Security and Privacy in Cloud Computing

Molnár Bálint(GKK4ZF)
Biztonságos e-kereskedelemben alapjai
Content

• What is Cloud Computing?
 – Type of service offered through cloud

• Infrastructure Security
 – Network level
 – Host level
 – Application level
Content cont.

• Data Security
 – Confidentiality
 – Integrity
 – Availability

• Privacy
 – Key Privacy Concerns
 – Privacy Principles
Evolution of Cloud Computing
Cloud Definition

• Five main attributes:
 – Multitenancy (shared resources)
 – Massive scalability
 – Elasticity
 – Pay as you go
 – Self-provisioning of resources
SPI Framework
Cloud Services Delivery Model

<table>
<thead>
<tr>
<th>Level</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Infrastructure** *(servers, storage, databases)* | A highly scaled redundant and shared computing infrastructure accessible using Internet technologies Consists of servers, storage, security, databases, and other peripherals | • Amazon EC2, S3, etc.
• Rackspace Mosso offering
• Sun’s cloud services
• Terremark cloud offering |
| **Platform** | A platform that enables developers to write applications that run on the cloud A platform would usually have several application services available for quick deployment | • Microsoft Azure
• Google App Engine
• Force.com |
| **Software** | Applications that are enabled for the cloud Supports an architecture that can run multiple instances of itself regardless of location Stateless application architecture Monthly subscription-based pricing model | • Google Docs
• MobileMe
• Zoho |

While cloud-based software services are maturing, cloud platform and infrastructure offerings are still in their early stages.
SaaS

• User rents the software for use
• Software can be accessed through any authorized device
• Companies can outsource the hosting and the management of application to third party.
• Just basic hardware required to use
• Cannot be completely customized
PaaS

• Vendor offers development environment
• Vendor toolkit
• Developers can develop application without installing any tool in the computer
• Browser based
• Supports multi users
• Multitenant deployment architecture
<table>
<thead>
<tr>
<th>Supported area</th>
<th>In-house development platform</th>
<th>PaaS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoints: desktops, browsers, mobile devices</td>
<td>Most endpoints and clients are supported</td>
<td>Mostly browser-based</td>
</tr>
<tr>
<td>Business logic</td>
<td>Multiple vendors are supported</td>
<td>Restricted by PaaS model</td>
</tr>
<tr>
<td>Application development framework</td>
<td>Java Platform, Enterprise Edition (Java EE), .NET, etc.</td>
<td>Restricted by PaaS model</td>
</tr>
<tr>
<td>Application servers</td>
<td>Multiple vendors are supported</td>
<td>Provided by PaaS</td>
</tr>
<tr>
<td>Databases</td>
<td>Multiple vendors are supported</td>
<td>Provided by PaaS</td>
</tr>
<tr>
<td>Servers and VMs</td>
<td>Multiple vendors are supported</td>
<td>Provided by PaaS</td>
</tr>
<tr>
<td>Storage</td>
<td>Multiple vendors are supported</td>
<td>Provided by PaaS</td>
</tr>
</tbody>
</table>
IaaS

• The vendor provides the entire infrastructure
• Scalability
• Pay as you go
Cloud Deployment Models

• Public
 – Third party vendor tasks
 • Shares resources
 • Security management

• Private
 – Emulate cloud on private network
 – Organization do everything
Cloud Deployment Models Cont.
Why adopt to Cloud?

• No infrastructure
• Billed actual use only
• Flexibility
• High availability
• Lower Costs
Why not adopt to Cloud?

- Security
- Privacy
- Interoperability
Infrastructure Security
Network Level

• Private Cloud
 – No changes required

• Public Cloud
 – Changes required
 • Ensuring the confidentiality and integrity
 • Ensuring proper access control
 • Ensuring the availability of the internet-facing resources
Data Confidentiality, Integrity

• Data previously confined to a private network are now exposed to the Internet

• Example: 2008 (Amazon Simple DB) flaw in digital signature algorithm
Proper Access Control

• Costumers have limited access to
 – Relevant network-level logs
 – Data

• IP Reusable problem
 – Somebody can reach your resources
 – Amazon Elastic IP

• Problem exist in the internal network too
Availability of Internet-facing resources

• Any attack on the internet can deny your cloud access
 – DNS attack
 – Network misconfiguration
 • 2008 Pakistan Telecom
 – DoS
 • Not only in the external network (IaaS)
Network Level Mitigation

- The network-level risks exist in IaaS, SaaS, PaaS
- Use private cloud if you can afford
- Encrypt transmitted data
- Firewall
Infrastructure Security
Host Level

• Power of thousands of compute nodes, combined with the homogeneity of the operating system
• PaaS SaaS Security
• IaaS Security
PaaS SaaS Security

• Host operating systems, platforms, processes managed by the cloud operator
• ISO 27002 or SysTrust
• Abstraction layer
 – SaaS cannot be accessed by the user
 – PaaS can be accessed through API
IaaS Security

• Virtualization software security
 – Important to secure this layer
 – Managed by the CSP
 – Vulnerable hypervisor

• Virtual Server Security
 – Customers are responsible for the security
 – Threats
 • Stealing keys used to access and manage hosts (SSL)
 • Attacking vulnerable services (FTP)
 • Hijack Accounts (weak password)
 • Deploying trojans embedded in the software
Secure Virtual Servers

- Install custom build OS
- Install recommended OS
- Run Firewall and open only necessary ports
- Run only the required services
- Enable logging
Infrastructure Security
Application Level

- Web application security
- Browser security
- SaaS Application Security
- PaaS Application Security
- IaaS Application Security
SaaS application Security

• Provider manages the entire application
• Customers are responsible for operational security
• Privileges
 – Google Docs image problem
• Providers commingle customers data
 – No encryption(key management)
 – Tagged with unique customer tag
 – Could problem during update
PaaS application Security

- PaaS platform (runtime engine)
 - Sandbox

- Customer deployed application
 - Become familiar with the API
 - API with security features
 - Currently no standards
IaaS application Security

- Providers treat the customers application as a black box
- Customers are responsible for all aspects of the security
Data Security and Storage

• Primary risk is not using encryption during data transmit

• Use secure protocol(SCP, SFTP, HTTPS)

• Should encrypt data-at-rest
 – Data stored in big databases with other users data
 – For stored data only

• Processed data must be unencrypted
 – 2009 June fully homomorphic encryption(Stanford)
Data Security and Storage Cont.

• Useful to know where and when the data located
• Prove data provenance
 – \(\text{SUM}(((2*3)*4)/6)-2) = $2.00 \)
• Data remanence
• What metadata does your provider have from your data
 – System, Application logs
Data Confidentiality

• Access Control
 – Sadly the most common is the username password

• How the data stored in the cloud protected?
 – If Encrypted
 • Algorithm
 • Key Length
 • Who manages your keys?
 – CSP usually use one key for the whole data or worse one key for all customer
Data Integrity

• Encryption is for Confidentiality
• Hash
• Problems:
 – Explicitly knowledge of the whole data sets
 – Data sets are dynamic and frequently changing
Data Availability

• Availability of the CSP
• Examples
 – 2009 March: Carbonite Inc lost 7500 customers data
 – 2009 February: Coghead suddenly shut down
Privacy

• What is privacy:
 – “The rights and obligations of individuals and organizations with respect to the collection, use, retention, and disclosure of personal information.”
 – any information relating to an identified or identifiable individual (data subject)
Data Life Cycle

• Protection of personal information should consider the impact of the cloud on each of the following phases.
Key Privacy Concerns in the Cloud

• Access
 – Data subjects have rights to know what personal information is held. Can make a request to stop processing
 – Access to all personal information
 – Problem:
 • How can you ensure that all of your information deleted?
Key Privacy Concerns in the Cloud

• Compliance
 – What are the privacy compliance requirements in the cloud?
 – Who is responsible for maintaining the compliance?
 • Data may be stored in multiple countries
Key Privacy Concerns in the Cloud

• Storage
 – Where is the data in the cloud stored?
 – Privacy laws in various countries place limitations

• Retention
 – How long is personal information retained?
 – Who enforces the retention policy in the cloud?
Key Privacy Concerns in the Cloud

• Destruction
 – Can you truly destroy information once it is in the cloud?
 – Did the CSP really destroy the data?

• Privacy breaches
 – How do you know that a breach has occurred?
 – How is it determined who is at fault?
Privacy Principles

• Collection Limitation Principle
 – collection of personal data should be limited to the minimum amount of data required
 – Different data elements about individuals are collected and later merged

• Use Limitation Principle
 – personal data should not be disclosed, otherwise used for purposes other than those with the consent of the data subject
 – Critical because of the centralized database
 – Combine data from multiple sources
Privacy Principles

• Security Principle
 – Personal data should be protected by reasonable security safeguards

• Retention and Destruction Principle
 – data should not be retained for longer than needed
 – Data should be destroyed in a secure way
Privacy Principles

• Transfer Principle
 – data should not be transferred to countries that don’t provide the same level of privacy protection as the organization that collected the information
References:

Questions??