Anonym communication with exercises

Holczer Tamás
4. 10. 2010.
Course: Security of Electronic Commerce
Outline – Anonym communication with exercises

- Summary of Tor and Chaum mixes
- Excercise: Generate a „Tor” network
- Numeric exercises
- Introduce Dining cryptographers for 3 participant
- Excercise: Generalize dining cryptographers
- Advanced techniques for anonym function evaluation
 - Brandt protocol
 - Anonym veto
 - Oblivious transfer
 - Yao’s garbled circuits
- Excercise: Generate a „Tor” network with active attackers (if enough time)
Summary of Chaum mixes and TOR

- Chaum mix
 - Chain of mixes
 - Onion encryption (layers of encryption)
 - Collect \rightarrow decrypt \rightarrow forward
 - No real time functionality

- Tor
 - Low latency
 - No waiting before forwarding
 - No protection against global adversary
Exercise: Manual TOR

- Task: build a „Tor” network manually
- Roles: user, webserver, intermediate node, attacker
- Attacker: global passive
- Steps:
 - Randomly select roles (remains hidden)
 - Define protocol
 - Key exchange (without attackers)
 - Random data distribution to be forwarded (without attackers), integer 0-99, random recipient
 - Data forwarding
 - Attackers’ guess
 - Discussion
Numeric exercises

- **Excercise 1.**
 - Linear network, N node
 - 2 user inserts a message with A time shift (t0=1, t1=A)
 - Each node sends to next hop with some delay
 - Distribution of delay is geometric (parameter p)
 - The two messages leave the network with C time interval B time later (t2=A+B, t3=A+B+C)
 - What is the probability that the messages leave the network in inverse order?

- **Excercise 2.**
 - Ring network, N node
 - Goal: sender anonymity
 - Each node sends to
 - right neighbor with probability p
 - left neighbor with probability q
 - destination D with probability $1-p-q$
 - What is the entropy of the attacker, when node A sends to D?
Solution

\[E_1: \frac{(1-p)^C}{1+(1-p)^C} \]

\[E_2: p_i = \left(p^i + q^{N-i} \right) \frac{1}{1-p^N} \frac{1}{1-q^N} \frac{1-(pq)^N}{1-pq} \]

\[H = -\sum_{i=0}^{N-1} p_i \log p_i \]
Dining cryptographers (Chaum)

- Basic example of anonymous communication
- Offers sender and recipient anonymity
- Three cryptographers, who paid? Them or NSA?
- How to calculate private OR?

1. Everyone picks random r_i
2. Pass to right
3. Difference
4. Add message if any
5. Broadcast sum (xor)
6. Total sum = message

Everyone can be the recipient
No one knows the sender

$$S = s_1 + s_2 + s_3 = m_1 + m_2 + m_3$$
Exercise: Generalize DC

- Build DC in two separate groups
- Each group defines protocol
- Protocol description
- Key exchange with merged groups
- One node picked randomly from each group
- Run each protocol with merged groups
- Attack the other’s protocol
- Discussion
DC: Generalization, problems, properties

- N>3 nodes
- Every node must share a secret bit with every other node
 \[S_i = \sum s_{i,j} + m_i \]
- Every node shares a key with the two neighbours (ring)
 - Two attacker can divide the anonymity set to two
- In general, attackers can divide the graph of users into smaller anonymity sets
- Collision (more than 1 sender) leads to ambiguous result
- Problems:
 - Key management, new users
 - Result can inverted maliciously
- Non-interactive, unconditional
Socialist millionaries’ protocol (Brandt) – Building blocks

- Similar to „Who is richer? My wealth is a secret!” (Yao 82)
- El Gamal Encryption (brief reminder):
 - \(p,q \) large primes
 - \(p-1=kq \) for some \(k \)
 - private key: \(x \in \mathbb{Z}_q \)
 - public key: \(y=g^x \)
 - encryption: \((a,b) = (my^r, gr) \)
 - decryption: \(a/b^x=my^r/gr^x=my^r/y^r=m \)
- Homomorphism of El Gamal Encryption:
 - same key, product of two messages
 - \((a_1a_2, b_1b_2) = (m_1m_2y^{r_1+r_2}, gr^{1+r_2}) \)
 - \(a_1a_2/b_1^xb_2^x = m_1m_2y^{r_1+r_2}/ g^{xr_1+xr_2} = m_1m_2y^{r_1+r_2}/y^{r_1+r_2}=m_1m_2 \)
- El Gamal encryption is semantical secure if DDH problem is intractable (DDH: knowing \(g^a,g^b \), hard to distinguish between \(g^{ab} \) and \(g^c \))
Socialist millionaries’ protocol (Brandt) – Building blocks

- **Distributed key generation:**
 - x_i chosen at random by each participant
 - $y_i = g^{x_i}$ is broadcast with proof of knowledge of x_i (later)
 - $y = \prod y_i$ is the public key
 - $x = \sum x_i$ is the private key

- **Distributed decryption:**
 - (a, b) cyphertext
 - b^{x_i} is broadcast with proof of equality of logarithm of b^{x_i} and y_i
 - $m = a / \prod b^{x_i}$

- **Random exponentiation:**
 - M_i random number
 - (a^{M_i}, b^{M_i}) is broadcast with proof of equality of logarithm of a^{M_i} and b^{M_i}
 - $(a^M, b^M) = \prod (a^{M_i}, b^{M_i})$
Socialist millionaries’ protocol (Brandt) – Building blocks

- **Proof of knowledge of discrete logarithm (interactive form):**
 - Alice and Bob know \(v \) and \(g \), but only Alice knows \(x \), so that \(v = g^x \).
 - \(A \rightarrow B: a = g^z, \) \(z \) random value
 - \(B \rightarrow A: c \) random value
 - \(A \rightarrow B: r = (z+cx) \mod q \)
 - \(B \) checks: \(av^c = g^z (g^x)^c = g^{(z+cx)} = g^r \)

- **Proof of knowledge of discrete logarithm (non-interactive form):**
 - Alice and Bob know \(v \) and \(g \), but only Alice knows \(x \), so that \(v = g^x \).
 - \(e = H(g,r,v) \)
 - \(r = g^k \) \(s = k-xe \) proof: \((r,s) \)
 - verification: \(g^s v^e = g^{k-xe} g^{xe} = g^k = r \)

- **Proof of equality of two discrete logarithms (interactive form):**
 - Alice and Bob know \(v,w, g1, \) and \(g2 \), but only Alice knows \(x \), so that \(v = g1^x \) and \(w = g2^x \)
 - \(A \rightarrow B: a = g1^z \) and \(b = g2^z, \) \(z \) random value
 - \(B \rightarrow A: c \) random value
 - \(A \rightarrow B: r = (z+cx) \mod q \)
 - \(B \) checks: \(av^c = g1^z (g1^x)^c = g1^{(z+cx)} = g1^r \) and \(aw^c = g2^z (g2^x)^c = g2^{(z+cx)} = g2^r \)
Socialist millionaries’ protocol (Brandt) – Building blocks

- Proof that an encrypted value is one out of two values:
 - \(m \in (1, z) \), without revealing \(M \)

1. If \(m = 1 \), Alice chooses \(r_1, d_1, w \) at random and sends \((\alpha, \beta), a_1 = g^{r_1 \beta^{d_1}}, b_1 = y^{r_1 \left(\frac{\alpha}{z}\right)^{d_1}} \) and \(a_2 = g^w, b_2 = y^w \) to Bob.

 If \(m = z \), Alice chooses \(r_2, d_2, w \) at random and sends \((\alpha, \beta), a_1 = g^w, b_1 = y^w, a_2 = g^{r_2 \beta^{d_2}}, \) and \(b_2 = y^{r_2 \alpha^{d_2}} \) to Bob.

2. Bob chooses a challenge \(c \) at random and sends it to Alice.

3. If \(m = 1 \), Alice sends \(d_1, d_2 = c - d_1 \mod q, r_1, \) and \(r_2 = w - rd_2 \mod q \) to Bob.

 If \(m = z \), Alice sends \(d_1 = c - d_2 \mod q, d_2, r_1 = w - rd_1 \mod q, \) and \(r_2 \) to Bob.

4. Bob checks that \(c = d_1 + d_2 \mod q, a_1 = g^{r_1 \beta^{d_1}}, b_1 = y^{r_1 \left(\frac{\alpha}{z}\right)^{d_1}}, a_2 = g^{r_2 \beta^{d_2}}, \) and \(b_2 = y^{r_2 \alpha^{d_2}} \).
Socialist millionaries’ protocol (Brandt) – The veto protocol

- **1. round: Distributed key generation**
- **2. round:** $E(b_i)$
 - $d_i = 1$ for agree
 - $d_i = Y$ for veto (Y publicly known constant)
 - $D(E(d_i)) \in (1, Y)$, can be proven
 - compute $\prod_i E(d_i)$
- **3. round:** $\prod_i (E(d_i))^M$
 - compute $\prod_i (E(d_i))^M$ M random value, not known to anyone
- **4. round:** $d = D_{joint}(\prod_i (E(d_i))^M)$,
- No veto: $d = 1$
- Veto: d random value
Anonym veto protocol (Hao, Zielinski)

1. round
- x_i private key computed
- g^{x_i} is broadcast (with knowledge proof of x_i)
- compute g^{y_i}:

$$g^{y_i} = \frac{\prod_{j=1}^{i-1} g^{x_j}}{\prod_{j=i+1}^{N} g^{x_j}}$$

2. round
- broadcast (w kp):

$$g^{c_iy_i} = \begin{cases} g^{r_iy_i} & \text{if veto, } r_i \text{ random} \\ g^{x_iy_i} & \text{if no veto} \end{cases}$$

- compute:

$$D = \prod_{i=1}^{N} g^{c_iy_i}$$
Anonym veto protocol (Hao, Zielinski)

- If no veto: \(D=1 \)

\[
D = \prod_{i=1}^{N} g^{c_i y_i} = \prod_{i=1}^{N} g^{x_i y_i} = \prod_{i=1}^{N} \left(\prod_{j=i+1}^{N-1} g^{x_j} \right)^{x_i} =
\]

\[
\prod_{i=1}^{N} \prod_{j=i+1}^{N} g^{x_j x_i} = \prod_{j=1}^{N} \prod_{i=j+1}^{N-1} g^{x_j x_i} = \prod_{j=1}^{N} \prod_{i=j+1}^{N-1} g^{x_j x_i} = i \leftrightarrow j \quad 1
\]

- If veto: \(D=\text{random} \)
Comparison

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Round</th>
<th>Security</th>
<th>Total traffic</th>
<th>Total comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaum</td>
<td>’88</td>
<td>2</td>
<td>unconditional</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Brandt</td>
<td>’05</td>
<td>4</td>
<td>DDH</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Hao Zielinski</td>
<td>’06</td>
<td>2</td>
<td>DDH</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Oblivious transfer with simple example

- Oblivious transfer: similar to PIR, but
 - the index of the record must remain unknown to the database (PIR)
 - other values in the database must remain unknown to the client
- RSA based k out of N oblivious transfer (OT$_k^N$) (~Digicash)

\[
\begin{align*}
X_0 = m_0^e, \ldots, X_N = m_N^e \\
Y_0 = X_{k_0} k_0^e, \ldots, Y_{k-1} = X_{k_{k-1}} k_{k-1}^e \\
C_0 = Y_0^d, \ldots, C_{k-1} = Y_{k-1}^d
\end{align*}
\]

Yao’s garbled circuit

- Secure two party computation
- Generalization of DC and veto
- Goal: compute $f(x,y)$
- Constraint: x,y must be hidden from the other participant (some information can leak from $f(x,y)$)

Steps:
- f is represented as combinatorial circuit
- The circuit is garbled
- Oblivious transfer
- The circuit is evaluated
Garbled gate with two input

- Alice generates four keys for inputs x, y: $K_{x=0}$, $K_{x=1}$, $K_{y=0}$, $K_{y=1}$
- Alice creates four boxes $B_{00} = f(0,0)$, $B_{01} = f(0,1)$, $B_{10}…$
- Each box is encrypted with the corresponding keys:
 \[B'_{uv} = E(K_{x=u}||K_{y=v}, B_{uv}) \]
- Boxes are sent to Bob in random order
- Bob gets $K_{x=a}$ from Alice
- Bob uses OT to get $K_{y=b}$
- Bob decrypts B'_{ab}
- Analysis:
 - Alice does not know Bob’s input (OT)
 - Bob does not know Alice’s input (encrypted)
 - Active adversary? (results not discussed here)
- Larger circuit: output is key (instead of signal) for next gate
- Implementation: FairPlay compiler
Excercise: Manual TOR

- Task: build a „Tor” network manually
- Roles: user, webserver, intermediate node, attacker
- Attacker: global active
- Steps:
 - Randomly select roles (remains hidden)
 - Define protocol
 - Key exchange (without attackers)
 - Random data distribution to be forwarded (without attackers), integer 0-99, random recipient
 - Data forwarding
 - Attackers’ guess
 - Discussion