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Abstract— We study the problem of characterizing the wormhole
attack, an attack that can be mounted on a wide range of wireless
network protocols without compromising any cryptographic quan-
tity or network node. Making use of geometric random graphs
induced by the communication range constraint of the nodes, we
present the necessary and sufficient conditions for detecting and
defending against wormholes. Using our theory, we also present
a defense mechanism based on local broadcast keys. We believe
our work is the first one to present analytical calculation of the
probabilities of detection. We also present simulation results to
illustrate our theory.

Index Terms— wormhole, security, vulnerability, ad hoc net-
works, geometric random graph.

I. INTRODUCTION

A wireless ad hoc network may be deployed in hostile
environments, where network nodes operate un-tethered. In
addition, the wireless medium exposes any message transmis-
sion to anyone located within the communication range. In
this paper we investigate a specific type of emerging security
threat known as the wormhole attack [1], [2]. In a wormhole
attack an adversary records information at an origin point,
tunnels it (via a faster or direct link) to a destination point
more than one-hop away, and retransmits the information in the
neighborhood of the destination. Since a wormhole attack can
be launched without compromising any node, or the integrity
and authenticity of the communication, the success of the attack
is independent of the strength of the cryptographic method
that protects the communication. Hence, a wormhole attack is
implemented with few resources and is difficult to detect.

Several approaches have been presented for defending
against the wormhole attack [1]–[3]. The solutions proposed
attempt to bound the distance that any message can travel using
time-based methods [1], [3], cryptography [2], or exploiting
location information [1]. Time-based methods either rely on
tight synchronization between the network nodes [1], or on
measuring the time of flight of a challenge-response [3] using
clocks with nanosecond accuracy. Location-based methods also
require loose synchronization between nodes [1]. In [2], net-
work nodes use cluster keys to broadcast to their immediate
neighbors. However, the authors of [2] noted their system is
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vulnerable to wormholes during the key establishment phase,
due to lack of any verification mechanism. On the other hand,
we present a solution that utilizes a combination of location
information and cryptography to prevent the wormhole attack.
We list our contributions next.

Our contributions: We present a graph theoretic model for
characterizing the wormhole attack and derive the necessary
and sufficient conditions for any candidate solution to prevent
wormholes. Using our theory, we then propose a Local Broad-
cast Key (LBK) based method to secure an ad hoc network
from wormhole attacks. In doing so, we show that LBK solu-
tion satisfies the necessary graph theoretic condition. We also
present a decentralized realization for LBK establishment, and
provide an analytical evaluation of the security level achieved
by our scheme based on spatial statistics theory.

Unlike in [1], [3], our solution does not require time
synchronization, or highly accurate clocks, and only a small
fraction of nodes need to know their location. Our approach
has low overhead in computation and communication, suitable
for wireless sensor networks.

The paper is organized as follows: The Section II describes
the wormhole problem, and its graph theoretic representation.
In Section III, we state our network model assumptions.
Section IV shows how LBKs defend against wormholes and
the presents a mechanism to establish them. In Section V,
we describe how to secure LBK establishment mechanism
from wormholes. In Section VI, we present the performance
evaluation, and Section VII presents our conclusions.

II. PROBLEM STATEMENT

A. Description of wormhole

To launch a wormhole attack, an adversary establishes a
direct link referred as wormhole link between two points in
the network. A direct link can be established via a wireline, a
long-range wireless transmission, or an optical link. Once the
wormhole link is operational, the adversary eavesdrop messages
at one end, referred as the origin point, tunnels them through
the wormhole link and replays them in a timely fashion at the
other end, referred as the destination point.

In the wormhole model, it is assumed that the adversary
does not compromise the integrity and authenticity of the
communication, and any cryptographic quantity remains secret.



Fig. 1. Wormhole attack against a distance vector based routing protocol.

If an adversary had access to cryptographic keys, it could
generate and forge any authentic message, and inject it back
into the network with no assistance from wormholes.

B. Wormhole threat against network protocols

Various wormhole attack scenarios disrupting network pro-
tocols and applications are available from [1], [4]. We now
illustrate how a wormhole attack can disrupt the distance vector
based ad hoc routing protocols such as DSDV [5] or ADV [6].

Figure 1 presents an ad hoc network of 13 nodes and a worm-
hole link between nodes s9 and s2. If the routing table of node
s9 is tunneled through the wormhole link, node s2 will hear
the broadcast and assume that node s9 is a one-hop neighbor.
Node s2 will update and broadcast its routing table entries for
one-hop neighbor node s9, and nodes {s8, s10, s11, s12} that
are now reachable via two hops. Similarly, other neighbors
of s2 will adjust their own routing tables. Note that nodes
{s1, s3, s4, s5, s7} will now route via s2 to reach any of the
nodes {s9, s10, s11, s12}. Hence, with minimal resources, an
attacker can redirect and observe a large amount of traffic as
desired. Furthermore, by simply switching the wormhole link
on and off, the attacker can trigger a route oscillation within
the network, thus leading to a denial-of-service (DoS) attack.

From these examples, we note that a wormhole in essence
creates a communication link between an origin and a desti-
nation point that could not exist with the use of the regular
communication channel. Hence, a wormhole modifies the con-
nectivity matrix of the network and can be described by a graph
abstraction of the ad hoc network as described next.

C. A Graph theoretic formulation.

Consider an ad hoc network randomly deployed with any
node i having a communication range r. Such a network can be
modeled as a geometric random graph [7], defined as follows:

Geometric Random Graph: Given a finite set of vertices V ⊂
Rd (d = 2 for 2-dimensional space), we denote by G(V, r)
the undirected graph with vertex set V of randomly deployed
nodes, and with undirected edges connecting pairs of vertices
(i, j) with ‖i − j‖ ≤ r, where ‖ � ‖ is some norm on Rd [7].
The entries of the edge, or connectivity matrix, denoted by e,
are given by:

e(i, j) =
{

1, if ‖i − j‖ ≤ r
0, if ‖i − j‖ > r

(1)

The existence of wormhole links violates the geometric graph
model, by allowing links longer than r, thus transforming the
initial geometric graph G(V, r) into a logical connectivity graph
G̃(V,EG̃), where arbitrary connections can be established.
Hence, a non-trivial wormhole will always increase the entries
of the connectivity matrix of G(V, r).

A candidate solution preventing the wormhole attack should
reconstruct the original geometric random graph G(V, r), or by
imposing a less strict requirement, should transform the logical
graph G̃(V,EG̃) to a logical graph G′(V,EG′), in which, for
any link between a pair of nodes i, j, condition 1 is always
satisfied. We formalize these ideas in theorem 1.

Theorem 1: Given a geometric random graph G(V, r) de-
fined as in (1), and an arbitrary logical graph G̃(V,EG̃), a
transformation S : G × G̃ → G′ of G̃(V,EG̃) into a logical
graph G′(V,EG′) is a solution to the wormhole problem iff the
set of edges of G′ is a subset of the set of edges of the G(V, r),
i.e. EG′ ⊆ EG.

Proof: Assume that G′ = S(G, G̃) prevents the wormhole
attack. Let CX denote the connectivity matrix of graph X . If
EG′ � EG, there a exist a pair of nodes (i, j) for which:
CG(i, j) = 0 and CG′(i, j) = 1. For such node pairs,
e(i, j) = 1, with ‖i − j‖ > r, violating the communication
range constraint. Hence, in order for S(G, G̃) to prevent the
wormhole attack, it follows that: EG′ ⊆ EG.

The converse follows immediately. If EG′ ⊆ EG, then
CG′(i, j) ≤ CG(i, j),∀i, j ∈ V . Hence, there is no edge
e′(i, j) ∈ EG′ such that e′(i, j) = 1, ‖i − j‖ > r, and hence,
the graph G′ is void of any wormhole.

A trivial graph G′ with no links (EG′ = ∅) satisfies the
conditions of the theorem 1. However, to ensure communication
between all network nodes, we seek solutions that construct a
connected graph.

We also note that the transformation G′ = S(G, G̃) requires
the knowledge of the geometric random graph G(V, r), defined
by the location of the vertices, and the communication range r.
When nodes do not have a global view of the network (know the
location of other nodes), to verify theorem 1, we must indirectly
construct a connected subgraph of the geometric random graph
G(V, r). Before we present our solution on constructing such
subgraph, we describe the needed network model assumptions.

III. NETWORK MODEL ASSUMPTIONS

Network setup: We assume that the network nodes are ran-
domly deployed within a specific region. We also assume that
a small fraction of network nodes, called Guards is assigned
special network operations. Density of the regular network
nodes is assumed to be ρs, and the density of the guards
is assumed to be ρg , with ρs 	 ρg . We assume that all
nodes utilize omnidirectional antennas. Communication range
of regular nodes is r, while that of guards is R with R > r.
Resource constraints: We assume that guards have access to
location information through GPS [8] or some other localization
method, though regular node may have no location information.



We also assume that nodes rely on efficient symmetric cryp-
tography for encryption/decryption, authentication and hashing.
We also assume that nodes can be pre-loaded with keys.
Statistical network model: It can be shown [11] that the
random deployment of the nodes and guards in an area A
can be modeled after a Spatial Homogeneous Poisson Point
Process [11]. The random placement of the set U of guards
with a density ρg = |U |

A (| · | denotes the cardinality of a set)
is equivalent to a sequence of events following a homogeneous
Poisson point process of rate ρg . The random deployment of
a set S of nodes with a density ρs = |S|

A , is equivalent to a
random sampling of A with rate ρs [11].

Based on Spatial Statistics theory [11], if GHs denotes the
set of guards heard by a node s, the probability that a node
hears exactly k guards is given by the Poisson distribution:

P (|GHs| = k) =
(ρgπR2)k

k!
e−ρgπR2

(2)

Using the model in (2), we will analytically evaluate the
performance of our algorithms.

IV. LOCAL BROADCAST KEYS

In this section, we first define LBKs and show that LBKs can
be used to defend against wormhole. We then present details
of a decentralized mechanism for establishing LBK, followed
by a probabilistic analysis of the security of LBK scheme.

Definition: For a node i, we define the neighborhood Ni as:
Ni = {j : ‖i− j‖ ≤ r}. Given a cryptographic key K, let UK

denote the set of nodes that hold key K. We assign a unique
key Ki called LBK of i, to all j ∈ Ni so that UKi

= Ni and
Ki 
= Kj ,∀i 
= j. Hence, by definition, all one-hop neighbors
of node i possess the LBK of node i. We follow the convention
that any message from node i to j is encrypted with Ki. Hence,
a link between nodes i, j exists iff i ∈ Nj or j ∈ Ni.

Theorem 2: Given Ki, Ni, ∀i ∈ V, where V is the set of
vertices defined by network nodes, and an arbitrary logical
random graph G̃(V,EG̃), the edge matrix EG′ , defined by:

eG′(i, j) =
{

1, if i ∈ UKj
∪ j ∈ UKi

0, if Else
(3)

yields the desired wormhole-free graph G′(V,EG′) such that
EG′ ⊆ EG, where G(V, r) is the geometric random graph
defined in (1).

Proof: By the definition of EG′ , there exists a link
eG′(i, j) if and only if the two nodes hold at least one LBK.
But, according to the definition of LBK, a node i ∈ UKj

iff i ∈ Nj , which in turn implies that i, j satisfy (1), which
defines the links of the geometric random graph G(V, r).
Hence, eG′(i, j) = 1, iff ‖i − j‖ ≤ r. Hence, EG′ = EG and
therefore, G′ ≡ G. According to theorem 1, if a transformation
S(G, G̃) results in a graph G′(V,EG′) such that EG′ ⊆ EG,
then G′ is a wormhole-free graph.

Note that given LBKs for all nodes, wormholes can be
eliminated without ever having to know the location of any
node. However, the challenge is to establish LBKs in the
presence of wormhole links and no central authority.

A. Decentralized establishment of local broadcast keys

We present a three-step algorithm for LBK establishment.
In the first step, the guards distribute fractional keys FKi to
nodes via broadcasting. In step 2, every node broadcasts the
Ids of the fractional keys that it holds. If two nodes share
more than a threshold th number of fractional keys, they use
all common fractional keys to generate a pairwise key. In
step 3, every node uses the pairwise keys to securely unicast
a local broadcast key to each neighbor. We first present the
cryptographic mechanisms of our LBK scheme.

1) Cryptographic Mechanisms
Encryption: To protect the distribution of the fractional keys,
all transmissions from the guards are encrypted with a globally
shared symmetric key K0, pre-loaded before deployment. In
addition, every node shares a symmetric pairwise key Kgi

si
with

every guard gi, also pre-loaded. In order to save storage space
at the guard side, the pairwise key Kgi

s is derived by a master
key Kgi

, using a pseudo-random function [12] h and the unique
node Idi: Kgi

s = hKgi
(Idi). Hence, given an Idi, a guard can

compute its pairwise key with the node Idi whenever needed.
Guard Id authentication: To authenticate the source of the
fractional keys we use efficient one-way hash chains [9]. Each
guard gi has a unique password PWi, blinded with the use
of a collision-resistant hash function such as SHA1 [12].
Due to the collision resistance property, it is computationally
infeasible for an attacker to find PW ′

i , such that H(PWi) =
H(PW ′

i ), PWi 
= PW ′
i . The hash chain is generated as

follows:

H0 = PWi, Hi = H(Hi−1), i = 1, · · · , n

with n being a large number and H0 never revealed to
any node. Due to the one-way property it is also infeasible
to compute any values of the hash chain that have not be
published by a guard. Each node is pre-loaded with a table
containing the Id of each guard and the corresponding hash
value Hn(PWi). To reduce the storage needed at the guard
side, guards use an efficient storage/computation method for
hash chains of time/storage complexity O(log2(n)) [10].

2) Steps of the key establishment scheme
[Step 1:] Initially, every guard gi generates a random fractional
key FKi and broadcasts it. The broadcast message also con-
tains the coordinates (Xi, Yi) of the guard, the next unpublished
value of the hash chain, Hn−m(PWi), and the hash chain
index m (m also indicates how many beacons has each guard
transmitted). The message format is:

Guard gi : {FKi‖(Xi, Yi)‖Hn−m(PWi)‖m}K0 , (4)

where {A‖B}K denotes concatenation of A,B and
encryption with key K. Every node verifies that
H(Hn−m(PWi)) = Hn−m+1(PWi), for all received
messages and stores the FKi, the coordinates (Xi, Yi), the
latest published hash value of the hash chain, Hn−m(PWi),



(a) (b) (c)
Fig. 2. (a) Guards g1 ∼ g5 broadcast fractional keys K1 ∼ K5 encrypted with the global broadcast key K0, (b) Nodes announce the Ids of the fractional
keys that they hold, (c) neighbor nodes that have in common at least three fractional keys (th = 3) establish a pairwise key.

and the hash index m.

[Step 2:] Once the nodes have collected the fractional keys
from all the guards that they hear, they broadcast a message
indicating the Ids of the fractional keys that they hold. If
two neighbor nodes s1, s2 have in common fractional keys
FK1 . . . FKw with w above a threshold th, they establish a
pairwise key : Ks1,s2 = H(FK1‖FK2‖ . . . ‖FKw), where H
is a collision-resistant hash function [9].

[Step 3:] After pairwise keys have been established with one-
hop neighbors, every node generates an LBK Ki and unicasts it
to every neighbor encrypted with the pairwise key Ksi.sj

. Each
node stores its own broadcast key Ki used for encrypting its
own messages, and also stores all broadcast keys of its one-hop
neighbors in order to decrypt their broadcast messages.

In figure 2(a) the guards g1 ∼ g5 distribute the fractional keys
to nodes s1 ∼ s7, encrypted with the global key K0. In figure
2(b), we show the set of guards that each node hears. In figure
2(c), by setting the threshold value th = 3, node s1 establishes
a pairwise key with all its immediate neighbors. Node s1

will distribute a local broadcast key Ks1 to all its immediate
neighbors s1 ∼ s5 using the pairwise keys established in step
2. In figure 3, we summarize our decentralized local broadcast
key establishment scheme.

Decentralized local broadcast key establishment scheme

U = {Set of guards}, S = {Set of nodes}
U : Broadcast {FKi‖(Xi, Yi)‖Hn−m(PWi)‖m}K0

S : Verify H(Hn−k(PWi)) = Hn−k+1(PWi),∀ gi ∈ GHs

S : Broadcast IDsi
= {ID1‖ID2‖ . . . ‖IDw}, |GHs| = w

for all si ∈ S
for all IDsj

heard by si

if |⋂(IDsi
, IDsj

)| > th,
sj ∈ Nsi

→ Ksi,sj
= H(FK1‖FK2‖ . . . ‖FKw)

Nsi
= Nsi

∪ {sj} end if end for
end for
for all si ∈ S

for all sj ∈ Nsi

si → sj : {Ksi
}Ksi,sj

end for end for

Fig. 3. The decentralized local broadcast key establishment scheme.
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Fig. 4. (a) All guards located in the shaded area Ac are heard to both nodes
s1, s2, (b) Pkey for a variable threshold value equal to th = |GHs1 | − 3.

B. Setting the key establishment threshold

Since nodes and guards will be randomly deployed within the
network region, specific number of guards heard by nodes may
vary. Hence, each node needs to locally decide the threshold
th based on the number of guards that it hears.

Consider figure 4(a), and assume that a node s1 can hear
|GHs1 | guards. The probability Pkey that s1, s2 hear at least
th common guards given that |GHs1 | guards are heard by s1

is equal to the probability that at least th guards are located
within the shaded area Ac, given that |GHs1 | of them are
located within the communication area of As1 of s1. Due to
the random guard deployment, if |GHs1 | guards are located
within a specific region, those guards are uniformly distributed
[11]. Hence, the probability for one guard to be within Ac

is pg = Ac

πR2 . The probability that more than th guards are
deployed within Ac, given that a total of |GHs1 | are deployed
within πR2 is:

Pkey = P (|GHAc
| ≥ th| |GHs1 | = k)

=
k−th∑
i=0

(
k

th + i

)
pth+i

g (1 − pg)k−th−i

=
k−th∑
i=0

(
k

th + i

)
Ac

πR2

th+i

(1 − Ac

πR2
)k−th−i (5)

where Ac can be computed from figure 4(a) by:

φ = cos−1 l

2R
, Ac = 2R2φ − Rl sin φ (6)

with l = ‖s1 − s2‖. Using (5), (6), each node can determine
its threshold th. In figure 4(b), we present Pkey for different



Fig. 5. A wormhole attack against the broadcast of fractional keys.

values of guards heard |GHs1 | and distances ‖s1 − s2‖, for
th = |GHs1 | − 3.

V. SECURING THE BROADCAST OF FRACTIONAL KEYS

Though once established LBKs prevent wormholes (informa-
tion encrypted at a neighborhood Ni with an LBK Ki cannot
be decrypted outside Ni), an adversary can mount wormhole
during the distribution of the fractional keys. We now provide
mechanism to secure the fractional key distribution.

A. Wormhole attack against the fractional key distribution

Consider figure 5, where an adversary establishes a bi-
directional wormhole link between nodes s1, s2, with s1, s2

being several hops away. In step 1 of the local broadcast key
establishment scheme, guards broadcast their fractional keys.
The adversary records all messages heard by s1, s2 and replays
the messages heard to s1 in the vicinity of s2, and messages
heard by s2 in the vicinity of s1. After the replay, s1, s2 have
a common set of fractional keys GHs1

⋃
GHs2 .

B. Detection of the wormhole attack

We now show how a node can detect a wormhole attack
during the fractional key distribution using two properties:

Single guard property: Reception of multiple copies of an
identical message from the same guard is due to replay or
multipath effects.

Proof: Since guards include a different hash value from
the hash chain on every message they transmit, if a node
receives an identical message more than one times, it can only
be because, (a) a malicious entity replays the message or (b)
there are multipath effects. If we treat multipath effects as a
replay attack, then any node receiving the same transmission
multiple times, assumes it is under a replay attack.

In figure 6(a), As denotes the area where guards heard to
node s are located (circle of radius R centered at s), Ao denotes
the area where guards heard at the origin point of the attack
are located (circle of radius R centered at O) and Ac denotes
the common area Ac = As ∩ Ao. An adversary that records
guards’ transmissions heard at point O and replays them to
node s can be detected due to the single guard property with
a probability P (SG) equal to the probability that at least one
guard lies within Ac,

P (SG) = P (|GHAc
| ≥ 1) = 1 − e−ρgAc (7)

In figure 6(b), we show the detection probability P (SG) for
guard densities ρg , for distances 0 ≤ ‖s−O‖ ≤ 3R, normalized
over R. We observe that if ‖s − O‖ ≥ 2R, the single guard
property cannot detect a wormhole attack. We make use of the
following property to identify wormholes when ‖s−O‖ ≥ 2R.

Communication range constraint property: A node s cannot
hear two guards gi, gj ∈ GHs, that are more than 2R apart,
i.e. ‖gi − gj‖ ≤ 2R, ∀i, j, i 
= j.

Proof: Any guard gi ∈ GHs heard by node s, has to lie
within a circle of radius R, centered at the node s, ‖gi − s‖ ≤
R,∀i ∈ GHs. Hence, there cannot be two guards within a circle
of radius R, that are more than 2R apart.

‖gi − gj‖ ≤ ‖gi − s‖ + ‖s − gj‖ ≤ R + R = 2R (8)

We now compute the detection probability P (CR) based on
the communication range constraint property. Consider figure
6(c) where if any two guards within As, Ao have a distance
larger that 2R the attack is detected. Though P (CR) is not
easily computed analytically, we can extract a lower bound on
P (CR) as follows. In figure 6(c), the vertical lines defining
shaded areas Ai, Aj , are perpendicular to the line connecting
s,O, and have a separation 2R. If there is at least one guard
in the shaded area Ai and at least one guard in the shaded
area Aj , then ‖gi − gj‖ > 2R and the attack is detected. Note
that this event does not include all possible cases for which
‖gi − gj‖ > 2R, and hence it yields a lower bound.

P (CR) = P (‖gi − gj‖ > 2R, gi, gj ∈ GHs)

≥ P (CR
⋂

(|GHAi
| > 0 ∩ |GHAj

| > 0)) (9)

= P
(
CR|(|GHAi

| > 0 ∩ |GHAj
| > 0)

)
P (|GHAi

| > 0 ∩ |GHAj
| > 0) (10)

= P (|GHAi
> 0| ∩ |GHAj

> 0|) (11)

= (1 − e−ρgAi)(1 − e−ρgAj ) (12)

where (9) follows from the fact that the probability of the inter-
section of two events is always less or equal to the probability
of one of the events, (10) follows from the definition of the
conditional probability, (11) follows from the fact that when
|GHAi

| > 0 ∩ |GHAj
| > 0, we always have a communication

range constraint violation (P (CR|(|GHAi
| > 0∩|GHAj

| >
0)) = 1), and (12) follows from Ai, Aj being disjoint areas.

We can show that the lower bound on P (CR) is maximized
when Ai = Aj , but the proof is omitted due to space
limitations. In figure 6(d), we show the lower bound on
P (CR), by setting A′

i = maxi{Ai} such that Ai = Aj .
Note that for values ‖s − O‖ ≥ R, P (CR) is very close to
unity for any value of ρg . The lower bound P (CR) increases
with the increase of ‖s − O‖ and attains its maximum value
for ‖s − O‖ = 4R when Ai = Aj = πR2. For values
‖s − O‖ > 4R the lower bound on P (CR) is equal to the
case of ‖s − O‖ = 4R.
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Fig. 6. Single guard property, (a) a node s cannot hear multiple copies of an identical message, (b) Detection probability P (SG). Communication range
constraint violation, (c) a sensor cannot hear two guards that are more than 2R apart, (d) Detection probability P (CR).

Detection probability of a wormhole attack: By combining
the two previously presented detection mechanisms we can
derive a lower bound on the probability of wormhole detection
Pdet during the broadcast of the fractional keys. By setting
Ai = Aj and maximizing Ai regardless of the distance ‖s−O‖,
the areas Ai, Aj , Ac do not overlap as shown in figure 8(a).
Hence, the events of a guard being located at any of these areas
are independent and we can derive a lower bound on Pdet:

Pdet = P (SG ∪ CR) = P (SG) + P (CR) (1 − P (SG))

≥ (1 − e−ρgAc) + (1 − e−ρgA′
i)2e−ρgAc (13)

The quantity in (13) is a lower bound on Pdet since we
used the lower bound on P (CR). In figure 8(b), we show the
lower bound on Pdet for R ∈ [0, 4R]. Note that the lowest
detection probability is Pdet ≥ 99.48%, attained at ρg = 0.01.
From figure 8(b), we observe that a wormhole attack during the
distribution of the fractional keys is detected with a probability
very close to unity, independent of the distance ‖s − O‖.

C. Key establishment in the presence of wormholes

Although a wormhole can be detected using the two detection
mechanisms, a node under attack cannot distinguish the valid
subset of guards from the replayed ones. We now describe the
Closest Guard Algorithm (CGA) to resolve the guard ambiguity.

CGA – The node s broadcasts a nonce η along with its Id
and waits for the first authentic reply from a guard gi. All
guards that hear nonce η, reply with a message containing
their coordinates, the next hash value of their hash chain and
the nonce η. The message transmitted from each guard is
encrypted with the pairwise key Kgi

s only known to s, gi.
The node identifies the guard g′i whose reply arrives first
as the closest guard to s. Then using the communication
range constraint property, it identifies the set GH ′

s as all the
guards that are not more than 2R away from g′i, and uses the
fractional keys received from GH ′

s to establish pairwise keys
with its immediate neighbors.

To execute CGA, a node must be able to communicate bi-
directionally with at least one guard. The probability Ps→g of a
node having a bi-directional link is: Ps→g = 1−e−ρgπr2

. From
Ps→g , we can compute the probability Pbd that all nodes can
bi-directionally communicate with at least one guard: Pbd =
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Fig. 8. (a) Combination of the single guard and communication range
constraint properties. (b) Wormhole detection probability Pdet.

(1−e−ρgπr2
)|S|. For a desired probability Pbd, we can compute

ρg, r as:

r ≥
√

− ln
(
1 − |S|√Pbd

)
πρg

, ρg ≥
√
− ln

(
1 − |S|√Pbd

)
πr2

(14)

Closest Guard Algorithm (CGA)

1. s : Broadcast {η||Ids}.
2. if gi hears {η||Ids},

Reply { (Xi, Yi) || η || IDgi
|| Hn−m(PWi) || m }K

gi
s

3. Identify g′i ∈ GHs that replies first with correct nonce.
4. Set GH ′

s : {gi ∈ GHs � ‖g′i − gi‖ ≤ 2R}.

VI. PERFORMANCE EVALUATION

Simulation setup: We generated random network topologies
confined in a square area of size A=10,000. For each network
topology we randomly placed, (a) 5,000 nodes within A, with
a communication range r = 4, (b) guards with variable density
ρg and communication range R. To ensure statistical validity,
we repeated each experiment for 1,000 networks and averaged
the results. Note that to avoid border effects we considered
toroidal distance instead of regular Euclidean distance [11].

Key establishment with one-hop neighbors: In our first
experiment we evaluated the percentage of one-hop (immediate)
neighbors pimmed that each node is able to establish a local
broadcast key with. In figure 7(a), we present pimmed vs.
GHs−th for variable guard density ρg . Note that we preferred
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Fig. 7. Percentage of immediate neighbors that share more than th fractional keys for rs = 0.5, A= 10.000 for, (a) varying guard density ρg , (b) varying
guard communication range R. Percentage of non-immediate neighbors that share more than th fractional keys for rs = 0.5, A= 10.000 for, (c) varying guard
density ρg , (d) varying guard communication range R.

to plot pimmed vs. GHs − th, instead of th since th varies
locally for every node s depending on GHs.

We observe in figure 7(a) that an increase in ρg , requires a
higher difference GHs − th to achieve the same pimmed. This
is due to the fact that while increasing density increases the
number of guards heard by more nodes, the joint probability of
many guards being heard by multiple nodes does not increase
as much as GHs. Hence, a threshold value close to GHs will
isolate a node s from many of its one-hop neighbors. Hence,
we need to select a th significantly lower than GHs. Figure
7(b) presents pimmed for different guard communication range
R. Note that an increase in R requires a th significantly lower
than GHs, to avoid one-hop neighbor isolation.

Isolation of non-immediate neighbors: In our second experi-
ment we evaluated the percentage of non-immediate neighbors
pnon−im that share more than th fractional keys as th varied.
For each node, we took into account in the percentage calcu-
lation, only those neighbors that heard at least one common
guard with the node under consideration.

In figure 7(c), we show both pnon−im vs. GHs − th in a
logarithmic scale for varying ρg, and show how we can achieve
higher isolation of non-immediate neighbors with the increase
of ρg . This is due to the fact that as ρg increases, more guards
are heard to each node and hence, we can adjust the threshold
with better accuracy compared to the case where GHs has
a low value. In figure 7(d), we present both pimmed and
pnon−im for different guard-to-node communication range R,
and show how we achieve higher isolation of non-immediate
neighbors with the increase of R.

Choosing the threshold value: From figures 7(a)–(d) we can
determine the appropriate value of threshold th based on our
security constraint and system parameters. For example, if our
security constraint requires a non-immediate neighbor isolation
above 99%, we can achieve a pimmed = 0.64 for ρg = 0.01
when th = GHs − 2. By increasing the guard density to ρg =
0.04 for the same constraints, we can achieve a pimmed = 0.90.
Hence, under any security constraints, we can select the system
parameters, ρg , R, so that we maximize pimmed, while keeping
pnon−im under the given constraint.

VII. CONCLUSION

We presented a graph theoretic approach characterizing
recently reported [1] wormhole attacks on wireless ad hoc
networks. We derived the necessary and sufficient conditions for
any transformation to remove wormholes, and showed that any
candidate solution preventing a wormhole attack must produce
a connected subgraph of the geometric graph model of the net-
work. We also proposed a cryptography-based solution relying
on local broadcast keys and provided a distributed mechanism
for establishing them in randomly deployed networks. We
analytically determined the level of security achieved by our
scheme based on spatial statistics theory. We showed that the
appropriate choice of network parameters eliminates wormhole
links with a probability close to unity and verified the validity of
our results via simulations. It is our claim that in the absence
of location or distance bounding, we must use probabilistic
techniques for dealing with wormholes.
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