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ABSTRACT
Secure sensor network communication protocols need to provide
three basic properties: data secrecy, authentication, and replay pro-
tection. Secure sensor network link layer protocols such as TinySec
and Zigbee enjoy significant attention in the community. However,
TinySec achieves low energy consumption by reducing the level
of security provided. In contrast, Zigbee enjoys high security, but
suffers from high energy consumption.

MiniSec is a secure network layer that obtains the best of both
worlds: low energy consumption and high security. MiniSec has
two operating modes, one tailored for single-source communica-
tion, and another tailored for multi-source broadcast communica-
tion. The latter does not require per-sender state for replay pro-
tection and thus scales to large networks. We present a publicly
available implementation of MiniSec for the Telos platform, and
experimental results demonstrate our low energy utilization.

1. INTRODUCTION
Considerable attention had been paid to developing secure sensor

network communication protocols. Unfortunately, existing tech-
nologies, such as TinySec and ZigBee, are unable to achieve low
energy consumption while simultaneously providing the three im-
portant properties of secure communication: secrecy, authentica-
tion, and message replay protection.

TinySec, one of the most popular secure link layer protocols,
achieves low energy consumption and memory usage. Unfortu-
nately, it also sacrifices on the level of security. First, it employs a
single network-wide key, such that every node in the network can
masquerade as any other node. Second, TinySec does not attempt
to protect against replay attacks.

ZigBee provides a higher level of security than TinySec since it
is not restricted to using a network-wide key. By keeping a per-
message counter as the Initialization Vector (IV), ZigBee protects
against message replay attacks. However, ZigBee is an expen-
sive protocol. First, ZigBee sends the entire 8-byte IV with each
packet, resulting in high communication overhead and high energy
consumption by the radio. Also, ZigBee requires per-sender state,
which consumes a large amount of memory as the number of par-
ticipants increases.

In this paper, we present MiniSec, a secure network layer pro-
tocol for wireless sensor networks. We achieve the best of both

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

worlds: lower energy consumption than TinySec, and a high level
of security like ZigBee. We accomplish this feat by using three
techniques. First, we employ a block cipher mode of operation that
provides both secrecy and authenticity in only one pass over the
message data. Second, we only sending a few bits of the IV, while
retaining the security of a full-length IV. In contrast, previous ap-
proaches require two passes over the plaintext (one for encryption
and one for authentication) and transmission of the full-length IV.

Third, we exploit the fundamental distinctions between unicast
and broadcast communication, providing two energy-optimized com-
munication modes. In unicast-mode, we reduce the radio’s energy
consumption by using synchronized counters and performing ex-
tra computation. Although radically different from conventional
networking protocols, such a scheme is desirable in this setting be-
cause of the stringent energy constraints of sensor networks. In
broadcast-mode, we employ a Bloom-filter based replay protection
mechanism that precludes per-sender state.

Such improvement in energy consumption comes at the cost of
a modest increase in memory size, which is a desirable tradeoff.
Note that TinySec had been developed for the Mica2 motes in 2003,
where memory constraints were much more stringent than they are
today. Current trend in mote development reveals that memory size
has been consistently increasing, while energy constraint remains
as stringent as ever. Thus, the design tradeoffs in MiniSec makes it
well-suited for current state-of-the-art sensor devices.

We present MiniSec as a complete solution to secure sensor net-
work communication, and implement the protocol for the Telos
motes [11]. To the best of our knowledge, MiniSec is the first gen-
eral purpose security protocol available for this popular platform.
Furthermore, MiniSec’s source code is publicly available, and it
can be easily ported to other platforms.

We evaluate MiniSec’s performance against TinySec [7]. Our re-
sults show that under most circumstances, our energy consumption
of security related tasks is about 1

3 of the energy consumption in
TinySec, yet we are still able to provide a higher level of security.

The main contributions of this paper are:
• We introduce MiniSec, the first fully-implemented general

purpose security protocol for the Telos sensor motes, the lat-
est generation of sensor motes from the Berkeley family.

• MiniSec simultaneously achieves low energy overhead and
a high level of security (data secrecy, authentication, and re-
play protection). This is the first protocol to achieve replay
protection in the sensor network broadcast setting.

• We measure the performance of MiniSec and show that under
most real-world scenarios, MiniSec outperforms other com-
parable systems.

• The source code of MiniSec is publicly available. We pro-
vide a turnkey system for sensor network developers that
seamlessly integrates into TinyOS applications.
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2. BACKGROUND
MiniSec uses two primitives to achieve low energy consumption:

OCB encryption [13] and Bloom Filters [1]. We briefly review both
technologies.
OCB. OCB, or Offset CodeBook, is a block-cipher mode of op-
eration that features authenticated encryption. Given a plaintext of
arbitrary length, OCB generates a ciphertext that simultaneously
provides authenticity and data secrecy. OCB is provably secure,
and is parameterized on a block cipher of blocksize n and a tag of
length τ . τ is defined such that an adversary is able to forge a valid
ciphertext with probability of 2−τ .

OCB operates as follows. Let M be an arbitrary length message
that needs to be encrypted and authenticated, H be an optional mes-
sage header that only requires authentication, K be the encryption
key (which is the key used by the underlying block cipher), and N
be a non-repeating nonce. First, OCB takes in M, K, and N, and
generates the ciphertext core C. Next, using the plaintext M, ci-
phertext C, and H, OCB generates tag of length τ . The final output
of OCBK(N,M,H) is the tuple (C,tag). To decrypt a ciphertext
(C,tag), the receiver performs the reverse process on C to arrive at
plaintext M. Then, the receiver ensures that the tag is as expected.
If the receiver computes a different tag than the one in the cipher-
text, the ciphertext is considered to be invalid.

OCB is especially well suited for sensor nodes. First, OCB
avoids ciphertext expansion. Given an arbitrary length messages
M, OCB generates ciphertext with length of |M|+ τ . Disregard-
ing the tag, the ciphertext core has the same length as the plaintext.
This property cannot be achieved in most other encryption modes
without padding and/or ciphertext stealing.

Second, OCB has superior performance, since it provides se-
crecy and authenticity in one pass of the block cipher. TinySec and
ZigBee provide the same guarantees by encrypting and then au-
thenticating the ciphertext. Consequently, the energy consumption
is doubled, since they require one pass of CBC-encryption to pro-
vide secrecy, and another pass of CBC-MIC to provide authenticity.
By comparing the number of block cipher calls, we see that OCB
only requires d |M|

n e block cipher calls [13], while CBC-encryption
and CBC-MIC together take between 2d |M|

n e+ 1 to 2d |M|+1
n e+ 4

block cipher calls, depending on padding (recall that M is the mes-
sage, and n is the blocksize).
Bloom filter. The Bloom filter is a space-efficient data structure
used for fast probabilistic membership tests [1]. It features two
functions: membership addition and membership query. It is possi-
ble to have false positives, where a query returns true even though
the element is not in the set. However, false negatives, where a
query returns false when the element is in fact a member of the set,
is not possible.

A Bloom filter requires an array of m bits and k hash functions.
The array is first initialized to all zeros. The hash function maps
an element to one of the m array positions. To add an element,
the element is hashed by all k hash functions, and the k subsequent
array positions are set to one. To query for an element, we use the
k hash functions to arrive at the k bit positions. If any of them were
zero, then the element is not in the set. If all bits were set to one,
then either the element is indeed in the set, or all k bits were set to
one by insertion of other elements. The latter demonstrates a false
positive. The more elements are added to a Bloom filter, the higher
the probability of a false positive.

Bloom filters are well suited in the severe resource-constrained
environment of sensor nodes because of space and time advantages.
The space advantage is apparent, since it only requires O(n logn)
bits to store a fingerprint of n messages. Bloom filters also exhibit
the desirable property that adding and querying an element occurs
in constant time.

3. PROBLEM DEFINITION

3.1 Assumptions
We assume that symmetric keys are already established between

each sender and its receivers. We recommend a different key for
each sender, but our protocol is by no means restricted to such a
setup. We also assume a secure routing protocol that can route the
packet to the intended destination with non-zero probability.

A list of sensor network keying and routing protocols is in Sec-
tion 9. The goal of MiniSec is to leverage such existing primitives
to provide for secure node-to-node communication at low energy
cost.

3.2 Attacker Model
Sensor nodes rely on radio broadcasts for communication. We

thus adopt the Dolev-Yao attacker model, where an attacker can
overhear, intercept, alter, or inject any messages into the radio com-
munication channel.

We do not restrict attackers to computationally bounded motes.
By using sufficiently long symmetric keys (i.e., 80 bits), we can
defend against brute force attacks by a powerful adversary [?].

3.3 Desired Properties
We now design the desired properties of a secure sensor network

communication architecture.
Data Authentication. Data authentication empowers legitimate
nodes to verify whether a message indeed originated from another
legitimate node and was unchanged during transmission. As a re-
sult, illegitimate nodes should not be able to participate in the net-
work, either by injecting their own messages or by modifying le-
gitimate messages.

Data authentication is one of the basic building blocks of a secure
system. For example, nodes need to verify commands from the
base station, and a base station needs to authenticate whether the
data readings indeed originate from valid nodes.

Typically, data authentication is achieved by the sender comput-
ing a message-authentication code (MAC) over the payload and ap-
pending that to the message. Upon reception, the packet is consid-
ered to be valid if the receiver recomputes the MAC and it matches
with the received MAC. ZigBee, TinySec and SNEP provide data
authentication by using the CBC-MAC function, using Skipjack or
RC5 as the block cipher.
Data Secrecy. Data secrecy, another basic requirement of any se-
cure communication system, prevents unauthorized parties from
discovering the plaintext. It is typically accomplished by setting
up an encrypted communication channel.

Encryption schemes can be evaluated based on different criteria.
A strong level of security is the notion of semantic security [?, ?].
Informally, it means that an eavesdropper cannot gain any informa-
tion about the plaintext, even after observing many encryptions of
the same plaintext. Under most circumstances, this can be accom-
plished through probabilistic encryption schemes that are resilient
to chosen-plaintext attacks [?].

In secure communication protocols, data secrecy is provided by
a cryptographic encryption function. Furthermore, to guarantee se-
mantic security, encryption functions require an unique initializa-
tion vector (or IV) for each encryption to add variation to the ci-
phertext.

TinySec uses CBC-encryption, while SNEP and ZigBee employ
counter-mode. Both schemes provide for semantic security us-
ing an IV. MiniSec provides both authentication and secrecy using
OCB-en-cryption, while semantic security is provided by using a
counter.
Replay Protection. A replay attack is when attackers record en-
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tire packets and replay them at a later time. TinySec is not resilient
to such an attack, while SNEP provides protection using a counter.
Section 5 and Section 6 respectively demonstrate how MiniSec pro-
vides replay protection in the unicast and broadcast setting.
Freshness. Sensor nodes often stream time-varying measurements.
Consequently, providing some guarantee of message freshness is an
important property. MiniSec provides a mechanism to guarantee
weak freshness, where a receiver can determine a partial ordering
over received messages. Note that ZigBee and SNEP provide weak
freshness, while TinySec does not provide any form of freshness.
Low Energy Overhead. Energy is an extremely scarce resource
in sensor nodes. Thus, it is of paramount importance for the secu-
rity protocol to retain a low energy overhead.

In particular, radio communication consumes the most amount of
energy. On the Telos platform, sending a single byte is equivalent
to executing about 4720 instructions. Thus, to reduce energy con-
sumption, it is imperative to minimize communication overhead.

Although public key cryptography had enjoyed major advance-
ment recently, it is still 3–4 orders of magnitude more expensive
than symmetric cryptography. Therefore, security protocols that
only employ symmetric cryptography are preferred.
Resilient to Lost Messages. The relatively high occurrence of
dropped packets in wireless sensor networks requires a design that
can remain in operation despite high message lost rate.

4. MINISEC OVERVIEW
We present MiniSec, a secure network layer that satisfies all the

security properties outlined in Section 3. MiniSec has two operat-
ing modes: unicast and broadcast, henceforth known as MiniSec-U
and MiniSec-B. Both schemes employ the OCB-encryption scheme
to provide for data secrecy and authentication (see Section 2), while
using a counter as a nonce to guarantee semantic security. The two
modes differ in the way they manage the counters. In MiniSec-
U, we employ synchronized counters, which require the receiver to
keep a local counter for each sender. MiniSec-B has no such re-
quirement for per-sender state. Instead, meta-data to prevent replay
attacks is stored in a Bloom Filter. Both schemes will be explained
in detail in Sections 5 and 6, respectively.
Notation. We use the following notation to describe our protocol
and cryptographic operations:

A,B Communicating nodes.
KAB OCB Encryption key used for communi-

cation channel from A to B. Note that
key KBA would be used to encrypt data
from B to A.

CAB Monotonically increasing counter
corresponding to KAB

(C,tag) = Authenticated encryption under OCB,
OCBK(N,M,H) where M is the plaintext message, H is

an optimal message header that only
needs to be authenticated, N is a 64-bit
nonce, and K is the OCB encryption key.

NA A nonce generated by device A.

5. MINISEC-U: UNICAST COMMUNICA-
TION

5.1 Motivation
Both TinySec and SNEP had developed solutions for providing

secure communication in the unicast setting, where we have one
sender A and one receiver B. Although both protocols attempt
to minimize energy consumption, there are aspects of both that
demonstrate inefficient energy usage. TinySec uses an encrypted
counter as part of its IV. This counter is appended to each message,

resulting in a 2-byte overhead per packet. SNEP, on the other hand,
conserves radio energy consumption by not sending the counter
with each packet. Instead, the counter is kept as internal state by
both sender A and receiver B. However, dropped packets would
cause the counters to become inconsistent, in which case both par-
ties need to participate in an expensive counter resynchronization
protocol.

TinySec and SNEP represent two extremes: sending the entire
counter as opposed to not sending the counter at all. The key insight
behind MiniSec-U is that optimal energy usage can be achieved by
combining the best of both approaches. Similar to SNEP, MiniSec-
U maintains a synchronized monotonically increasing counter CAB
between the sender and the receiver. However, MiniSec-U includes
the last x bits of the counter along with each packet. We call this
the LB Optimization (Last Bits), and the last x bits of the counter
is called the LB value. By keeping x low, the radio’s energy con-
sumption is almost as low as not sending the counter at all.

The LB optimization addresses one of the main flaws of SNEP,
which is the high probability or running the expensive counter resyn-
chronization protocol when packets are dropped. Instead, the LB
optimization allows resynchronization to occur “implicitly.” Since
sender A sends the last x bits of the counter, receiver B can com-
pare the last x bits of its local counter CAB to the LB value appended
to the packet. As long as there are fewer then 2x dropped packets
since the last successfully received packet, the receiver can imme-
diately increment his counter such that the final x bits match the
LB value. For example, let x be 3, and the counter CAB be synchro-
nized on both parties at 0. Sender A sends six packets, but the first
five packets were dropped. Receiver B successfully receives the 6th

packet, which was sent using CAB of 5. B would thus immediately
increment hits counter CAB to 5 and attempt decryption.

The LB optimization is useful even if more than 2x packets were
dropped, since the receiver could simply continue to increment CAB
by 2x and reattempt decryption. In practice, the receiver B would
set a maximum such that after y consecutive failed decryptions, B
would run the expensive counter resynchronization protocol.

Lastly, by specifying the parameter x, we could arbitrary lower
the probability of reverting to the resynchronization protocol. By
monitoring the quality of the channel, it is possible to analytically
solve for the optimal values of x and y such that energy consump-
tion is minimized. We demonstrate this in Section 5.3.

5.2 Protocol Description
In this section, we describe the mechanics of MiniSec-U, in the

context of sender A and receiver B. In MiniSec-U, each pair of
sender and receiver share two keys, KAB to protect communication
from A to B, and KBA to protect communication from B to A. Fur-
thermore, a monotonically increasing counter is assigned to each
key (CAB used to for key KAB), and is kept as internal state by both
sender and receiver.

We employ OCB-encryption with the packet payload as M, packet
header as H, counter CAB as the nonce, and KAB as the encryption
key. We selected Skipjack to be the underlying block cipher with a
blocksize of 64 bits. Since OCB requires the nonce to be the same
length as the block size, counter CAB can also be 64 bits. Alterna-
tively, the counter could be of shorter length, and be padded out to
64-bits when requested by the OCB encryption function. The sec-
ond parameter of OCB is the tag length, which we set to 32 bits, a
length suitable for security in retail banking [13]. Finally, receiver
B needs to maintain counter CAB. Upon receiving and decrypting a
valid packet, B would increment its local copy of CAB accordingly
so that it remains consistent with A.

The strictly monotonically increasing counter CAB guarantees se-
mantic security. Even if the sender A repeatedly sends the same
message, each ciphertext is different since a different counter value
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is used. Also, once a receiver observes a counter value CAB, it re-
jects packets with an equal or smaller counter value. Therefore, an
attacker cannot replay any packet that the receiver has previously
received.

There are three interesting issues about counter CAB. First, be-
cause of the nature of OCB encryption, the counter itself is not a
secret. Even if an attacker knows the counter, the specified security
properties are not compromised. This contrasts to CBC encryption
used by TinySec, which requires a random and unpredictable nonce
as the IV. Second, in order to provide semantic security, the counter
cannot wrap around. A longer counter achieves higher level of se-
curity, yet adds additional overhead to each packet. Since we do
not append the entire counter to each packet, MiniSec enjoys the
security benefits of a longer counter without paying the communi-
cation cost. This allows us to use a 32-bit or longer counter while
TinySec uses a 16-bit counter. Finally, despite the LB optimization,
large number of dropped packets could still cause the counters to be
desynchronized. Appendix A presents a counter resynchronization
protocol similar to one used in SNEP.

5.3 Energy Analysis
Let x be the number of lowest counter bits to append to the

packet, and y be the maximum number of trial decryptions the re-
ceiver performs as explained above. Let random variable I repre-
sent the time at which the node is able to decrypt the message (if
the node successfully decrypts the message), where 1 ≤ I ≤ y. The
goal of this section is to determine the parameters x and y.

Generally, a receiver would perform i decryptions, if there were
at least (i− 1)2x and at most i2x − 1 dropped packets. Thus, the
probability that exactly i decryptions occur is (where Pgar is the
probability that a message is garbled in transmission, and pr is the
probability that the message is received):

P(I = i) = (1−Pgar)
i2x−1
∑

k=(i−1)2x
(1− pr)

k pr

= (1−Pgar)(1− pr)
(i−1)2x [

1− (1− pr)
2x]

Thus, the expectation of I is:

E(I) =
y

∑
i=1

iP(I = i)

=
[

1− (1− pr)
2x ]

y

∑
i=1

i
[

(1− pr)
2x ]i−1

=
[

1− (1− pr)
2x ]1− (y+1)(1− pr)y2x

+ y(1− pr)(y+1)2x

[

1− (1− pr)2x]2

=
1+(1− pr)y2x

[

1+ y
[

1− (1− pr)2x]
]

1− (1− pr)2x

The expected energy consumed is the sum of the expected energy
spent when an event happens times the probability of this event to
occur plus the energy required for receiving x bits. At the reception
of a message, two scenarios are possible for the receiver: (1) the
receiver is able to decrypt the message at the i-th trial decryption.
This event occurs with probability P(I = i) and its cost is E(i ∗
EOCB) = E(I)EOCB, where EOCB represents the cost of an OCB
decryption. (2) The receiver is unable to decrypt the message even
after trying y times. This happens either because more than y2x

packets were lost consecutively, or because the packet that was just
received is garbled due to a transmission error (an unlikely event).
Thus the expected energy consumption is EEnergy, where Erec is
the energy for receiving one bit, Eresync is the energy required
to execute the counter resynchronization protocol, and E(I) is as
above:

EEnergy = E(I)EOCB(1−Pgar)+

[

yEOCB +Eresync
][

Pgar +(1−Pgar)(1−Pr)y2x]
+ xErec

We need to find the ideal x and y for a given environment. A
lossy channel with high packet loss requires larger values for x and
y. In Section 8 we discuss how to select x and y in practice.

6. MINISEC-B: BROADCAST COMMUNI-
CATION

MiniSec-U cannot be directly used to secure broadcast commu-
nication. First, it would be too expensive to run the counter resyn-
chronization protocol among many receivers. Also, if a node B
were to simultaneously receive packets from a large group of send-
ing nodes (A1,A2, . . . ,An), B needs to maintain a counter for each
sender, resulting in high memory overhead.

Similar to MiniSec-U, MiniSec-B uses OCB encryption to se-
cure broadcast communication. Simply encrypting each packet
with OCB provides secrecy and authenticity, while an increasing
counter can still be used as a nonce to provide for partial ordering
of messages. However, without synchronized counters, there is no
defense against replay attacks. In fact, defending against replay at-
tacks in a broadcast setting without per-sender state is currently an
open challenge in the sensor network community.

This section describes two mechanisms used in MiniSec-B to
provide replay protection. First, we present a timing-based ap-
proach that defends against replay attacks with a certain vulner-
ability window; replayed packets outside this window is always
dropped. Next, we discuss a Bloom Filter-based approach which
defends against attacks within the window.

6.1 Timing-based Approach
We define an epoch to be a finite time te, and we segment time

into a series of te-length epochs E1,E2,E3, . . .. Leveraging loose
time synchronization [6,14], each node agrees on the current epoch
Ei. The maximum time synchronization between any pair of nodes
is δt . Finally, let δn be the maximum network latency.

Simply using the current epoch number as the nonce for OCB-
encryption defends against replay attacks from older epochs. Un-
fortunately, because of time synchronization error and network la-
tency, such a scheme experiences high false positives at epoch tran-
sitions. For example, a node at time t1 in Figure 1 would receive
many packets from the previous epoch, and thus classify them as
invalid packets.

The solution is as follows. First, we define epoch length te to
be 2δt + δn. Let Ei be the current epoch number. When a node B
receives a packet within the range of [teEi, teEi + δt + δn), it at-
tempts decryption twice, with the nonce being the current epoch
number and the immediately previous epoch number. The intuition
is as follows. First, in the worst case scenario where the receiver’s
clock is ahead, we have the sender’s clock at δt behind and the
packet experiences maximum network latency of δn. Under this
worst case scenario, the packet could have only originated from the
current epoch Ei or previous epoch Ei−1. Similarly, the worst case
scenario where the sender is ahead can be described as the sender’s
clock being δt ahead and the packet experiencing 0 network la-
tency. In such a case, the packet could only have originated from
the current epoch Ei or next epoch Ei+1.

Based on this technique, there are only two candidate epochs for
any incoming packet. In addition, if a valid packet had been sent at
the beginning of an epoch, an attacker can replay that packet for the
remainder of the epoch as well as δt +δn into the next epoch. Thus,
the maximum window of vulnerability for replay is 3δt +2δn.

6.2 Bloom Filter-based Approach
We augment the timing-based approach with a counter CA kept

as internal state by the sender A, and two alternating Bloom Filters
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Figure 1: Timeline.

stored by all nodes. In concert, they provide semantic security and
replay protection within the vulnerability window.

The counter CA is similar to the counter in MiniSec-U, with the
exception that the sender resets the counter at the beginning of each
epoch. This allows the counter itself to be short enough to be trans-
mitted with each packet. If we can bound the number of broad-
cast messages sent by a node in each epoch to k, the length of the
counter can be bounded to log2(k).

Sender A increments CA whenever it sends a message M, and
uses the concatenation of its own nodeID, CA and current epoch
number Ei as the nonce in OCB encryption. Thus, the cipher-text
sent is (C,tag) = OCBKA(nodeID||CA||Ei,M,H)).

Receiver B keeps its Bloom Filters in the following manner. A
Bloom Filter BFi is assigned to each epoch Ei. All valid packets
corresponding to epoch Ei are stored in BFi, using (CA||sourceID)
as the Bloom Filter key. At all times, each node keeps a Bloom
Filter BFi for the current epoch Ei, and either BFi−1 for the previous
epoch Ei−1, or BFi+1 for the next epoch Ei+1. For example, starting
at the beginning of epoch Ei until δt + δn into the epoch, the node
maintains Bloom Filters BFi and BFi−1. After δt + δn, all packets
from the epoch Ei−1 will be dropped, while packets from the next
epoch Ei+1 will be accepted. Thus, BFi−1 is reset and reused as
BFi+1.

When receiver B receives a packet, it first determines whether
it is a valid packet. Since the entire short counter is included as
plain-text, B can easily determine its validity after at most two OCB
decryptions. This ensures that only packets within this window of
two epochs will be accepted. After the packet is deemed to be a
valid message, B also discovers its epoch number. B then queries
the corresponding Bloom Filter for this packet. If the query returns
true, the packet is considered to be a replay and is consequently
dropped. If the Bloom Filter declares that this packet is new, the
packet is considered to be a non-replayed packet. It is consequently
accepted and added into the Bloom Filter.

Using such a counter provides for semantic security since send-
ing the same message never results in the same cipher-text. Also,
this scheme provides for replay protection. If receiver B were to re-
ceive a replay packet, hashing the source ID and counter CA, would
result in a match in all the corresponding bits in the Bloom Filter.
Therefore, B would suspect a replay attack and reject the packet.

Note that such a replay policy would detect all replayed attacks,
resulting a 0% false negative rate. However, because Bloom Filters
may cause false positives; an innocent packet may be deemed to be
a replayed packet. There are various trivial solutions to lowering
false positives. For example, by selecting the size of the Bloom
Filter m and duration of an epoch, the probability of false positives
can be lowered arbitrarily [1].

7. SECURITY ANALYSIS

In this section, we provide an analysis on the level of security
promised by both MiniSec-U and MiniSec-B. First, we discuss
properties that are common across both protocols. Next, we dis-
cuss how these protocols are different.
Authentication. Both MiniSec-U and MiniSec-B use OCB en-
cryption to provide for data authentication over the payload and
packet header. The security of OCB’s authentication scheme is di-
rectly related to τ , the length of the tag. By setting τ to be 32
bits, an adversary has a 1 in 232 chance of forging a correct tag for
a particular message, which suffices for the majority of practical
applications.
Secrecy and Semantic Security. Secrecy and semantic security
rest upon the fact that nonces do not repeat. Since the sender uses a
strictly monotonic counter as the nonce, each ciphertext would be
different even if the plaintext were the same.

Avoiding repetition of nonce is easy. In MiniSec-U, the counter
is kept as internal state, and thus can be made arbitrarily long. We
choose 8 bytes, which means that the nonce would not repeat until
after sending 264 messages. In MiniSec-B, the nonce is the con-
catenation of sourceID, epoch number e, and a counter. By using all
three variables, no two messages in the network would ever share
the same nonce. ¡¡¡¡¡¡¡ .mine
Weak Freshness. In MiniSec-U, the receiver can arrive at the
counter value used for each packet by verifying the validity of OCB
decryption. While in MiniSec-B, the counter value is included in
the packet as plaintext. In both cases, the receiver can use the
counter value of two messages to enforce message ordering, thus
providing weak freshness.

MiniSec-U and MiniSec-B exhibit different behavior in replay
protection.
Replay Protection in MiniSec-U. Each sender and receiver keeps
a synchronized counter that is being used as the nonce in OCB
encryption. The receiver would only accept messages with higher
counter values than the those maintained in the node state. Thus,
replayed packets will all be rejected.
Replay Protection in MiniSec-B. The entire network lifetime is
segmented into epochs. MiniSec-B leverages loose time synchro-
nization to prevent replayed packets from previous epochs. Next,
each receiver uses a Bloom Filter to track packet history for each
epoch. Thus, MiniSec-B achieves protection against replay attacks.

8. IMPLEMENTATION

8.1 System Architecture
We have developed MiniSec for the Moteiv Telos motes - a pop-

ular architecture in the sensor network research community. It fea-
tures the 8MHz TI MSP430 micro-controller, a 16-bit RISC proces-
sor that is well known for its low energy consumption. Although
we implemented MiniSec on the Telos motes, our design principles
are general enough such that porting MiniSec to different sensor
platforms should yield similar performance results.

To implement MiniSec, we rewrote part of the TinyOS network
stack. Specifically, we created GenericCommMiniSec based on
GenericComm, a “generic” TinyOS network stack. Instead of using
the interface AMStandard for Active Message transmission,
GenericCommMiniSec directs all messages to AMStandardMiniSec,
a custom-made ActiveMessage layer that encrypts outgoing mes-
sages and decrypts received packets. To use MiniSec, a developer
simply needs to replace GenericComm with GenericCommMiniSec in
the application’s configuration file.
Packet Format. We base MiniSec’s packet format on the current
TinyOS packet header for Telos mote’s CC2420 radio. The Telos
mote is one of the first wireless sensor devices to be equipped with
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an IEEE 802.15.4 radio. Figure 2 shows the packet format for plain
TinyOS, TinySec, and MiniSec.

The fields that MiniSec share with original TinyOS are: length,
Frame Control Field, data sequence number, destination PAN ad-
dress, destination address, and the AM number. MiniSec replaces
the 2-byte CRC with a 4-byte tag, since the tag already protects
the packet from being tampered. In the original TinyOS, the 1-
byte groupID serves as a crude form of access control. This field is
no longer necessary in MiniSec because access control is achieved
through the use of different cryptographic keys. Finally, similar to
TinySec, MiniSec requires a 2-byte source address, which is absent
in a standard TinyOS packet. The net overhead of a MiniSec packet
is 3-byte increase over a standard TinyOS packet.

8.2 MiniSec-U Design
MiniSec-U uses two security primitives: OCB encryption and

Skipjack. We selected Skipjack to be the block-cipher because of
efficient computation and low memory footprint [?]. To make en-
cryption as flexible as possible, we set Skipjack’s block size to 64
bits. Furthermore, we use 80-bit symmetric keys, since Lenstra and
Verheul recommended that such keys are considered to be secure
until 2012, even against resourceful adversaries [?]. When 80-bit
keys become insecure, we would use 128-bit AES keys, which is
secure for at least the next 20 years.

OCB implementation is ported from Rogaway’s original OCB
library1 to the nesC interface. Similarly, the Skipjack implemen-
tation is ported to nesC from Yee Wei Law’s implementation [?].
In total, MiniSec-U requires about 4000 lines of nesC code, and
consumes 874 bytes of RAM and 16 KB of code memory.
Packet Format. MiniSec-U uses the LB optimization by sending
the last x bits of the sender’s counter along with each packet. Since
TinyOS payloads are never greater than 29 bytes, we can safely
overload the first 3 bits of the length field to store these bits, as
shown in Figure 2(c). This is a significant advantage since we do
not suffer any communication overhead for sending the last x bits
of the counter.

Our empirical results show that by using the last 3 bits of the
counter, even under high packet drop rate, the counter resynchro-
nization protocol was rarely executed. Since we can send the last 3
bits of the counter for free, we use the default value of x = 3 for the
remainder of the paper.

8.3 MiniSec-B Design
In addition to the security primitives in MiniSec-U, MiniSec-B

utilizes loose time synchronization and Bloom filters. Here, we
discuss practical issues in selecting epoch duration te and Bloom
filter configurations.
Time Synchronization. As discussed in Section 6, epoch length
te must be at least 2δt + δn. Recent advancement in secure sensor
network time synchronization [6, 14] enables pairwise time syn-
chronization with error of mere µs. Transmission delay between
neighboring nodes are on the order of ms. Even under extreme pes-
simistic conditions, epoch length of 1 second is longer than neces-
sary according to the needs of MiniSec-B. For the remainder of our
analysis, we will use epoch duration te = 1s.
Bloom filter configurations. A Bloom filter is defined by two
configurations: size of the Bloom filter m, and number of hash func-
tions h. We will show that under rather pessimistic assumptions of
the hardware and network activity, we can achieve a 1% false posi-
tive rate by using te = 1s, m = 18 bytes, and h = 8 hash functions.
We also show how the sensor network administrator can calculate
custom values of m and h appropriate for a particular network pa-
1http://www.cs.ucdavis.edu/rogaway/ocb/code-2.0.htm, accessed
June 26, 2006

rameterized on the network activity and underlying hardware.
The false positive rate of a Bloom filter can be calculated based

on number of stored items. Thus, we first upper bound pµ , the
average number of packets received in one epoch of length te. If
this is known a priori (e.g., regular heartbeats), the sensor network
administrator can directly configure the Bloom filter accordingly.
Else, we make the following argument.

Let tl be a realistic lower bound of a node’s lifetime, Ec be energy
capacity of the node’s battery, and Ep be energy consumption for
receiving one packet. In the worse case, all energy provided by the
battery will be used for packet reception. Thus, maximum possible
packets received over the entire lifetime of the node is Ec/Ep. pµ
can be calculated as follows.

pµ =
Ecte
Eptl

In our calculations, we set tl to 12 months, Ec to 2850 mAH
(AA Duracell Coppertop alkaline battery2), and Ep to 0.0441mAS
(receiving a TinyOS packet on CC2420 radio [11]). Average packet
reception rate pu is 7.48 packets per second.

Each packet adds one item into our Bloom filter. In traditional
networking fashion, we model packet reception as a Poisson pro-
cess. Thus, the number of packets received within an epoch can
be approximated by a Poisson distribution with mean of pµ . This
model allows us to bound the maximum number of received pack-
ets in an epoch with high probability. The cumulative distribution
function of a Poisson process is Γ(k+1,λ )

k! . where k is number of
occurrences, λ is the Poisson mean pµ , and Γ is the incomplete
gamma function. By setting the CDF to an arbitrarily high prob-
ability p and solving for k, we can conclude that one would not
receive more than k packets in one epoch with probability p. In our
case, we set p to 0.99, and arrived at k = 14. In other words, with
probability of 0.99, we would never add more than 14 items to our
Bloom filter.

Given this information, we can set a particular false positive rate
and solve for appropriate configurations for the Bloom filter size m
and number of hash functions h. This problem had been previously
studied in Li Fan’s work in Summary Cache, where they evaluated
the statistics behind Bloom filters [8]. The probability of a false
positive after inserting n elements is

(1− (1− 1
m )kn)k

Thus, with the worst case of of n = 14 elements, we can achieve
a 1% false positive rate with m = 18 bytes and h = 8 hash functions.

Note that this bound is an extremely pessimistic bound. In prac-
tice, the false positive rate should be significantly lower. There are
several factors:

• False positive rate increases as more packets are added into
the Bloom filter. However, our calculation is based on the
false positive rate at the end of the epoch, which corresponds
to the highest false positive rate. For example, we stated that
we achieve a 1% false positive rate with our Bloom filter con-
figuration. However, if we were in the middle of an epoch,
our calculation actually shows a 0.014% false positive rate.

• We make the pessimistic assumption that all energy is con-
sumed by the radio for packet reception. In practice, energy
is consumed for sending packets, controlling other devices
(LEDs, sensors), and computation.

• We model the packet reception as a Poisson process. How-
ever, we don’t use the mean packet arrival rate for false posi-
tive calculation. Instead, we use the 99th percentile based on

2www.duracell.com/oem/Pdf/others/ATB-full.pdf
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Figure 2: Packet Format. The size of each field is indicated in bytes. The packet format is based on the TinyOS packet for CC2420 radio. The
diagonally hashed regions are authenticated; the checkered regions are encrypted; the gray region represents where we overload the corresponding
field with the counter.

Table 1: Table comparing packet size, communication overhead, and total energy spent in transmitting one TinyOS packet. Our of
all three security protocols, MiniSec achieves the lowest communication overhead with respect to a standard TinyOS network stack.

Payload Packet Security Total Energy Increase
(B) Overhead (B) Overhead (B) Size (B) (mAs) over TinyOS

TinyOS 24 12 – 36 0.034 –
TinySec 24 17 5 41 0.0387 13.9%
SNEP 24 20 8 44 0.0415 22.2%
MiniSec 24 25 3 39 0.0368 8.3%

the CDF of the Poisson distribution. Thus, with probability
of 0.99, we would have a false positive of at most 1%. As
a matter of fact, using the same Bloom filter configuration,
false positive rate would not exceed 0.0001% with probabil-
ity of 0.5.

• We assume ideal conditions for batteries (constant current
draw, constant temperature, no self-discharge prior to being
loaded onto the motes). In practical settings, such ideal con-
ditions are impossible to achieve. Thus, battery capacity and
number of received packets, are significantly lower.

Packet Format Figure 2(d) shows the packet header for MiniSec-
B where the sender sends the entire counter with each packet. The
default counter is 8 bits long, which we claim to be sufficient in
most networks based on the following reasoning. First, since the
counter is reset at the beginning of each epoch, the length of the
counter can be bounded by log2 (k), where k is the maximum num-
bers of packets sent in each epoch. Next, it is unlikely for k to be
large, since such resource-constrained nodes are unlikely to contin-
ually broadcast large amounts of data. An 8-bit counter is already
extremely generous since it allows for 255 packets per epoch of one
second.

This 8-bit counter could be declared as an addition field. How-
ever, based on the TinyOS packet format, we propose an optimiza-

tion that overloads this counter with existing headers. First, 3 bits
of this counter may be overloaded in the length field. Next, the
remaining 5 bits of the counter may be embedded in the destina-
tion address, since the destination field is 2 bytes and it is unlikely
for a network to have more than 2048 broadcasting participants.
Furthermore, unlike the source address, the destination address is
generally not needed for routing in broadcasts.

8.4 Benchmarks
To analytically evaluate the cost of security, we consider both the

communication overhead on each packet as well as computational
overhead from packet processing. Longer packets are extremely
costly because of the extra energy consumption by the radio. Even
sending one additional byte per packet would require significant
amount of energy. As shown in Table 1, MiniSec was able to de-
crease a security overhead of 5 bytes by TinySec to 3 bytes. In ad-
dition, MiniSec employs OCB, which provides for authentication
and secrecy with fewer block cipher calls than its cryptographic
counterpart in TinySec.
MiniSec-U. MiniSec-U was able to save on packet header size by
using synchronized counters between sender and receiver. First, as
specified above, the LB optimization has the default value of x = 3.
Using the expected energy equation from Section 5.3, it is possible
to solve for the the optimal y, or max number of decryption attempts
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Figure 4: Drop Rate. Expected energy of security with respect to
packet drop rate.

before counter resynchronization. Consequently, given the optimal
y, one can solve for the expected energy consumed by all security
related features.

Figure 3 illustrates our findings given different packet drop rates.
The aggregate energy consumed by TinySec is constant. The en-
ergy overhead of security in TinySec is always the amount of en-
ergy consumed by receiving 5 extra bytes in the header, comput-
ing CBC-MAC, and decrypting the packet. MiniSec-U, on the
other hand, behaves differently based on environmental conditions.
resynchronization. Given a packet drop rate, a higher y value ex-
hibits lower energy consumption, since it reduces the probability
of running the counter resynchronization protocol. However, an in-
creasing y exhibits diminishing marginal benefits, since the energy
consumption of counter resynchronization becomes less and less of
a factor in total energy consumption.
MiniSec-B. Figure 4 illustrates energy consumption between Tiny-
Sec, MiniSec-B, and MiniSec-U using an optimal value y, while
varying packet drop rate. The energy consumption of MiniSec-U
is computed by first solving for the optimal y. Using this value, we
were able to calculate the expected energy of security. MiniSec-B
consumes a constant amount of energy, as its performance is not
effected by lossiness of the communication channel. By leveraging
an 8-bit counter and loose time synchronization, the receiver never
needs to run any counter resynchronization protocol. Once the re-
ceiver successfully receives a packet, only two OCB decryptions
and 8 hash functions needs to be performed.

Under normal circumstances, MiniSec consumes about 1
3 amount

of energy of TinySec. As packet drop rate increases beyond 0.9,
TinySec is more efficient than MiniSec-U because of the high num-
ber of counter resynchronizations. Such a scenario represents an
extremely rare case. On the other hand, since MiniSec-B’s perfor-
mance does not depend on the drop rate, MiniSec-B always outper-
forms TinySec.

Finally, we note that MiniSec-B can also be used for unicast.
The advantage of MiniSec-B is the amount of work is constant re-
gardless of the quality of the communication link. Under the con-
dition that MiniSec-U does not execute counter resynchronization,
MiniSec-U and MiniSec-B consumes comparable amount of en-
ergy.

Finally, we note that nothing prevents the use of MiniSec-B in
unicasts. Since the energy consumption of MiniSec-B and MiniSec-
U are comparable under normal conditions, while MiniSec-B far
outperforms MiniSec-U under high packet loss, MiniSec-B is a
much more robust protocol. If time synchronization is available,
simply running MiniSec-B for all communication is an attractive
solution.

9. RELATED WORK
Key establishment and management are considered to be pre-

requisites in secure sensor network communication, and have been
extensively studied in the research community. There are numer-
ous candidate solutions, such as Random Key Predistribution [3–
5, 9, 12], Key Infection [2], and LEAP [16]. Asymmetric schemes
based on elliptic curve cryptography [10] and Diffie-Hellman [15].
have also been proposed

The body of work most closely related to MiniSec consists of
other secure communication protocols such as TinySec [7], Zig-
Bee [17], and SNEP [?]. SNEP, part of the SPINS protocol suite, is
one of the first attempts at a secure link layer protocol. It achieves
low energy consumption by keeping a consistent counter between
the sender and receiver, such that an IV is not required to be ap-
pended to each packet. However, packet loss would cause the
counters to become inconsistent. Consequently, SNEP would have
to execute a counter resynchronization protocol that is slow and
expensive in terms of energy consumption. Inspired by SNEP,
MiniSec makes various improvements to lower energy consump-
tion. One such optimization is to reduce the probability that the
resynchronization protocol needs to be executed.

TinySec is a link layer protocol designed by Karlof et al. [7].
It achieves low energy consumption by reusing part of the packet
header as the IV. Thus, they were able to arrive at an 8-byte IV,
but only adding a 2-byte counter overhead per packet. However,
more serious drawbacks of TinySec are that (1) it only provides
for authentication and data secrecy, but not replay protection; (2) it
uses a single network-wide key, which is vulnerable to single node
compromise.

ZigBee is a set of security standards proposed by a consortium
interested in promoting embedded wireless technology. The secu-
rity protocol is very similar to SNEP. However, the entire 8-byte
counter is sent in the clear instead of being kept as consistent state
between sender and receiver. Thus, ZigBee consumes significantly
more energy than the other two protocols.

10. CONCLUSIONS
Battery energy is the main resource to protect in current wireless

sensor networks. Researchers have proposed several approaches
for securing communication; however, so far either optimizing ei-
ther for a high level of security or for a low energy utilization. Our
secure sensor network communication package is called MiniSec,
which offers a high level of security while typically requiring less
energy than previous approaches. We have implemented MiniSec
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on Telos motes and distribute it for free under an open-source li-
cense.
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APPENDIX
A. MiniSec-U COUNTER RESYNCHRONIZA-

TION
Reliable Unicast. If the message type is a reliable unicast, this
implies there exists some type of acknowledgment protocol. Thus,
the sender could use the presence of ACKs to determine if the pack-
ets had been received and authenticated successfully, which implies
whether the counter is consistent between sender and receiver.

However, MiniSec is intended to be a network layer protocol.
Since reliable messaging is typically implemented at a higher layer,
this approach might not be appropriate. Nevertheless, we note that
if reliable messaging is used, cooperation between the transport
layer and MiniSec would be a viable solution.
Best Effort Unicast. Without support for reliable message deliv-
ery, TinyOS packets are best effort. In the case of unicast messages,
where there only exists one receiver B, B can directly query sender

A for the counter. Note that we use a nonce NB to guarantee strong
freshness.

B → A : 〈NB〉
A → B : 〈CA, OCBKA (CA,NB ,CA)〉

(1)

Since the counter CA is not a secret, A can send it in the clear.
However, this value does need to be authenticated, using the preex-
isting shared key KA.
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