
Browser security issues and 
solutions
HORNYÁK ZSOLT
A BIZTONSÁGOS ELEKTRONIKUS KERESKEDELEM 
ALAPJAI (BMEVIHIM219)



Outline

• Why Are Browsers Attack Targets?

• Security in Google Chrome

• Security in Chromium

• Malicious Extensions

• Cookie stealing

• Vulnerabilities Resulting From the Use of HTML and JavaScript

• Vulnerabilities in SSL/TLS

• ZIP Bombs, XML Bombs, XML eXternal Entities



Why Are Browsers Attack 
Targets?



The web browser is our window to the world. We use 
it every day for tasks including:

• Mail

• Shopping

• Social Networking

• Finance Management

• Business

The browser has access to personal information as plaintext, so it’s 
inevitable that it gets attacked.



Security in Google Chrome



Try to minimize the damage

• Every sufficiently big software contains bugs

• Mozilla Firefox’s source code has approximately 3.7 million lines

• Let’s try to minimize the…
• Severity of vulnerabilities

• Window of vulnerabilities

• Frequency of exposure



Reducing the severity of vulnerabilities

• Web content is run within a JavaScript Virtual Machine, to protect the
web sites from each other

• Exploit mitigation
• ASLR (Address Space Layout Randomization)

• Randomizing the mapping location of key system components

• DEP (Data Execution Prevention)
• Marking memory pages as non-executable

• SafeSEH (Safe exception handlers)

• Heap Corruption Detection

• Stack Overrun Detection using canaries

• Using an OS-level sandbox



Chrome’s architecture

Charles Reis, Google; Adam Barth, UC Berkeley ; Carlos Pizano, Google:
Browser Security: Lessons from Google Chrome



Chrome’s architecture

• Browser kernel
• Handles drawing to the screen

• Handles the cookie, bookmark and history databases

• Acts with the user’s authority

• Rendering engine
• Acts with the authority of the so called Web principal

• Not trusted to interact with the user’s filesystem

• Draws to an onscreen buffer

• Contained in an OS-level sandbox

• Communicates with the browser kernel through an IPC channel



Chrome’s architecture

• Rendering engine

• Runs with a restricted security token

• Runs with a restricted Windows job object

• Runs on a separate desktop

• There are problems , e.g. font loading
• Solution: Fonts are loaded by the browser kernel, the rendering engine can

access them via the Windows font cache



Techniques not used by Chrome

• System Call Interposition

• Binary rewriting

• Low rights mode to prevent writing to the filesystem (used by IE7)

• OS provided sandbox on Mac OS X

• AppArmor on Linux



Reducing the window of vulnerabilities

• Many users run old, unpatched versions of browsers

• Need to make the update process convenient for the end user



Reducing the frequency of exposure

• Warn the user before visiting malicious sites

• Google works with StopBadware.org
• 32-bit prefixes are downloaded

• Service is queried on match

• There can be human errors, e.g. flagging all URLs as malicious in 2009



Compatibility issues

• Chrome runs plug-ins out of sandbox

• They expect direct access to the underlying OS

• This allows for features like full screen videochat

• Problems with the same-origin policy

• Some JavaScript calls need to be made between pages

• Each rendering engine has access to all of the user’s cookies (e.g. for loading
images from other pages)



Security in Chromium
THE FOUNDATION OF GOOGLE CHROME



Chromium's attacker model

• The attackers possess a domain name with a valid HTTPS 
certification not on blacklist

• They can convince the user to visit the malicious web site
• SPAM

• Ads

• Hosting interesting content

• There is an unpatched vulnerability in the browser



Goals

• Prevent the installation of persistent malware (e.g. botnet clients)

• Prevent the installation of keyloggers

• Pervent file theft



More on the architecture…

• The browser kernel treats the rendering engine as a black box

• The kernel grants rights to the whole rendering engine

• It is up to the rendering engine to enforce the same-origin policy

• A malicious website can attack other sites rendered by the same engine

• 67.4% of Firefox, Safari and IE vulnerabilities from 2007 would have 
occured in the rendering engine

• 70.4% of arbitary code execution vulnerabilitiess would have been 
mitigated by Chromium's architecture



More on the sandbox…

• The rendering engine runs with a restricted security token

• An object that describes the security context of a process or thread

• Contans Security IDentifiers, privilege lists, statistics, etc.

• All SIDs are set to DENY_ONLY

• The engine runs on a separate windows desktop



More on the sandbox…

• Windows Job Object

• A job object allows groups of processes to be managed as a unit. Job objects 
are namable, securable, sharable objects that control attributes of the 
processes associated with them.

• The engine runs in a Windows Job Object restricting its ability to

• Create new processes

• Read/write the clipboard

• Access USER handles



More on the sandbox…

• Limitations

• FAT32 does not have ACLs

• Objects with NULL DACLs can be accessed



User input, file UL/DL

• User input is handled by the browser kernel, which dispatches them
according to the currently focused element

• File upload
• A file picker dialog is displayed by the browser kernel

• Selecting a file grants authorization to the rendering engine to access it

• File download

• The kernel downloads files requested by the rendering engine to a 
designated directory

• Some exceptions: reserved device names, Desktop.ini, files ending in .local, 
other files which could be used for privilege elevation



User input, file UL/DL

• File download

• URLs beginning with file:// are only opened if the user typed them in the
address bar. This is to thwart XXE (XML eXternal Entities) attacks



Malicious Extensions



Extension in…

• Internet Explorer

• So called Browser Helper Objects (BHOs)

• Native code

• They share the browser’s address space

• Mozilla Firefox (which will int be the focus of the presentation)
• JavaScript API

• JavaScript code is available for analysis

• Can contain native code („components”), but rarely used

• Extensions in a browser are like untrusted code in an OS



Ideas to safely run extensions

• Signed code

• Only guarantees that the extension has not been modified during download
(Mozilla Firefox)

• Rarely used

• Static analysis

• Hard to do for JavaScript, which is loosely typed, with prototype-based
inheritance

• Model Carrying Code

• Untrusted code comes equipped with a high-level model of its security-
relevant behavior



Ideas to safely run extensions

• Proof Carrying Code
• Can be difficult to produce

• Add runtime checks that enforce a security property

• Produce a proof

• Execution monitoring
• Kirda et. al.: A detection technique for spyware that hook into IE through the 

BHO interface
• Controlled environment, test inputs

• Behavioral patterns identified at the level of Internet Explorer and Windows APIs

• Combines dynamic and static analysis

• Does not work for BHOs reading from IE's address space directly



Louw et. al.: BrowserSpy

• A Firefox extension which…

• Reads all form data, even those sent over encrypted connections

• Collects all visited URLs

• Collects all Password Manager entries

• The can be used for…
• Identity theft

• Account theft

• Collecting credit card data

• Fingerprinting the browsing patterns of the user



Louw et. al.: BrowserSpy

• Hiding itself from the user

• Removes itself from the list of extensions using the nsIRDFDataSource
interface

• Injects itself into another extension, even if the extension is code signed -
the browser does not check the integrity after installation

• Caches data, sends it in periodic intervals, to offset it from the event

• Modifies perfs.js
• Prefs.js is a JavaScript file storing the user’s options

• Written with very little effort, using only 4 interfaces



Enhancements made to Firefox by Louw et. al.

Mike Ter Louw, Jin Soon Lim, V. N. Venkatakrishnan:
Enhancing web browser security against malware extensions



Enhancements made to Firefox by Louw et. al.

• Based on code signing

• Problems

• Extensions can be installed from outside Firefox - signature checking only on 
installation is not enough

• Allowing only signed extensions is not good either, as it would need self-signing

• Solution

• Sign extensions locally after installation

• Extend the browser with the ability to check it every time it's loaded

• Don’t load modified extensions (broken signature)

• Don’t load unathorized (unsigned) extensions



Enhancements made to Firefox by Louw et. al.

• Key protection

• Encrypt the private key with a password – no signing of unauthorized code

• Store the public key with the browser core – only the superuser is able to
modify it

• Problem

• Race condition: verify extension, replace its files, load malicious extension

• Solution

• Use mandatory locking



Enhancements made to Firefox by Louw et. al.

• Run-time monitoring and policy enforcing

Mike Ter Louw, Jin Soon Lim, V. N. Venkatakrishnan:
Enhancing web browser security against malware extensions



Enhancements made to Firefox by Louw et. al.

• Run-time monitoring and policy enforcing

Mike Ter Louw, Jin Soon Lim, V. N. Venkatakrishnan:
Enhancing web browser security against malware extensions



Cookie stealing



Cookie stealing

• Stealing „magic cookies” used for authentication

• Session fixation: The attacker sets a user's session id to one known to him, 
for example by sending the user an email with a link that contains a 
particular session id

• Session sidejacking: Packet sniffing

• Physical access: Obtaining the file or memory contents holding the session 
key

• XSS (Cross-Site Scripting)



Vulnerabilities Resulting From 
the Use of HTML and 
JavaScript



Stealing data through <canvas>

• Fetch an image needing authentication

• Authentication cookies get sent

• Read the image from the canvas

• Does not work because of the same-origin policy

• Can be allowed (Cross-Origin Resource Sharing)



CSRF (Cross-site Request Forgery)

• Unauthorized commands are transmitted from a user that the 
website trusts.

• Unlike cross-site scripting (XSS), which exploits the trust a user has 
for a particular site, CSRF exploits the trust that a site has in a user's 
browser.

• Classical example: Mallory puts an <img> element on their website, 
which references an action on Alice's bank's website rather than an 
image.



CSRF (Cross-site Request Forgery)

• CSRF using XMLHttpRequest can work if there’s an error in the
implementation of the same-origin policy (example: Shreeraj Shah, 
Blackhat EU 2012)

• Using XMLHttpRequest, forged file uploads are also possible

• XMLHttpRequest can also be used for internal port scanning, CORS 
policy scan and mounting a remote web shell



ClickJacking, CORJacking

• ClickJacking

• Trick the user into clicking on something different than what they percieve

• CORJacking

• Manipulate values in the DOM, thus replacing parts of a legitimate website
with malicious ones



LocalStorage and global variables

• LocalStorage (also called Web Storage or DOM Storage)

• Webpages can store key-value pairs

• Entries can be enumerated (needs XSS)

• JavaScript global variables

• Can be enumerated



Web SQL Database

• A set of APIs to manipulate client-side databases using SQL.

• Databases, tables and their contents can be enumerated



Web Sockets

• Protocol to allow full-duplex communication over a single TCP 
connection.

• Designed to be implemented in web browsers and webservers.

• Possible threats

• Back doors

• Port scanning

• Botnet and malware communication



Vulnerabilities in SSL/TLS



Attacks against the SSL/TLS Handshake Protocol

• Cipher suite rollback

• Dropping the Change_Cipher_Spec message

• Key exchange algorithm rollback

• Version rollback



Attacks against the SSL/TLS Record Protocol

• Distinguishing attack

• Padding oracle attack

• Lucky 13 attack

• BEAST attack



ZIP Bombs, XML Bombs, XML 
eXternal Entities



ZIP bombs

• A zip bomb, also known as a zip of death or decompression bomb, 
is a malicious archive file designed to crash or render useless the 
program or system reading it.

• A very small file, whose contents, when unpacked, are much more 
than the system can handle.



HTTP + ZIP bombs

• HTTP allows for the content to be sent compressed. The 
compression algorithm is indicated in the Content-Encoding header.

• An HTTP webserver can be created which serves ZIP bombs.

• Implemented by me in Python

• Results: Firefox eats up 2 GBs of memory, then crashes



HTTP + ZIP bombs



XML Bombs / Exponential Entity Expansion Attack

• Same principle as ZIP bombs

• The „billion laughs” attack:



XML Bombs / Exponential Entity Expansion Attack

• Result in Firefox

• Does not work, only results in 370 lolz instead of 10^9



XML eXternal Entities (XXE)

• During the parsing of XML files, the parser will expand links and 
include the content

• Can be used to steal files from the user’s computer

• Example attack:



XML eXternal Entities (XXE)

• Result in Firefox

• Does not work, the file does not get included



Questions?



Thank You!



Bibliography



Bibliography

• Charles Reis, Google; Adam Barth, UC Berkeley ; Carlos Pizano, 
Google: Browser Security: Lessons from Google Chrome

• Adam Barth, UC Berkeley; Collin Jackson, Stanford University; 
Charles Reis, University of Washington; Google Chrome Team, 
Google Inc.: The Security Architecture of the Chromium Browser

• Mike Ter Louw, University of Illinois; Jin Soon Lim, University of 
Illinois; V. N. Venkatakrishnan, University of Illinois: Enhancing web 
browser security against malware extensions

• Shreeraj Shah, Founder & Director, Blueinfy Solutions: HTML5 Top 
10 Threats Stealth Attacks and Silent Exploits; Blackhat EU 2012


