Browser security issues and
solutions

Outline

Why Are Browsers Attack Targets?

Security in Google Chrome

Security in Chromium

Malicious Extensions

Cookie stealing

Vulnerabilities Resulting From the Use of HTML and JavaScript
Vulnerabilities in SSL/TLS

ZIP Bombs, XML Bombs, XML eXternal Entities

Why Are Browsers Attack
Targets?

The web browser is our window to the world. We use
it every day for tasks including:

\YET]

Shopping

Social Networking
Finance Management

Business

The browser has access to personal information as plaintext, so it’s
inevitable that it gets attacked.

Security in Google Chrome

Try to minimize the damage

Every sufficiently big software contains bugs
Mozilla Firefox’s source code has approximately 3.7 million lines

Let’s try to minimize the...
Severity of vulnerabilities
Window of vulnerabilities
Frequency of exposure

Reducing the severity of vulnerabilities

Web content is run within a JavaScript Virtual Machine, to protect the
web sites from each other

Exploit mitigation
ASLR (Address Space Layout Randomization)
Randomizing the mapping location of key system components
DEP (Data Execution Prevention)
Marking memory pages as non-executable

SafeSEH (Safe exception handlers)
Heap Corruption Detection
Stack Overrun Detection using canaries

Using an OS-level sandbox

Chrome’s architecture

Layers of Defense around Google Chrome’s Rendering Engine

0S-level sandbox
0S/runtime exploit barriers

0S/runtime exploit barriers JavaScript sandbox

browser kernel web content
[trusted) [untrusted)
IPC channel '

browser kernel process rendering engine process

Charles Reis, Google; Adam Barth, UC Berkeley ; Carlos Pizano, Google:
Browser Security: Lessons from Google Chrome

Chrome’s architecture

Browser kernel
Handles drawing to the screen
Handles the cookie, bookmark and history databases
Acts with the user’s authority

Rendering engine
Acts with the authority of the so called Web principal
Not trusted to interact with the user’s filesystem
Draws to an onscreen buffer
Contained in an OS-level sandbox
Communicates with the browser kernel through an IPC channel

Chrome’s architecture

Rendering engine
Runs with a restricted security token
Runs with a restricted Windows job object
Runs on a separate desktop

There are problems, e.g. font loading

Solution: Fonts are loaded by the browser kernel, the rendering engine can
access them via the Windows font cache

Techniques not used by Chrome

System Call Interposition

Binary rewriting

Low rights mode to prevent writing to the filesystem (used by IE7)
OS provided sandbox on Mac OS X

AppArmor on Linux

Reducing the window of vulnerabilities

Many users run old, unpatched versions of browsers

Need to make the update process convenient for the end user

Reducing the frequency of exposure

Warn the user before visiting malicious sites

Google works with StopBadware.org
32-bit prefixes are downloaded
Service is queried on match
There can be human errors, e.g. flagging all URLs as malicious in 2009

Compatibility issues

Chrome runs plug-ins out of sandbox
They expect direct access to the underlying OS
This allows for features like full screen videochat

Problems with the same-origin policy
Some JavaScript calls need to be made between pages

Each rendering engine has access to all of the user’s cookies (e.g. for loading
images from other pages)

Security in Chromium

Chromium's attacker model

The attackers possess a domain name with a valid HTTPS
certification not on blacklist

They can convince the user to visit the malicious web site
SPAM
Ads
Hosting interesting content

There is an unpatched vulnerability in the browser

Goals

Prevent the installation of persistent malware (e.g. botnet clients)
Prevent the installation of keyloggers

Pervent file theft

More on the architecture...

The browser kernel treats the rendering engine as a black box

The kernel grants rights to the whole rendering engine

It is up to the rendering engine to enforce the same-origin policy

A malicious website can attack other sites rendered by the same engine

67.4% of Firefox, Safari and IE vulnerabilities from 2007 would have
occured in the rendering engine

70.4% of arbitary code execution vulnerabilitiess would have been
mitigated by Chromium's architecture

More on the sandbox...

The rendering engine runs with a restricted security token
An object that describes the security context of a process or thread

Contans Security |Dentifiers, privilege lists, statistics, etc.
All SIDs are set to DENY_ONLY

The engine runs on a separate windows desktop

More on the sandbox...

Windows Job Object

A job object allows groups of processes to be managed as a unit. Job objects
are namable, securable, sharable objects that control attributes of the
processes associated with them.

The engine runs in a Windows Job Object restricting its ability to
Create new Processes

Read/write the clipboard
Access USER handles

More on the sandbox...

Limitations
FAT32 does not have ACLs
Objects with NULL DACLs can be accessed

User input, file UL/DL

User input is handled by the browser kernel, which dispatches them
according to the currently focused element

File upload
A file picker dialog is displayed by the browser kernel
Selecting a file grants authorization to the rendering engine to access it

File download

The kernel downloads files requested by the rendering engine to a
designated directory

Some exceptions: reserved device names, Desktop.ini, files ending in .local,
other files which could be used for privilege elevation

User input, file UL/DL

File download

URLs beginning with file:// are only opened if the user typed them in the
address bar. This is to thwart XXE (XML eXternal Entities) attacks

Malicious Extensions

Extension in...

Internet Explorer
So called Browser Helper Objects (BHOs)
Native code
They share the browser’s address space

Mozilla Firefox (which will int be the focus of the presentation)
JavaScript API
JavaScript code is available for analysis
Can contain native code (,components”), but rarely used

Extensions in a browser are like untrusted code in an OS

ldeas to safely run extensions

Signed code

Only guarantees that the extension has not been modified during download
(Mozilla Firefox)

Rarely used

Static analysis
Hard to do for JavaScript, which is loosely typed, with prototype-based
inheritance

Model Carrying Code

Untrusted code comes equipped with a high-level model of its security-
relevant behavior

ldeas to safely run extensions

Proof Carrying Code

Can be difficult to produce
Add runtime checks that enforce a security property
Produce a proof

Execution monitoring

Kirda et. al.: A detection technique for spyware that hook into IE through the
BHO interface

Controlled environment, test inputs

Behavioral patterns identified at the level of Internet Explorer and Windows APIs
Combines dynamic and static analysis

Does not work for BHOs reading from IE's address space directly

Louw et. al.: BrowserSpy

A Firefox extension which...
Reads all form data, even those sent over encrypted connections
Collects all visited URLs
Collects all Password Manager entries

The can be used for...
|dentity theft
Account theft
Collecting credit card data
Fingerprinting the browsing patterns of the user

Louw et. al.: BrowserSpy

Hiding itself from the user

Removes itself from the list of extensions using the nsIRDFDataSource
interface

Injects itself into another extension, even if the extension is code signed -
the browser does not check the integrity after installation

Caches data, sends it in periodic intervals, to offset it from the event

Modifies perfs.js

Prefs.js is a JavaScript file storing the user’s options

Written with very little effort, using only 4 interfaces

Enhancements made to Firefox by Louw et. al.

Firefox Web
Extension Manager Browser

A New

Extension Extension Extension

Installation Loading
Phase Phase

User An Installed Authorization

Authorization Extension and Integrity

Check
A Loaded &

Executing
Extension

Sensitive Runtime

User Data Monitor

Metwork
Services

Mike Ter Louw, Jin Soon Lim, V. N. Venkatakrishnan:
Enhancing web browser security against malware extensions

Enhancements made to Firefox by Louw et. al.

Based on code signing

Problems

Extensions can be installed from outside Firefox - signature checking only on
installation is not enough

Allowing only signed extensions is not good either, as it would need self-signing

Solution

Sign extensions locally after installation

Extend the browser with the ability to check it every time it's loaded
Don’t load modified extensions (broken signature)

Don’t load unathorized (unsigned) extensions

Enhancements made to Firefox by Louw et. al.

Key protection
Encrypt the private key with a password — no signing of unauthorized code

Store the public key with the browser core — only the superuser is able to
modify it

Problem

Race condition: verify extension, replace its files, load malicious extension

Solution

Use mandatory locking

Enhancements made to Firefox by Louw et. al.

Run-time monitoring and policy enforcing

Policy name

XPCOM- ALLOW
XPCOM- DENY
SAME- ORIGIN
XPCOM- SAFE
PASS- RESTRICT
HISTORY- FLOW

What it does

Allow all access to a single XPCOM interface

Deny all access to a single XPCOM interface

Allow network access to same-origin domains

Deny all access to XPCOM while SSL is in use

Deny access to the password manager

Prevent URL history leaks via output streams

Mike Ter Louw, Jin Soon Lim, V. N. Venkatakrishnan:
Enhancing web browser security against malware extensions

Granularity

Per extension
Per extension
Per extension
Per extension
All extensions

All extensions

Enhancements made to Firefox by Louw et. al.

Run-time monitoring and policy enforcing

E: Extension ID P: Policy R: Resource ID S: Response T: Script type U: Script URI

-

Seript Palicy

I L]
. !
L] - L] L} k
. type chack enlorcament XPCOM
Browser Extension
script script N -

i i j . - % ‘
: .' : ' -

Spidermonkey

Chrome st Y
Reqistr . v
gistry Extension . Default

) . Extension]
Extension Security _ Security
Manager rolicy Manager

Manager .
Service

Mike Ter Louw, Jin Soon Lim, V. N. Venkatakrishnan:
Enhancing web browser security against malware extensions

®

Cookie stealing

Cookie stealing

Stealing ,,magic cookies” used for authentication

Session fixation: The attacker sets a user's session id to one known to him,

for example by sending the user an email with a link that contains a
particular session id

Session sidejacking: Packet sniffing

Physical access: Obtaining the file or memory contents holding the session
key

XSS (Cross-Site Scripting)

Vulnerabilities Resulting From
the Use of HTML and
JavaScript

Stealing data through <canvas>

Fetch an image needing authentication
Authentication cookies get sent

Read the image from the canvas

Does not work because of the same-origin policy

Can be allowed (Cross-Origin Resource Sharing)

CSRF (Cross-site Request Forgery)

Unauthorized commands are transmitted from a user that the
website trusts.

Unlike cross-site scripting (XSS), which exploits the trust a user has
for a particular site, CSRF exploits the trust that a site has in a user's
browser.

Classical example: Mallory puts an element on their website,
which references an action on Alice's bank's website rather than an

Image.

CSRF (Cross-site Request Forgery)

CSRF using XMLHttpRequest can work if there’s an error in the

implementation of the same-origin policy (example: Shreeraj Shah,
Blackhat EU 2012)

Using XMLHttpRequest, forged file uploads are also possible

XMLHttpRequest can also be used for internal port scanning, CORS
policy scan and mounting a remote web shell

ClickJacking, CORJacking

ClickJacking

Trick the user into clicking on something different than what they percieve

CORJacking

Manipulate values in the DOM, thus replacing parts of a legitimate website
with malicious ones

LocalStorage and global variables

LocalStorage (also called Web Storage or DOM Storage)
Webpages can store key-value pairs
Entries can be enumerated (needs XSS)

JavaScript global variables
Can be enumerated

Web SQL Database

A set of APIs to manipulate client-side databases using SQL.

Databases, tables and their contents can be enumerated

Web Sockets

Protocol to allow full-duplex communication over a single TCP
connection.

Designed to be implemented in web browsers and webservers.

Possible threats
Back doors
Port scanning
Botnet and malware communication

Vulnerabilities in SSL/TLS

Attacks against the SSL/TLS Handshake Protocol

Cipher suite rollback

Dropping the Change Cipher_Spec message

Key exchange algorithm rollback

Version rollback

Attacks against the SSL/TLS Record Protocol

Distinguishing attack
Padding oracle attack
Lucky 13 attack
BEAST attack

/ZIP Bombs, XML Bombs, XML
eXternal Entities

ZIP bombs

A zip bomb, also known as a zip of death or decompression bomb,
is @ malicious archive file designed to crash or render useless the
program or system reading it.

A very small file, whose contents, when unpacked, are much more
than the system can handle.

HTTP + ZIP bombs

HTTP allows for the content to be sent compressed. The
compression algorithm is indicated in the Content-Encoding header.

An HTTP webserver can be created which serves ZIP bombs.

Implemented by me in Python
Results: Firefox eats up 2 GBs of memory, then crashes

HTTP + ZIP bombs

z2.8end header ("Con

. end headers()
do GET (s):
. 3end response (200)
g2.2end header ("Conte
i . :
2.end |
if =.p:
bomb file = open("0.dll.gz
s.wifile.write(bomb file.reac
bomk file.close ()
else:
TWEile.write("<html><he

=
for i in range(l0):
s.wliile.write("<iframs

g.wliile.write ("< /body>=<

XML Bombs / Exponential Entity Expansion Attack

Same principle as ZIP bombs

The ,billion laughs” attack:

<?xml version="1.0"?>

1 R " S SR IR I 1 L S R I 1 R S " = S ST T 1 B S B L - R S R i L S I R 1 L I T - S T e

el e e e it et il e it it

K
I i
|
I

1>

<lolz> <flolz>

XML Bombs / Exponential Entity Expansion Attack

Result in Firefox
Does not work, only results in 370 lolz instead of 1079

— <Jolz=
lollollollollollollollollollollollollollolioliollollollollollollollollollollollollollollollollolliollollollollollol

<] l 0 I_z —

XML eXternal Entities (XXE)

During the parsing of XML files, the parser will expand links and
include the content

Can be used to steal files from the user’s computer

Example attack:

= S Dokumentumok /3

XML eXternal Entities (XXE)

Result in Firefox
Does not work, the file does not get included

Questions?

Thank You!

Bibliography

Bibliography

Charles Reis, Google; Adam Barth, UC Berkeley ; Carlos Pizano,
Google: Browser Security: Lessons from Google Chrome

Adam Barth, UC Berkeley; Collin Jackson, Stanford University;
Charles Reis, University of Washington; Google Chrome Team,
Google Inc.: The Security Architecture of the Chromium Browser

Mike Ter Louw, University of Illinois; Jin Soon Lim, University of
Illinois; V. N. Venkatakrishnan, University of Illinois: Enhancing web
browser security against malware extensions

Shreeraj Shah, Founder & Director, Blueinfy Solutions: HTML5 Top
10 Threats Stealth Attacks and Silent Exploits; Blackhat EU 2012

