� and stream ciphers� There is a natural ten�
dency to assume that the security of these underlying primitives will translate
to security for the PRNG�

In this paper� we consider several new attacks on PRNGs� Many of these
attacks may be considered somewhat academic� However� we believe there are
situations that arise in practice in which these attacks are possible� Additionally�
we believe that even attacks that are not usually practical should be brought to
the attention of those who use these PRNGs� to prevent the PRNGs� use in an
application that does allow the attacks�

Note that in principle� any method of distinguishing between PRNG outputs
and random outputs is an attack� in practice� we care much more about the
ability to learn the values of PRNG outputs not seen by the attacker� and to
predict or control future outputs�

Fig� �� Black�box view of a PRNG

�

�
PRNG

pseudo�random outputs

unpredictable inputs

��� Enumerating the Classes of Attacks

�� Direct Cryptanalytic Attack� When an attacker is directly able to dis�
tinguish between PRNG outputs and random outputs� this is a direct crypt�
analytic attack� This kind of attack is applicable to most� but not all� uses of
PRNGs� For example� a PRNG used only to generate triple�DES keys may
never be vulnerable to this kind of attack� since the PRNG outputs are never
directly seen�



Cryptanalytic Attacks on Pseudorandom Number Generators 	�	

Fig� �� View of internal operations for most PRNGs

�
�

�
�

�
�

�
�

�

�

�

�

�

�

generate

collect
unpredictable inputs

pseudo�random outputs

state

	� Input�Based Attacks� An input attack occurs when an attacker is able to
use knowledge or control of the PRNG inputs to cryptanalyze the PRNG�
i�e�� to distinguish between PRNG output and random values�
Input attacks may be further divided into known�input� replayed�input� and
chosen�input attacks� Chosen input attacks may be practical against smart�
cards and other tamper�resistant tokens under a physical�cryptanalytic at�
tack� they may also be practical for applications that feed incomingmessages�
user�selected passwords� network statistics� etc�� into their PRNG as entropy
samples� Replayed�input attacks are likely to be practical in the same situ�
ations� but require slightly less control or sophistication on the part of the
attacker� Known�input attacks may be practical in any situation in which
some of the PRNG inputs� intended by the system designer to be hard to
predict� turn out to be easily predicted in some special cases� �An obvious
example of this is an application which uses hard�drive latency for some of
its PRNG inputs� but is being run using a network drive whose timings are
observable to the attacker��

�� State Compromise Extension Attacks� A state compromise extension
attack attempts to extend the advantages of a previously�successful e�ort
that has recovered S as far as possible� Suppose that� for whatever reason�a
temporary penetration of computer security� an inadvertent leak� a crypt�
analytic success� etc��the adversary manages to learn the internal state� S�
at some point in time� A state compromise extension attack succeeds when
the attacker is able to recover unknown PRNG outputs �or distinguish those
PRNG outputs from random values� from before S was compromised� or re�
cover outputs from after the PRNG has collected a sequence of inputs which
the attacker cannot guess�
State compromise extension attacks are most likely to work when a PRNG is
started in an insecure �guessable� state due to insu�cient starting entropy�
They can also work when S has been compromised by any of the attacks



	�� John Kelsey� Bruce Schneier� David Wagner� Chris Hall

in this list� or by any other method� In practice� it is prudent to assume
that occasional compromises of the state S may happen� to preserve the
robustness of the system� PRNGs should resist state compromise extension
attacks as thoroughly as possible�

�a� Backtracking Attacks� A backtracking attack uses the compromise of
the PRNG state S at time t to learn previous PRNG outputs�

�b� Permanent Compromise Attacks� A permanent compromise attack
occurs if� once an attacker compromises S at time t� all future and past
S values are vulnerable to attack�

�c� Iterative Guessing Attacks� An iterative guessing attack uses knowl�
edge of S at time t� and the intervening PRNG outputs� to learn S at
time t� �� when the inputs collected during this span of time are guess�
able �but not known� by the attacker�

�d� Meet�in�the�Middle Attacks� A meet in the middle attack is essen�
tially a combination of an iterative guessing attack with a backtracking
attack� Knowledge of S at times t and t�	� allow the attacker to recover
S at time t� ��

� Attacking Real�World PRNGs

In this section we discuss the strengths and weaknesses of four real�world PRNGs�
the ANSI X���� PRNG� the DSA PRNG� the RSAREF PRNG� and CryptoLib�

��� The ANSI X���� PRNG

The ANSI X���� PRNG �ANSI���Sch�

 is intended as a mechanism to generate
DES keys and IVs� using triple�DES as a primitive� �Of course� it is possible to
replace triple�DES with another block cipher�� It has been used as a general�
purpose PRNG in many applications�

�� K is a secret triple�DES key generated somehow at initialization time� It
must be random and used only for this generator� It is part of the PRNG�s
secret state which is never changed by any PRNG input�

	� Each time we wish to generate an output� we do the following�

�a� Ti � EK�current timestamp��
�b� output�i
 � EK�Ti � seed�i
��
�c� seed�i� �
 � EK�Ti � output�i
��

This generator is in widespread use in banking and other applications�

Direct Cryptanalytic Attack Direct cryptanalysis of this generator appears
to require cryptanalysis of triple�DES �or whatever other block cipher is in use��
As far as we know� this has never been proven� however�



Cryptanalytic Attacks on Pseudorandom Number Generators 	��

Input�Based Attacks The X���� PRNG has a certi�cational weakness �as�
suming a 
��bit block size� with respect to replayed�input attacks�

An attacker who can force the T values to freeze can distinguish the PRNG�s
outputs from random outputs after seeing about 	�� 
��bit outputs� In a sequence
of random 
��bit numbers� we would expect to see a collision after about 	��

outputs� However� with T frozen� we expect a collision from X���� to require
about 	�� outputs� This is a mostly academic weakness� but it may be relevant
in some applications�

Otherwise� knowledge or control of inputs does not appear to weaken the
PRNG against an attacker that doesn�t know K�

State Compromise Extension Attacks The X���� PRNG does not properly
recover from state compromise� That is� an attacker who compromises the X����
triple�DES key� K� can compromise the whole internal state of the PRNG from
then on without much additional e�ort�

Two Design Flaws in X���� There are two �aws in the ANSI X���� PRNG
that become apparent only when the PRNG is analyzed with respect to state
compromise extension attacks�

�� Only 
� bits of the PRNG�s state� seed�i
� can ever be a�ected by the PRNG
inputs� This means that once an attacker has compromisedK� the PRNG can
never fully recover� even after processing a sequence of inputs the attacker
could never guess�

	� The seed�i � �
 value is a function of the previous output� the previous Ti�
and K� To an attacker who knows K from a previous state compromise� and
knows the basic properties of the timestamp used to derive Ti� seed�i� �
 is
simply not very hard to guess�

The Permanent Compromise Attack� Deriving the Internal State from Two Out�

puts Consider an attacker who learns K� Much later� after the seed inter�
nal variable has become totally di�erent� he is given two successive outputs�
output�i� i��
� �He has not seen any intervening outputs from the PRNG�� The
attacker�s goal will be to learn the value of seed�i��
� Of course� one can trivially
mount a 
��bit search and learn the seed value�

However� there is a much more e�ective way to mount this attack� Suppose
that each timestamp value has ten bits that aren�t already known to the attacker�
�This is a reasonable assumption for many systems� For example� consider a
millisecond timer� and an attacker who knows to about the nearest second when
an output was generated�� An attacker with two successive outputs can mount
a meet�in�the�middle attack to discover the internal seed value� requiring about
	�� trial encryptions under the known key K� This works because we have

seed�i� �
 � DK�output�i� �
�� Ti��

seed�i� �
 � EK�output�i
� Ti�

The attacker tries all possible values for Ti� and forms one sorted list of possible
seed�i � �
 values� He then tries all possible values for Ti��� and forms another



	�� John Kelsey� Bruce Schneier� David Wagner� Chris Hall

sorted list of possible seed�i � �
 values� The correct seed�i� �
 value is the one
that appears in both lists�

The Iterative Guessing Attack If an attacker knows seed�i
� and sees some func�
tion of output�i � �
� he can learn seed�i � �
 in almost all cases� This is true
because the timestamp sample will seldom have much entropy� Using our earlier
assumption of ten bits of entropy per timestamp sample� this means the attacker
will need only a ten�bit guess� Note that the attacker needs only to see a function
of the output� not the output itself� This means that a message encrypted with
a key derived from the output value is su�cient to mount this attack� �Note the
di�erence between this and the permanent compromise attack� above� in which
the attacker needs raw PRNG outputs��

Backtracking The attacker can move backwards as easily as forward with the
iterative guessing attack� assuming he can �nd functions of the PRNG outputs�
Alternatively� he may look for the successive pair of directly available PRNG
outputs nearest to the unknown outputs he wants to learn� and mount the per�
manent compromise attack there�

Meet�in�the�Middle Attack Sometimes� a PRNG may generate a large secret
value� and not directly output any bits of it� The attacker may thus know seed�i

and seed�i � �
� but no intervening values� Since this leaves him with �say� ��
bits of entropy� it might be naively assumed that he cannot recover these output
values� However� this isn�t necessarily the case� because a meet�in�the�middle
attack is available� This works as follows�

�� The attacker mounts the attack described above to learn the PRNG state
before and after the run of values that were used together�

	� The attacker carries out a meet�in�the�middle attack� deriving one set of
possible values for seed�i��
 by guessing Ti����i�� and deriving a second list
by guessing Ti����i��� If each sequence of four timestamps holds �� bits of
entropy� this will require 	�� e�ort� The correct value of seed�i � �
 will be
present in both lists� so the seed�i��
 values that match �there will be about
	�� of these� yield the possible sequences of timestamps� and thus� output
blocks�

�� The attacker can try all these possible output sequences until he �nds the
right one� �For example� if the eight output blocks are used as an encryption
key� 	�� trial decryptions will su�ce to eliminate all the false alarms��

Timer Entropy Issues In the above discussion� we have assumed that individual
PRNG inputs have �xed amounts of entropy� and thus� take �xed amounts of
e�ort to guess� In practice� this usually won�t be the case� An RSA keypair
generation might reasonably use two ��	�bit pseudorandom starting points� thus
requiring a total of sixteen PRNG output requests� However� these calls will
almost certainly be made in rapid succession� Unless the timestamp on which
the Ti values are based has a great deal of precision� many of these Ti values



Cryptanalytic Attacks on Pseudorandom Number Generators 	��

will be based on the same or very close timestamp values� This may well make
meet�in�the�middle attacks practical� even though it might normally make sense
to estimate at least three bits of unpredictability per timestamp�

Summary The ANSI X���� key generator appears to be fairly secure from all
attacks that don�t involve either stopping the timer used or compromising the
internal triple�DES key� Replaying any timer input about 	�� times leads to a
certi�cational weakness� a way to distinguish large numbers of X���� PRNG
outputs from a truly random sequence of bits� Compromising the internal triple�
DES key completely destroys the X���� PRNG� it never recovers� even after
getting thousands of bits worth of entropy in its sampled timer inputs��

For systems that use X����� the most obvious way to resist this class of
attack is to occasionally use the current X���� state to generate a whole new
X���� state� including a new K and a new starting seed��
�

��� The DSA PRNG

The Digital Signature Standard speci�cation �NIST��
 also describes a fairly
simple PRNG based on SHA �or� alternatively� a DES construction� which was
intended for generating pseudorandom parameters for the DSA signature algo�
rithm� Since this generator appears to come with an NSA stamp of approval� it
has been used and proposed for applications quite di�erent than those for which
it was originally designed�

The DSA PRNG allows an optional user input while generating keys� but
not while generating DSA signature parameters� For our purposes� though� we
will assume that the PRNG can be given user inputs at any time� as is true with
the other PRNGs discussed in this paper� Each time the DSA PRNG generates
an output� it may be provided with an optional input� Wi� Note that omitting
the input from the PRNG design would guarantee that the PRNG could never
recover from a state compromise�

All arithmetic in this PRNG is allowed to be done modulo 	N � where �
� �
N � ��	� In the remainder of this document� we will assume this modulus to be

� Wei Dai�s Crypto�� library �Dai��� includes an implementation of a X��	� variant
with increased security against seed compromise attacks� That variant is

	� Ti � EK�Ti�� � current timestamp��

�� output�i� � EK�Ti � seed�i���

�� seed�i� 	� � EK�Ti � output�i���

This corresponds to encrypting the timestamps in CBC mode� instead of in ECB
mode as is done in the standard X��	� generator� The timestamp is based on the
program�s CPU usage� and its resolution is platform�dependent� on Linux� it has a

�
	 second resolution� We have not examined this PRNG closely� but we note that
our permanent compromise attack� above� can be extended to work on Crypto���s
X��	� variant at a cost of requiring a ��� search in the attack



	�
 John Kelsey� Bruce Schneier� David Wagner� Chris Hall

�
�� since this is the weakest value �with respect to one attack� that is allowed
by the design�

The DSA PRNG works as follows�

�� The PRNG maintains an ever�changing state� Xi�
	� The PRNG accepts an optional input� Wi� This may be assumed to be zero

if not supplied�
�� The PRNG generates each output as follows�

�a� output�i
 � hash�Wi �Xi mod 	��	�
�b� Xi�� � Xi � output�i
 � � �mod 	��	�

Direct Cryptanalytic Attack If the PRNG�s hash function is good� then
the resulting output sequence appears to be hard to distinguish from a random
sequence� It would be nice� from a system designer�s point of view� to have some
proof of the quality of this PRNG�s outputs based on the collision�resistance or
one�wayness of the hash function� to our knowledge� no such proof exists�

Input�Based Attacks Consider an attacker who can control the inputs sent
into W � If these inputs are sent directly in� there is a straightforward way to
force the PRNG to repeat the same output forever� This has a direct relevance
if this PRNG is being used in a system in which the attacker may control some
of the entropy samples sent into the PRNG� To force the PRNG to repeat� the
attacker forms

Wi � Wi�� � output�i� �
� � �mod 	��	�

This forces the seed value to repeat� which forces the output values to repeat�
Note� however� that this attack fails quickly when the user hashes his entropy
samples before sending them into the PRNG� In practice� this is the natural way
to process the inputs� and so we suspect that few systems are vulnerable to this
attack�

State Compromise Extension Attacks The DSA PRNG doesn�t handle
state compromises as well as we might have liked� but it is much better in this
regard than ANSI X����� Consider an attacker who has somehow compromised
the entire internal state of the PRNG� but then lost track of its inputs and
outputs for a long period� If enough entropy existed in those samples� then the
DSA PRNG will become as strong as ever against attack�

Leaking Input E�ects Just as with ANSI X����� the DSA PRNG leaks the e�ects
of unguessable inputs in its output� Consider an attacker who has compromised
the PRNG�s state� The application feeds in an input that the attacker can�t guess
�e�g�� a sample with �� bits of entropy�� If the attacker sees the next output� he
doesn�t need to guess the sample� because the only e�ect on future outputs this
sample can have is through that output� Note that if the new Xi�� depended
directly on Wi and Xi� this weakness wouldn�t exist� An attacker who knew the
state could still try guessing the entropy sample� but if he did not guess the right
value� he would lose knowledge of the state�



Cryptanalytic Attacks on Pseudorandom Number Generators 	��

The Iterative Guessing Attack This PRNG is vulnerable to an iterative guessing
attack after the state has been compromised� That is� if an attacker knows Xi

and knows that Wi has only 	� bits of entropy� he can mount a 	�	 search� and
have a list of 	�	 �
��bit outputs� one of which is output�i
� Note that the attacker
needs only a function of the output that he can check� such as a DSA signature
made with output�i
 as its secret parameter value� Note also that knowledge of
the correct value for output�i
 also uniquely determines the value of Xi���

Backtracking If an attacker knows Xi� and output�i� �
� then he is clearly able
to backtrack to knowledge of Xi��� This doesn�t immediately gain him much�
since he has to already know output�i � �
 to be able to do this� However� in
some circumstances� this could turn out to be useful�

Filling in the Gaps Consider a situation in which the attacker knows Xi� Xi���
and output�i� �
� but still needs to know output�i
� In this case he can solve for
output�i
 directly�

output�i
 � Xi�� �Xi � 	� output�i� �


Summary The DSA standard�s PRNG appears to be quite secure when used in
the application for which it was designed� DSA signature parameter generation�
However� it doesn�t perform well as a general�purpose cryptographic PRNG be�
cause it handles its inputs poorly� and because it recovers more slowly from state
compromise than it should�

To adapt the DSA PRNG to more general use� the following measures would
eliminate most of the attacks we have observed�

�� Require hashing of all PRNG inputs before applying them�
	� Update X by the following formula�

Xi�� � Xi � hash�output�i
 �Wi�� modulo 	��	

��� The RSAREF PRNG

The PRNG included with RSAREF 	�� is built almost entirely around two op�
erations� MD� hashing and addition modulo 	���� It is the most conceptually
simple design of any we have analyzed� The RSAREF 	�� PRNG consists of the
following�

�� A �	� bit counter� Ci�
	� A method for processing inputs� To process input Xi� we do the following�

Ci�� � Ci �MD��Xi� modulo 	����

�� A method for generating outputs� To generate output output�i
� we do the
following�

output�i
 � MD��Ci� modulo 	���

Ci�� � Ci � � modulo 	����



	�� John Kelsey� Bruce Schneier� David Wagner� Chris Hall

Direct Cryptanalytic Attack Wewill treat MD� as a random function� While
there have been interesting cryptanalytic results on MD� in the last several years�
none of them o�er an obvious way to attack the RSAREF PRNG�

Partial Precomputation Attack There is a straightforward attack on a counter�
mode generator of this kind� an attacker chooses some number of successive
outputs� t� that he expects to see� and then computes the hash of every tth
possible counter value� He is guaranteed to see one of these hashes after t outputs�
at that point� he knows the whole counter value� This attack is impractical for a
�	��bit counter� but it gives an upper bound on the strength of this generator�
With 	�� outputs� an attacker would need to do a 	
� precomputation to mount
the attack� with 	�� outputs� he would need to do a 	�	 precomputation� These
attacks also require a great deal of memory� though time�memory trade�o�s can
reduce that�

Timing Attack The C code to add to and increment the �	��bit internal counter
has the property that it will leak some information about the resulting �	��bit
counter by how many ��bit add operations the computer must execute� This
opens a timing channel for an attacker�

An attacker able to observe the time taken to generate each new output can
learn how many zero bytes are in the counter each time it is incremented� This
is simply a matter of determining how many bytewise additions had to be done
to increment the counter properly� There are two facets to this attack� First�
counter values that are all�zero in their low�order few bytes leak a great deal of
information through the timing channel� these can be considered a kind of weak
state� Second� when combined with the partial precomputation attack discussed
above� the timing information can be used to know when to bother checking the
PRNG output against precomputed table� This is a small advantage�

Input�Based Attacks We note that several input�based attacks are possible
against RSAREF�s PRNG� In particular� chosen input attacks exist against the
RSAREF PRNG� They become quite powerful when the attacker can also moni�
tor precise timing information from the machine on which the PRNG is running�

Shortening the Cycle with a Chosen�Input Attack An attacker can force the
RSAREF PRNG into a shortened cycle by choosing the input value properly�
Let inputn be a chosen input for the PRNG such that MD��inputn� has all ones
in its low�order n bytes� If an attacker requests a long sequence of outputs by
requesting these inputs once per output� he forces the PRNG to cycle much
faster� because the low�order n bytes of the counter are �xed� Thus� for n � ��
the cycle length is shortened to 	�� outputs� Note that the attacker doesn�t know
what those n bytes are� but he does know that they are the same every time the
PRNG uses them to generate another output�

A more powerful way to shorten the cycle takes advantage of the birthday
paradox� Suppose x�� x� are two chosen inputs such that MD��x���MD��x�� has



Cryptanalytic Attacks on Pseudorandom Number Generators 	��

all ones in its low�order n bytes� Then an attacker can feed the periodic sequence
x�� x�� x�� x�� � � � as inputs to the RSAREF PRNG and observe the outputs� with
this procedure� he should see a cycle after about 	�����n outputs� For example�
for the case n � �
� it takes about 	�� o�ine work to �nd suitable x�� x�� if an
attacker uses an e�cient collision search algorithm �see e�g� �OW���OW�

�� this
choice of chosen inputs will force the RSAREF generator to repeat immediately ��

More generally� we can get a simple �time travel� attack� if no new inputs
were mixed in during the last j outputs� then the attacker can send the RSAREF
PRNG back in time j steps by �nding two chosen inputs whose MD� digests
sum to �j �again with the same time complexity��

A Timing 	 Chosen Input Attack A much more powerful attack is available
if the attacker can monitor precise operation timings� and if MD� operates in
constant time� The counter increment operation in the RSAREF source code will
leak how many zero bytes are in the resulting counter value by how many ��bit
additions were required� and thus� by how long the counter increment operation
took� During the counter increment operation �unlike the add operation used to
combine in entropy from a input�� detecting n ��bit additions means that the
resulting low�order n� � bytes are zero�

The attack occurs in two stages� in the precomputation stage� which is done
once� the attacker generates the chosen entropy values he is to use later� and also
generates a table of hashed counter values� In the Execution stage� which is done
each time he wishes to attack some RSAREF PRNG state� he uses those chosen
entropy values to force the internal counter to a value that has its low�order
��� bits set to all zeros� The attack requires 	�� o�ine trial hashes and 	���
chosen�entropy requests�

The precomputation stage works as follows�

�� For n � � to �	� the attacker �nds input	�n� input��n such that

MD��input	�n� � MD��input��n�

is all ones in its low�order n bytes� and that its next lowest order byte is even�
This is expected to take about 	�n e�ort using a collision�search algorithm�

The stage of executing the attack works as follows�

�� The attacker watches increment timing values until he knows that the low�
order byte of the counter is a zero� �He can see this� because of the extra
addition operation� which alters the time taken for the input to be processed��

	� For n � � to �	� he does the following�
�a� He requests update with inputn� This forces the counter value to be all

ones in its low n bytes�

� We note that MD� is designed for only 
� bits of collision�resistance� and so perhaps
might not be expected to provide more than 
� bits of security� However� this PRNG
appears to be in use for generating 	
���bit RSA moduli and establishing triple�DES
keys� so it is apparently being trusted for more than 
� bits of security�



	�
 John Kelsey� Bruce Schneier� David Wagner� Chris Hall

�b� He requests an output value� and observes the time taken for the output
generation� inferring how many times the PRNG executed an ��bit add
operation in the increment� He keeps requesting the update with inputn
and the output� until he gets n�	 ��bit add operations� instead of n���

�c� At this point� he has forced the low n� ��bytes to zeros�
�� At the end of the above loop� the attacker has forced the low�order thirteen

bytes of the counter to zero values� He now carries out a brute�force search
of the remaining three bytes of C� and breaks the PRNG�

State Compromise Extension Attacks

Losing Entropy in Inputs The PRNG�s input�processing mechanism has a po�
tentially dangerous �aw� it is order�independent� That is� updating the PRNG
with A� and then with B� is the same as updating it �rst with B� and then with
A� This �aw was originally discovered by Paul Kocher �Koc���Bal�

� but it is
still worth noting here� The e�ect of this is to make the PRNG more likely to
start in an insecure state� and also to make the PRNG require considerably more
entropy in its inputs before its state is unguessable�

Iterative Guessing The iterative guessing attack works here� That is� if an at�
tacker has compromised Ci� each time the user updates his state with some Xi

guessable by an attacker� and then generates an output� output�i � �
� which
the attacker can see �even if that output is used as a symmetric encryption or
authentication key� or as a key or pad encrypted under a public�key� he can
maintain his knowledge of the PRNG�s state� If the RSAREF PRNG manages
to get updated with an unguessable input between a compromised state and a
visible output� however� then he loses his knowledge of the state�

Backtracking The RSAREF PRNG is vulnerable to backtracking in a straight�
forward way� The iterative guessing attack works exactly as well backward as
forward� and when an attacker doesn�t have new entropy samples� backtracking
is exactly as easy as walking the generator forward�

��� Summary

The RSAREF 	�� PRNG is vulnerable to chosen�input attacks which can force
it into short cycles� chosen�input timing attacks which can reveal its secret state�
and iterative guessing and backtracking attacks which can allow an attacker to
extend his knowledge of the secret state backward and forward through time�
It also must be used very carefully� due to the fact that inputs a�ect it in an
order�independent way�

To minimize the danger of these attacks� we make the following recommen�
dations�

�� Guard against chosen�input attacks in the design of the system that uses the
RSAREF PRNG�



Cryptanalytic Attacks on Pseudorandom Number Generators 	�	

	� Be careful using the RSAREF PRNG in situations where timing information
might be leaked�

�� Append a current timestamp and�or a counter to all inputs before sending
them into the PRNG� to eliminate the order�independence of PRNG inputs�

��	 Cryptolib
s PRNGs

Cryptolib is a cryptographic library developed primarily by Jack Lacy� Donald
Mitchel� William Schnell� and Matt Blaze� and initially described in �LMS��
�
The primary source of randomness in Cryptolib is TrueRand� a mechanism for
pulling �hopefully� unpredictable values out of the clock skew between di�erent
timers available to the system� These values can be used directly �though the
documentation warns callers not to rely on more than �
 bits of entropy per
�	�bit word�� or can be used to seed one of the available pseudorandom number
generators� fsrRand or desRand�

fsrRand and desRand are not PRNGs by our de�nition� but rather are stream
ciphers� That is� they do not have de�ned mechanisms for processing additional
inputs �on the �y�� but rather are seeded once and then run to generate pseudo�
random numbers� This is not unreasonable� given the assumption that TrueRand
delivers truly random bits as needed the system designer can simply generate a
whole new state every few minutes� and otherwise needn�t worry about entropy
collection� When combined� TrueRand and fsrRand or TrueRand and desRand
can be analyzed in the same way as the other PRNGs in this paper� That is� we
assume that the system initializes the state of either fsrRand or desRand using
TrueRand� and uses one of these mechanisms to generate whatever pseudoran�
dom values are needed� and that the whole mechanism is periodically reinitialized
from TrueRand� TrueRand is thus the source of PRNG inputs� and fsrRand or
desRand is the source of PRNG outputs�

Description of Algorithms

fsrRand fsrRand is described in �LMS��
� Its secret state consists of a secret
DES key� K� and an array of seven �	�bit values� X	���� organized as a shift�
register� Each time an output is required� two of the �	�bit values are taken and
concatenated to form a 
��bit value� This value is encrypted with DES under
the secret key� The resulting ciphertext is split into two �	�bit halves� one half
is XORed back into one of the �	�bit values �in the same way a shift register
value might be updated�� the other half is output� The register is then shifted� so
that two new values will be used to generate the next output� A more complete
description can be found in �LMS��
�

desRand desRand appears in the Cryptolib source code �version ��	�� Its secret
state consists of a 
��bit counter� C� a secret three�key triple�DES key� K� a
secret 	��byte pre�x� P � and a secret 	��byte su�x� S� Each new �	�bit output
is generated as follows�



	�� John Kelsey� Bruce Schneier� David Wagner� Chris Hall

�� Use the SHA� hash function to compute hash�P�C� S��

	� Use triple�DES to compute EK�C��

�� XOR together the high�order bytes of the hash value with the result from
the encryption� output the high�order four bytes of this result�

�� Set C � C � ��

Direct Cryptanalysis

fsrRand There is a direct cryptanalytic attack on fsrRand requiring 	�
 e�ort�
The attack uses the fact that� once the attacker knows K and any one PRNG
output� he can build a table of the 	�� possible halves of the DES ciphertext
that was used for feedback� For each value� he gets a whole 
��bit ciphertext�
which he can decrypt into a 
��bit plaintext� yielding both �	�bit values from
the array�

�� The attacker guesses the key� K�

	� The attacker gets the output when the shift register pairs used are �Xi� Xj��
�Xj � U �� and �V�Xi� for some other U and V � In the pair �A�B�� A will be
updated with the feedback�

�� For the �rst two output values� the attacker computes all 	�� possible feed�
back values �the �	�bit half of the DES ciphertext that was not output��
This allows him to compute Xj � For each K guess� we expect there to be
only one pair of feedback guesses that leads to the same Xj value�

�� The attacker uses the feedback value from the �rst output �learned in the
previous

step� to compute what the new Xi value should be� He then mounts another
	�� guess of the feedback value for the third step� and uses this to derive the
current Xi and other register value� If he has the wrong K value� he expects
not to �nd any matching value for Xi� if he has the right K value� he expects
to �nd one value that agrees�

This demonstrates a certi�cational weakness in fsrRand� at most� the compu�
tational requirements are very probably outside the reach of any attacker right
now��

desRand We are not aware of any direct cryptanalytic attacks available on
desRand� The desRand design appears to us to be very conservative� and un�
likely to be attacked in the future� Note that nothing like the timing attack on
RSAREF�s PRNG is available here� despite the use of a counter�

� It could be argued that since DES has only �
 bits of strength� this construction
was intended for no more strength than that� We �nd this argument unconvincing�
fsrRand was clearly an attempt to get more than �
 bits of strength from DES�
otherwise� DES in OFB� or counter�mode would have been used�



Cryptanalytic Attacks on Pseudorandom Number Generators 	��

Input�Based Attacks These systems accept input only once� and accept it
directly from TrueRand or a bu�er provided by the caller� This �re�initializes the
PRNG� In the context of the following discussion� a known�input attack means
that the attacker has learned how to predict some TrueRand values� Clearly� if
the attacker can know all the TrueRand values� there is no cryptanalysis to be
performed� An interesting result occurs if the PRNG becomes weak with only a
small number of predictable TrueRand values�

fsrRand An attacker who knows any two X values used as a plaintext block
for DES can mount a keysearch attack� and reduce the possible number of keys
to about 	��� He must then wait until the �rst of those values makes it into
the DES input again� and carry out an additional 	�� search per candidate key�
this will determine the key uniquely� This requires a total of about 	�� trial
encryptions� and about 	�� blocks of memory� From this point� the attacker can
quickly recover the remaining state of the PRNG� An attacker who can guess
any two such X values with 	t work can mount the same attack with 	���t trial
encryption and 	�� blocks of memory�

An attacker who knows the key� K can recover the remaining PRNG state
with a 	�� e�ort� using the same method described for direct cryptanalysis of
the PRNG� above�

A more subtle concern might involve �aws in the quality of seed values from
TrueRand� Consider an attacker who knows� for a given system� that only 	�

�	�bit outputs from TrueRand are possible� If fsrRand is reseeded directly from
TrueRand� this leads to fairly simple attack� fsrRand�s DES key must come
from TrueRand� and the attacker can quickly list all possible �
�bit values that
could have been generated� getting about 	�� of them� He can then carry out
the attack described above� In general� if there are 	m possible values for the
fsrRand�s DES key to get� then the attack will take 	m��� trial decryptions� This
is an improvement for m � �
� naturally�

Note that this demonstrates that fsrRand doesn�t pro�t from the full entropy
it receives during reseeding� In the example above� fsrRand would get � bits of
entropy per �	�bit word used to reseed it� for a total of ��	 bits of entropy�

desRand We are aware of no reasonable known�input attacks on desRand� An
attacker with knowledge of C� P � and S� but not K� appears to have no chance
to defeat the PRNG� similarly� and attacker with knowledge of C and K� but
not P or S� appears to have no chance to defeat the PRNG�

State Compromise Extension Attacks The desRand and fsrRand gener�
ators don�t process inputs� and so can never recover from state compromise�
However� if TrueRand is used to generate a whole new state every few minutes�
the scope of a state compromise is made very small� It is worth noting that
both desRand and fsrRand allow an attacker in possession of their current state
to go backward as well as forward� learning all values ever generated by them�
That is� if the PRNG state ever is compromised� the attacker can learn every



	�� John Kelsey� Bruce Schneier� David Wagner� Chris Hall

output ever generated by that state� If the system is designed to reinitialize its
PRNG with TrueRand values once every hour� then this means a compromise
of all PRNG outputs for that hour� If the system reinitializes the PRNG more
frequently� then the attacker learns fewer outputs� if less frequently� then the
attacker learns more outputs�

Summary Assuming TrueRand is a good source of unpredictable values� the
PRNGs built by putting it together with either fsrRand or desRand appear to
be of reasonable strength� but desRand appears to be more resistant to various
attacks than fsrRand� Note� however� that nearly all of these attacks require
keysearching DES or doing some similarly computationally expensive task�

We make the following recommendations�

�� System designers should verify both by statistical analysis and by an anal�
ysis of their target systems� designs whether TrueRand will reliably provide
unpredictable numbers on their systems� �This holds true for every source
of unpredictable inputs� for every PRNG��

	� In environments where TrueRand�s outputs may be suspect �perhaps due
to malicious actions by the attacker�� we recommend that desRand� rather
than fsrRand� be employed�

� Summary� Conclusions� and Open Problems

In this paper� we have argued for treating PRNGs as their own kind of cryp�
tographic primitive� distinct from stream ciphers� hash functions� and block ci�
phers� We have discussed the requirements for a PRNG� developed abstract at�
tacks against an idealized PRNG� and then demonstrated those attacks against
four real�world PRNGs�

��� Guidelines for Using Vulnerable PRNGs

In the earlier sections� we discussed possible countermeasures for many of the
attacks we had developed� Here� we propose a list of ways to protect a PRNG
against each of the classes of attacks we discussed�

�� Use a hash function to protect vulnerable PRNG outputs� If a
PRNG is suspected to be vulnerable to direct cryptanalytic attack� then
outputs from the PRNG should be preprocessed with a cryptographic hash
function� Note that not all possible �awed PRNGs will be secure even af�
ter hashing their outputs� so this doesn�t guarantee security� but it makes
security much more likely�

	� Hash PRNG inputs with a counter or timestamp before use� To
prevent most chosen�input attacks� the inputs should be hashed with a times�
tamp or counter� before being sent into the PRNG� If this is too expensive
to be done every time an input is processed� the system designer may want
to only hash inputs that could conceivably be under an attacker�s control�



Cryptanalytic Attacks on Pseudorandom Number Generators 	��

Fig� �� Generalized PRNG� with periodic reseeding

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

generate
pseudo�random outputs

seed

unpredictable inputs

reseed

collect

pool

�� Occasionally generate a new starting PRNG state� For PRNGs like
ANSI X����� which leave a large part of their state unchangeable once ini�
tialized� a whole new PRNG state should occasionally be generated from the
current PRNG� This will ensure that any PRNG can fully reseed itself� given
enough time and input entropy�

�� Pay special attention to PRNG starting points and seed �les� The
best way to resist all the state�compromise extension attacks is simply never
to have the PRNG�s state compromised� While it�s not possible to guarantee
this� system designers should spend a lot of e�ort on starting their PRNG
from an unguessable point� handling PRNG seed �les intelligently� etc� �See
�Gut��
 for several ways that this can be done��

��� Guidelines for Designing a PRNG

Having described a set of possible attacks on PRNGs� it is reasonable to try
to discuss ways to develop new PRNGs that will resist them� We propose the
following guidelines for developing new PRNGs�

�� Base the PRNG on something strong� The PRNG should be designed
so that a successful direct cryptanalytic attack implies a successful attack



	�
 John Kelsey� Bruce Schneier� David Wagner� Chris Hall

on some cryptographic primitive that�s believed to be strong� Ideally� this
would be proven�

	� Make sure the whole PRNG state changes over time� The whole
secret internal state should change over time� This prevents a single state
compromise from being unrecoverable�

�� Do �catastrophic reseeding
 of the PRNG� The part of the internal
state that is used to generate outputs should be separate from the entropy
pool� The generation state should be changed only when enough entropy
has been collected to resist iterative guessing attacks� according to a con�
servative estimate� Figure � depicts a possible architecture for implementing
catastrophic reseeding�

�� Resist backtracking� The PRNG should be designed to resist backtrack�
ing� Ideally� this would mean that output t was unguessable in practice to
an attacker who compromised the PRNG state at time t � �� It may also
be acceptable to simply pass the PRNG�s state through a one�way function
every few outputs� limiting the possible scope of any backtracking attack�

�� Resist Chosen�Input Attacks� The inputs to the PRNG should be com�
bined into the PRNG state in such a way that� given an unguessable sequence
of inputs� an attacker who starts knowing the PRNG state but not the input
sequence� and an attacker who starts knowing the input sequence but not
the state� are both unable to guess the ending state� This provides some pro�
tection against both chosen�input and state compromise extension attacks�


� Recover from Compromises Quickly�The PRNG should take advantage
of every bit of entropy in the inputs it receives� An attacker wanting to learn
the e�ect on the PRNG state of a sequence of inputs should have to guess
the entire input sequence�

��� Open Problems

In this paper� we�ve begun the process of systematically analyzing PRNGs� How�
ever� there are several interesting areas we haven�t dealt with here�

�� Dedicated PRNG Designs� Early in this paper� we made the assertion
that PRNGs are a distinct kind of cryptographic primitive� Existing PRNGs
are almost all built out of existing cryptographic primitives� This raises the
question of whether it makes sense to build dedicated PRNG algorithms�
Typically� the motivation for building a dedicated algorithm is to improve
performance� Are there applications where the PRNG�s performance is a
serious enough issue to merit a new algorithm!

	� Security Proofs� Since most currently��elded PRNGs are based on exist�
ing cryptographic primitives� it would be nice to see some security proofs�
demonstrating that mounting some class of attack on the PRNG is equivalent
to breaking an underlying block cipher� stream cipher� or hash function�

�� Starting Points� One likely way for an attacker to compromise the PRNG
state is for the PRNG to be started in a guessable state� This raises the issue
of how a designer can ensure that his system always starts its PRNG at an



Cryptanalytic Attacks on Pseudorandom Number Generators 	��

unguessable state� We would like to see more discussion of these issues in
the literature�

�� Seed Compromise� We would like to see more discussion of how to resist
state compromises in �elded systems� This is an enormous practical issue�
which has received relatively little attention in the literature�

�� Analyzing Other PRNGs� There are many PRNGs we have not discussed
here� mainly due to time and space constraints� In particular� we would like to
see a complete discussion of the class of PRNG used in PGP and Gutmann�s
Cryptlib� among other places� These PRNGs �t into our model� but look
very di�erent than any of the systems we have reviewed here� they typically
maintain a considerably larger state �or �pool��� in hopes of accumulating
large amounts of entropy�


� Developing New PRNGs� We have discussed �aws in existing PRNGs�
We are interested in seeing new designs proposed that resist our attacks� A
PRNG of our own is currently under development� details will be posted to
http���www�counterpane�com as they become available�

� Acknowledgements

The authors would like to thank Greg Guerin� Peter Gutmann� and Adam
Shostack for helpful conversations and comments on early drafts of this pa�
per� and Ross Anderson and several anonymous referees for helpful suggestions
on improving the paper�s presentation�

References

�Agn��� G�B� Agnew� �Random Source for Cryptographic Systems�� Advances in
Cryptology � EUROCRYPT ��� Proceedings� Springer�Verlag� 	���� pp�
����	�

�ANSI��� ANSI X ��	� �Revised�� �American National Standard for Financial In�
stitution Key Management �Wholesale��� American Bankers Association�
	����

�Bal�
� R�W� Baldwin� �Proper Initialization for the BSAFE Random Number
Generator�� RSA Laboratories Bulletin� n� �� �� Jan 	��
�

�Dai��� W� Dai� Crypto�� library�
http���www�eskimo�com��weidai�cryptlib�html�

�DIF��� D� Davis� R� Ihaka� and P� Fenstermacher� �Cryptographic Random�
ness from Air Turbulience in Disk Drives�� Advances in Cryptology �

CRYPTO ��� Proceedings� Springer�Verlag� 	���� pp� 		��	�
�
�ECS��� D� Eastlake� S�D� Crocker� and J�I� Schiller� �Randomness Requirements

for Security�� RFC 	��
� Internet Engineering Task Force� Dec� 	����
�FMK��� R�C� Fairchild� R�L� Mortenson� and K�B� Koulthart� �An LSI Ran�

dom Number Generator �RNG��� Advances in Cryptology� Proceedings

of CRYPTO ���� Springer�Verlag� 	���� pp� �
����
�
�Gud��� M� Gude� �Concept for a High�Performance

Random Number Generator Based on Physical Random Noise�� Frequenz�
v� ��� 	���� pp� 	���	�
�



	�� John Kelsey� Bruce Schneier� David Wagner� Chris Hall

�Gut��� P� Gutmann� �Software Generation of Random Numbers for Crypto�
graphic Purposes�� Proceedings of the 	��� Usenix Security Symposium�
	���� to appear�

�Koc��� P� Kocher� post to sci�crypt Internet newsgroup �message�ID
pckDIr�Ar�L�z�netcom�com�� � Dec 	����

�LMS��� J�B� Lacy� D�P� Mitchell� and W�M� Schell� �CryptoLib� Cryptography in
Software�� USENIX Security Symposium IV Proceedings�USENIX Asso�
ciation� 	���� pp� ������
�

�NIST��� National Institute for Standards and Technology� �Key Management Us�
ing X��	��� NIST FIPS PUB 	�	� U�S� Department of Commerce� 	����

�NIST��� National Institute for Standards and Technology� �Secure Hash Stan�
dard�� NIST FIPS PUB 	�
� U�S� Department of Commerce� 	����

�NIST��� National Institute for Standards and Technology� �Digital Signature Stan�
dard�� NIST FIPS PUB 	�
� U�S� Department of Commerce� 	����

�OW��� P�C� van Oorschot and M�J� Wiener� �Parallel collision search with ap�
plication to hash function and discrete logarithms�� 	nd ACM Conf
 on

Computer and Communications Security� New York� NY� ACM� 	����
�OW�
� P�C� van Oorschot and M�J� Wiener� �Improving implementable meet�

in�the�middle attacks by orders of magnitude�� CRYPTO ���� Springer�
Verlag� 	��
�

�Plu��� C� Plumb� �Truly Random Numbers� Dr
 Dobbs Journal� v� 	�� n� 	��
Nov 	���� pp� 		��		��

�Ric��� M� Richterm �Ein Rauschgenerator zur Gweinnung won quasi�idealen Zu�
fallszahlen fur die stochastische Simulation�� Ph�D� dissertation� Aachen
University of Technology� 	���� �In German��

�RSA��� RSA Laboratories� RSAREF cryptographic library� Mar 	����
ftp���ftp�funet�fi�pub�crypt�cryptography�asymmetric�rsa�

rsaref��tar�gz�
�SV�
� M� Santha and U�V� Vazirani� �Generating Quasi�Random Sequences

from Slightly Random Sources�� Journal of Computer and System Sci�

ences� v� ��� 	��
� pp� ������
�Sch�
� B� Schneier� Applied Cryptrography� John Wiley � Sons� 	��
�
�Zim��� P� Zimmermann� The O
cial PGP User�s Guide� MIT Press� 	����


