
Tamper resistant devices

Foundations of Secure e-Commerce

(bmevihim219)

Dr. Levente Buttyán

Associate Professor

BME Hálózati Rendszerek és Szolgáltatások Tanszék

Lab of Cryptography and System Security (CrySyS)

buttyan@hit.bme.hu, buttyan@crysys.hu

Tamper resistant devices 2
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Outline and objective

 outline

• introduction

• types and applications of tamper resistant devices

• FIPS 140

• the IBM 4758 coprocessor

• attacking tamper resistant devices (including API attacks)

 the objective is to understand

• what tamper resistance means ?

• what kind of tamper resistant devices exist ?

• how they are attacked ?

 useful readings:

• R. Anderson, M. Bond, J. Clulow and S. Skorobogatov, Cryptographic
processors – a survey, Technical Report No. 641, University of Cambridge,
Computer Laboratory, UK, 2005.

• S. Smith, S. Weingart, Building a High-Performance, Programmable Secure
Coprocessor, IBM Research Report 21102, February 1998.

Tamper resistant devices 3
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Introduction

 from Wikipedia:

 Tamper-resistant microprocessors are used to store and process
private or sensitive information, such as private keys or electronic
money credit. To prevent an attacker from retrieving or modifying
the information, the chips are designed so that the information is not
accessible through external means and can be accessed only by
the embedded software, which should contain the appropriate
security measures.

 Examples of tamper-resistant chips include all secure
cryptoprocessors, such as the IBM 4758 and chips used in
smartcards, as well as the Clipper chip.

 Smith and Weingart:

 Secure coprocessors enable secure distributed applications by
providing safe havens where an application program can execute
(and accumulate state), free of observation and interference by an
adversary with direct physical access to the device.

Tamper resistant devices 4
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Classes of tamper resistant devices

 high-end devices:

• e.g., IBM 4758 coprocessor

• powerful crypto engine surrounded by a tamper-sensing mesh

• device erases its key material and renders itself inoperable if a

tampering attempt is detected

 low-end devices:

• e.g., cheap microcontrollers

• typically capable only for symmetric key crypto

• their read-protection mechanisms are not really designed to

withstand skilled and determined attacks

 mid-range:

• e.g., smart cards and TPM chips

• single-chip products hardened against physical attacks

Tamper resistant devices 5
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

FIPS 140

 benchmark standard that specifies the security requirements for cryptographic
modules

 types of requirements considered:

• physical security (locks, seals, coatings, covers, tamper detection and
response)

• ports and interfaces

• operational environment (OS requirements)

• finite state model (states and state transitions)

• roles, services, and operator authentication

• cryptographic module specification (algorithms, modes of operation,
description of HW, SW, FW, security policy)

• key management (random number generation, key generation and storage,
key erasure)

• EMI/EMC

• self-tests

• design assurances (configuration management, delivery and operation,
development)

Tamper resistant devices 6
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

FIPS 140 security levels

 level 1

• no physical security mechanisms are required in the module

• basic requirements on cryptographic algorithms

• example: encryption software on a PC

 level 2

• needs tamper evident coating or seals

• requires role based access control

 level 3

• needs tamper resistant physical security

• requires identity based access control

• parameters must either be entered into or output from the module in encrypted form
or be directly entered into or output from the module using split knowledge
procedures

 level 4

• highly reliable tamper detection and response (immediately erasing all secret data)

• protection against a compromise due to environmental conditions or fluctuations
outside of the normal operating ranges (e.g., voltage, temperature, …)

Tamper resistant devices 7
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Application areas

 ATM security

 Internet banking, electronic payment

 Automated Fare Collection (AFC)

 prepayment electricity meters

 Trusted Computing (TC)

 Public Key Infrastructures (PKI)

 military applications

 other

Tamper resistant devices 8
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

ATM security

 customer PIN is derived from account number and a PIN

derivation key

 the PIN derivation key needs to be protected against

unauthorized disclosure (including insiders such as bank

personnel)

 PIN is stored in an encrypted form on the customer’s card

 verification at an ATM needs either the PIN decryption key

or secure communication of the PIN from the ATM to the

bank

 in both cases, keys need to be protected against

unauthorized disclosure (including insiders such as ATM

maintenance personnel)

Tamper resistant devices 9
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Internet banking, e-payment

 some banks require their customers to use off-line tokens to produce a

time-dependent password or a response to a challenge

• example: RSA SecurID tokens

 smart cards can be used as purses to store electronic money

 balance should be protected from unauthorized modifications

 must also support protocols to transfer value between two purses (e.g.,

those of a user and a merchant), which need crypto keys that should be

protected from disclosure (in order to prevent forging a transaction)

• example: Mondex

Tamper resistant devices 10
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Automated Fare Collection

 electronic ticketing for public transportation

• all transactions can be logged, collected, and analyzed

• efficiency of the system can be increased by careful planning of

schedules

 e-tickets may store value, in which case they must be protected from

manipulation

 e-tickets may need to be authenticated during the validation process

 authentication is based on a key derived from the ticket ID and a master

key (key diversification)

 master key must be stored in off-line ticket validating equipment (e.g.,

on buses, trams, etc)

 master key needs to be protected from disclosure when equipment is

stolen

Tamper resistant devices 11
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Trusted Computing

 computing platforms, such as PCs and PDAs, are envisioned to be
equipped with an embedded cryptoprocessor, the Trusted Platform
Module (TPM)

 the TPM (together with a microkernel) can certify both a program and
the platform on which it is executing

• viruses and other forms of malware cannot easily propagate

 the major application is DRM (Digital Rights Management):

• in this context, the TPM enforces usage policies

• e.g., a TC machine can assure a content vendor that it is sending a
song or movie to a true copy of a media player program, rather than
to a hacked copy

• TC may also enable alternative marketing strategies, such as
subscription services for listening to music

• note that current DRM mechanisms are based on software
obfuscation, and eventually get hacked

Tamper resistant devices 12
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Public Key Infrastructures

 private keys of users and CAs must be protected from disclosure

 the private keys of users are typically stored on smart cards

• the smart card can control the usage of the private key

• the smart card can run cryptographic algorithms such that the

private key does not need to leave the protected environment

 CA private keys are held in tamper resistant HSMs (Hardware Security

Modules)

 the HSMs may help enforce stringent policies on key usage:

• they can enforce dual control policies on the most valuable keys

• they can help supervisors monitor the activities of large numbers of

human operators efficiently

• they can keep signed audit trails of activities to allow retrospective

monitoring of access

Tamper resistant devices 13
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Military applications

 dishonest insiders are a real threat

 modern military cipher machines use classified algorithms in tamper-
resistant chips

 in addition, crypto keys are often transported in tamper resistant
hardware between sites

 nuclear command and control systems

 weapons should be armed only by authorized parties and under well-
defined circumstances

• authorization is based on cryptographic codes, the verification of which
needs crypto keys to be stored safely in weapons

• example for a condition that is easy to measure yet hard to forge is the
period of zero gravity experienced by an air-drop bomb on release

 tamper-resistance mechanisms are embedded in weapons in order to
prevent a stolen weapon being exploded, or being dismantled to reveal
an authorization code with which a second stolen weapon could be
armed.

Tamper resistant devices 14
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

The IBM 4758 crypto coprocessor

 programmable PCI board with custom
hardware to support cryptography and
tamper resistant packaging

 main features:
• pipelined DES encryption engine

• pipelined SHA-1 hash engine

• 1024-bit and 2048-bit modular math
hardware to support RSA and DSA

• hardware noise source to seed random number generation

• pseudo-random number generator

• support for RSA key pair generation, encryption, and decryption

• support for key management
• DES based, RSA based, key diversification, PIN generation

• secure clock-calendar

• support for PKCS#11 and IBM Common Cryptographic Architecture
(CCA)

• battery backed RAM (BBRAM) to store secrets persistently

• steel house with tamper detecting sensors and circuitry to erase the
sensitive memory

Tamper resistant devices 15
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

IBM 4758 hardware

 Intel 80486 CPU (66 OR 99 MHz)

 ROM for bootstrapping code

 Flash memory to store
bootstrapping code, OS, and
application code

 4 MB RAM for applications data

 32 KB BBRAM for secrets

 hardware support for common
cryptographic operations

 random number generator

 on-board clock

 tamper detection sensors (with own
battery)

 state controller

• controls access to portions of
the BBRAM and Flash memory

• functions as a hardware lock
separated from the CPU

• denies unauthorized access to
secrets even if the CPU runs a
malicious application

Tamper resistant devices 16
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Defending against physical attacks

 the board is wrapped in a grid of conductors, which is monitored by a circuit that
can detect changes in the properties of these conductors

 conductors are non-metallic and resemble the material in which they are
embedded

 the grid is arranged in several layers

 entire package is enclosed in a grounded shield to reduce detectable
electromagnetic emanations

 additional sensors:

• temperature

• humidity

• pressure

• ionizing radiation

• changes in supply voltage and clock frequency

 reaction to tamper: erase BBRAM and reset the whole device

 physical security is certified at FIPS 140 level 4

Tamper resistant devices 17
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Device initialization

 the primary secret of the device is its RSA private key

 factory initialization

• each device generates its on RSA key pair (using its own random
number generator)

• private key is kept in the BBRAM, public key is exported

• external CA (manufacturer) certifies the public key by adding
identifying information about the device and its software
configuration and signing the certificate

• device certificate is loaded back in the device

 regeneration of key pairs

• the device generates a new key pair

• signs a transition certificate with the old private key for the new
public key

• atomically deletes the old private key and activates the new one

Tamper resistant devices 18
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Code layers

 software is organized into layers

 device is shipped with miniboot 0

and 1

 OS and applications are loaded

into the Flash memory by

miniboot 1

 each layer has its own page in

the BBRAM, where it can store

its own secrets

• device private key is stored in

page 1

 the state controller ensures that

code running at layer N cannot

access pages that belong to

lower layers

appl. startup

OS

miniboot 1

miniboot 0 layer 0

layer 1

layer 2

layer 3

ROM

FLASH

application layer 4

FLASH

FLASH

FLASH

Tamper resistant devices 19
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Access to the BBRAM

Example: IBM 4758

Tamper resistant devices 20
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Secure bootstrapping

bootstrapping sequence:

miniboot 0  miniboot 1  OS startup  appl. startup  application

 after HW reset, the CPU starts miniboot 0 from ROM

 miniboot 0

• runs self-test and evaluates the hardware needed to continue execution

• checks the integrity of miniboot 1

• advances the state controller from 0 to 1

• and starts miniboot 1

 miniboot 1

• runs self-test and evaluates the rest of the hardware

• checks the integrity of OS and applications

• advances the state controller from 1 to 2

• and starts the OS

 OS

• starts up

• if needs to hide data from applications, then advances the state controller
from 2 to 3 before invoking layer 3 code

Tamper resistant devices 21
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Code integrity

 problem: how to ensure that a malicious application cannot change the
code of the OS and the miniboots?

• the application can remove the integrity checks and the instruction
to advance the state controller

• next time the device is booted, miniboot 1 will not check the integrity
of itself and upper layer codes, and will not advance the state
controller

• then, the application can read secrets of lower layers

 solution: the state controller prevents writing access to the Flash by the
OS and the applications

• all write accesses are denied when the state is greater than 1

• only miniboot 1 can update software in the Flash !

Tamper resistant devices 22
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Access to the Flash memory

Example: IBM 4758

Tamper resistant devices 23
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Code authorities

 loading of new software into a given layer is authorized by code

authorities

 code authorities are organized into a tree

 each authority has a key pair

 parent certifies public key of its children

 miniboot 1 knows the public key of the miniboot 1 authority

IBM miniboot 0 officer

IBM miniboot 1 officer

IBM OS officer other OS officer

IBM Crypto API officer other appl.

officer (e.g., bank)

other appl.

officer (e.g., bank)

Tamper resistant devices 24
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Code loading

 code to be loaded is signed by the appropriate authority

 necessary certificate chain is also attached to the signed code

 miniboot 1 can verify the chain and the signature on the code

 if everything is correct, it loads the new code into the Flash

Tamper resistant devices 25
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Authenticating the execution

 problem:

• how to distinguish between a message from an untampered device and a
message from a clever adversary

 naïve approach:

• device should use the device private key to sign messages

 problem with the naïve approach:

• applications have no access to the device private key (stored in page 1 in
the BBRAM)

 solution:

• each layer N has a key pair, and its public key is signed by the private key
of layer N-1

• public key of layer 2 is signed by the device private key

• application signs its messages with its own private key

• signature can be verified with a chain of certificates starting from the device
certificate

device pub key
manufacturer’s

 pub key
OS pub key

application

 pub key
message

Tamper resistant devices 26
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Protection of contemporary smart cards

 internal voltage sensors to protect against under- and over-voltages
used in power glitch attacks

 clock frequency sensors to prevent attackers slowing down the clock
frequency for static analysis and also from raising it for clock-glitch
attacks

 top-layer metal sensor meshes

 internal bus hardware encryption to make data analysis more difficult

 light sensors to prevent an opened chip from functioning

 password protected software access to internal memory

 standard building-block structures  randomized ASIC-like logic design
(glue logic)

Tamper resistant devices 27
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Comparison of high-end and mid-range devices

 level of security

• HE: very high

• MR: reasonably high

 price

• HE: very high

• MR: acceptable

 performance

• HE: high

• MR: acceptable (crypto support exists)

 flexibility and trust model

• HE: flexible, multiple levels of trust

• MR: simpler, but still flexible (can support multiple applications)

 robustness

• HE: low (sensitivity to parameters, e.g., temperature)

• MR: high

 on-board battery (and trusted clock)

• HE: YES

• MR: usually NO

Tamper resistant devices 28
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Taxonomy of attacks

 invasive attacks

• direct electrical access to the internal components of the device

• often permanently destroys the device

 semi-invasive attacks

• access to the device, but without damaging the passivation layer of
the chip or making electrical contact other than with the authorised
interface

 non-invasive attacks

• local: observation or manipulation of the device’s operation (timing,
power consumption, clock frequency)

• remote: observation or manipulation of the device’s normal input
and output (API attacks)

 all of the above attacks can be passive or active

Tamper resistant devices 29
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Invasive attacks

 first step: removing the chip from the plastic cover

• nitric acid dissolves epoxy without damaging silicon

 second step: probing chip internals directly

• second-hand semiconductor test equipment such as manual probing
stations are available (e.g., renting)

• a typical probing station consists of
• a microscope with an objective working distance of several millimeters mounted

on a low-vibration platform

• micromanipulators to place probes (microprobing needles) on to the device

• a laser, with which small holes can be drilled in the chip’s passivation layer
(holes allow electrical contact by the probes, and indeed stabilise them in
position)

• with such equipment one can probe the device’s internal bus system, so
that both program and data can be read out

Tamper resistant devices 30
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Defending against invasive attacks

 sensor mesh implemented in the top metal layer,
consisting of a serpentine pattern of sensor,
ground and power lines

• if the sensor line is broken, or shorted to
ground or power, the device self-destructs

 making it more difficult to visually analyze the chip
surface

• earlier the structure of a microcontroller could
be easily observed and reverse engineered
under a microscope

• although buried under the top metal layer, the
second metal layer and polysilicon layer can
still be seen, because each subsequent layer
in the fabrication process follows the shape of
the previous layer

• today, each layer but the last one is planarised
using chemical-mechanical polishing before
applying the next layer

• the only way to reveal the structure of the
deeper layers is by removing the top metal
layers either mechanically or chemically

P
IC

1
6

F
8

7
7

P
IC

1
6

F
8

7
7

A

Tamper resistant devices 31
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Semi-invasive attacks

 attacks that involve access to the chip surface, but which do not require
penetration of the passivation layer or direct electrical contact to the
chip internals

 early example: UV light to reset the protection bit on microcontrollers
(memory contents could be read out)

 recently: optical probing techniques to inject faults into digital circuits

• illuminating a target transistor causes it to conduct, thereby inducing
a transient fault

• possible to set or reset any individual bit of SRAM in a
microcontroller

• can be carried out with simple, low-cost equipment (e.g., with
photographer’s flash gun)

 better results can be obtained using laser probing equipment

• in addition to setting RAM contents to desired values, it can be
adapted to read out other memory technologies, such as Flash and
EEPROM, and to interfere with control logic directly

Tamper resistant devices 32
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Defending semi-invasive attacks

 detection of active attacks and performing some suitable

alarm function, such as erasing key material

 opaque top-layer metal grids and shields

• the attacker may now have to go through the rear of the chip,

which will typically involve ion-etching equipment to thin the

device and an infra-red laser to penetrate the silicon substrate

Tamper resistant devices 33
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Local non-invasive attacks

 side-channel attacks

• careful observation of the interaction of the card with its environment

during critical operations may reveal some amount of information

about the sensitive data stored in the card

• examples: timing attacks and power analysis

 unusual operating conditions may have undocumented effects

• unusual temperatures or voltages can affect EEPROM write

operations

• power and clock glitches may affect the execution of individual

instructions

• e.g., doubling the clock frequency for a few microseconds would cause

some, but not all, instructions to fail.

• it could be possible to modify the device’s control flow – for example, by

stepping over the branch instruction following a failed password check

Tamper resistant devices 34
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Example: Exploiting effects of a clock glitch

 a typical subroutine (writes the content of a limited memory
range to the serial port):

1 a = answer_address

2 b = answer_length

3 if (b == 0) goto 8

4 transmit(*a)

5 a = a + 1

6 b = b – 1

7 goto 3

8 …

 if we can find a glitch that transforms the loop variable
decrement in line 6 into something else, then the chip will
dump the content of the whole memory

Tamper resistant devices 35
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Example: Differential Power Analysis (DPA)

 measure the power consumption of a chip while it does a

number of cryptographic computations (typically several

hundred) with different data  power traces

 guess the value of some bit of the key

 sort the power traces into two piles, depending on whether

the target bits combined with the observed input or output

data would have activated some circuit (e.g., the carry

function) in the processor or not

 check the guess by verifying if the two piles are statistically

different

Tamper resistant devices 36
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Defending local non-invasive attacks

 randomization of code

• put NOP instructions randomly in the program

 randomization of crypto algorithm implementations

• makes it more difficult to exploit side channel information that stem

from the mathematical structure of the algorithm

 randomization of all protocol messages

• makes it difficult to collect plaintext-ciphertext pairs

 design time validation

• tools to simulate power analysis and other emsec attacks early in

the design stage, so that changes can be made before the chip is

fabricated

Tamper resistant devices 37
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

API attacks

 a tamper resistant module is a custom computer in tamper
resistant packaging

• hardware support for cryptographic functions

• tamper detection and reaction circuitry

• internal battery and clock

• …

• API

 the API of a tamper resistant module is a software layer
through which the module’s functions are exposed to the
external world

Tamper resistant devices 38
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

An example API

 key_export

• inputs

• key token: EMK(K)

• key encryption key token: EMK(KEK)

• outputs

• exported key token: EKEK(K)

 key_import

• inputs

• external key token: EKEK(K)

• key encryption key token: EMK(KEK)

• outputs

• imported key token: EMK(K)

Tamper resistant devices 39
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

An example API

 key_part_import

• inputs

• key part: K’

• key token: EMK(K)

• outputs

• updated key token: EMK(K+K’)

 encrypt

• inputs

• key token: EMK(K)

• data: X

• outputs

• encrypted data: EK(X)

 …

Tamper resistant devices 40
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

API attacks

 exploit design weaknesses of the API for extracting secrets
from the module or increasing the efficiency of
cryptanalytical attacks

 simple examples:

• typing attack:

 key_export (EMK(K), EMK(KEK))  returns EKEK(K)

 decrypt (EMK(KEK), EKEK(K))  returns K

• creating related keys:

 key_part_import (K’, EMK(K))  creates K+K’

 key_part_import (K’+D, EMK(K))  creates K+K’+D

• key conjuring:

 key_import (R, R’)  creates an unknown key DDMK(R’)(R)

Tamper resistant devices 41
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Attacking the API of the IBM 4758

 preliminaries

• keys are stored externally in key tokens

• key tokens are encrypted with a master key or a key wrapping

key (key encryption key) modulated with the type of the key in

the token, where types are encoded in control vectors

• example:

• let K be an exportable symmetric data encryption key

• let KEK be a key encryption key

• K is exported under the protection of KEK in a key token

EKEK+CV_DEK(K):“DEK” where CV_DEK is the bit string

representing the control vector for data encryption keys, and

“DEK” encodes the type “Data Encryption Key”

• type indicators (e.g., “DEK”) are not protected, and hence, can

be modified

Tamper resistant devices 42
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Attacking the API of the IBM 4758

 use key_part_import to create two unknown but related key

encryption keys UKEK and UKEK’:

 key_part_import (K’, EMK+CV_KEK(K):“KEK”)

  computes UKEK = K + K’

  outputs EMK+CV_KEK(UKEK):“KEK”

 key_part_import (K’ + CV_KEK + CV_DEK, EMK+CV_KEK(K):“KEK”)

  computes UKEK’ = K + K’ + CV_KEK + CV_DEK

  outputs EMK+CV_KEK(UKEK’):“KEK”

 UKEK’ = UKEK + CV_KEK + CV_DEK

Tamper resistant devices 43
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Attacking the API of the IBM 4758

 use key_import to create two copies of an unknown random
key URK with different types:

 key_import (R:“KEK”, EMK+CV_KEK(UKEK):“KEK”)

  computes URK = DUKEK+CV_KEK(R)

  outputs EMK+CV_KEK(URK):“KEK”

 key_import (R:“DEK”, EMK+CV_KEK(UKEK’):“KEK”)

  computes URK’ = DUKEK’+CV_DEK(R)

  outputs EMK+CV_DEK(URK’):“DEK”

 URK’ = DUKEK’+CV_DEK(R)

 = DUKEK+CV_KEK+CV_DEK+CV_DEK(R)

 = DUKEK+CV_KEK(R)

 = URK

Tamper resistant devices 44
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Attacking the API of the IBM 4758

 use key part import to create a key encryption key URK” =

URK+CV_DEK:

 key_part_import(CV_DEK, EMK+CV_KEK(URK):“KEK”)

  computes URK” = URK + CV_DEK

  outputs EMK+CV_KEK(URK”):“KEK”

 export URK:“DEK” under URK”:“KEK”:

key_export (EMK+CV_DEK(URK):“DEK”, EMK+CV_KEK(URK”):“KEK”)

 outputs EURK”+CV_DEK(URK) = EURK+CV_DEK+CV_DEK(URK) = EURK (URK):“DEK”

 decrypt EURK(URK) with URK:“DEK”:

 decrypt (EMK+CV_DEK(URK):“DEK”, EURK(URK))  returns URK

 export any target key Ktarget under URK:“KEK”

Tamper resistant devices 45
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Financial APIs

 they support

• PIN generation, verification, encryption

• encrypted PIN translation between zone keys

• …

 examples:

• PIN generation
• encrypt the PAN with a PIN generation master key

• decimalize result

• select desired number of digits

• PIN encryption
• PIN is formatted into an 8 byte clear PIN block

• encrypted with a PIN encryption key using DES or 3DES

• encrypted PIN translation (and reformatting)
• encrypted PIN is decrypted with the supplied input key

• clear PIN is re-encrypted with the supplied output key

• clear PIN is reformatted before re-encryption if needed

Tamper resistant devices 46
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

PIN generation details

 input:

• PAN (personal account number)

• Decimalization Table

• PIN generation key id

 steps:

• encrypt PAN with PIN generation key

• decimalize result with Decimalization Table

• select desired amount of digits  PIN

 output:

• PIN (to printer)

 example:

• PAN = 87654321 87654321

• ciphertext = a0b1c2d3e4f5a6b7

• Decimalization Table = 0123456789012345

• decimalized ciphertext = 0011223344550617

• four digit PIN = 0011

Tamper resistant devices 47
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Remote PIN verification

 input:

• PAN

• Decimalization Table

• encrypted PIN block

• PIN encryption key id

• PIN generation key id

 steps:

• decrypt encrypted PIN with PIN encryption key  PIN

• compute PIN from PAN, PIN generation key, and
Decimalization Table  PIN’

• compare PIN to PIN’

 output:

• accept / reject (/ PIN formatting error)

Tamper resistant devices 48
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

PIN offset generation

 input:

• PAN

• Decimalization Table

• PIN generation key id

• user selected PIN (UPIN)

 steps:

• generate PIN from PAN, PIN generation key, and Dec Table  IPIN

• digit subtraction: UPIN – IPIN (mod 10)  OFFSET

 output:

• OFFSET (stored on the user’s card)

 example:

• PAN = 87654321 87654321

• ciphertext = a0b1c2d3e4f5a6b7

• Decimalization Table = 0123456789012345

• decimalized ciphertext = 0011223344550617

• four digit IPIN = 0011

• user selected PIN = 1234

• OFFSET = 1223

Tamper resistant devices 49
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Remote PIN verification with offset

 inputs:

• PAN

• Dec Table

• encrypted PIN block (EPB)

• Offset

• PIN encrypting key id

• PIN generation key id

 steps:

• decrypt EPB  PB

• extract PIN from PB  PIN

• compute IPIN from PAN, Dec Table, and PIN generation key

• compute UPIN from IPIN and Offset  UPIN

• compare UPIN and PIN

 outputs:

• accept / reject / error

Tamper resistant devices 50
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Remote PIN verification with offset –

illustrated

PIN generation key K

PAN

Dec Table

Offset

E

decim.

add

compare encrypted PIN block

accept/reject

P
IN

 v
e
rific

a
tio

n
 fu

n
c
tio

n

IPIN

UPIN

PIN encrypting key K’

D
PIN

Tamper resistant devices 51
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Decimalization attack

 example setup:

 PAN = 1122334455667788

 enc PAN = E481FC5658391418

 Dec Table = 0123456789012345

 IPIN = 4481

 UPIN = 6598

 Offset = 2117

 assume the attacker can call remote PIN verification with
offset and he can manipulate the input fields

 what if we change the Dec Table to 1123456789012345 ?

• since E481 does not contain a 0, we get the same IPIN =
4481, and Offset = 2117 will pass  the device returns
“accept”

Tamper resistant devices 52
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Decimalization attack

 now let’s change the Dec Table to 0223456789012345 !

• the Ciphertext is decimalized into IPIN = 4482

• Offset = 2117 does not pass (4482 + 2117 = 6599)

• we know that there’s a 1 in the IPIN !

• we have to find out in which position

• for this, we modify the Offset until it passes

• Offset = 2116 will pass

• we know that the last digit of IPIN is 1 !

 and so on …

 when IPIN is obtained, we compute the UPIN as IPIN +

Offset

Tamper resistant devices 53
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

PIN generation key K

PAN

Dec Table’

Offset’

E

decim.

add

compare encrypted PIN block

accept

P
IN

 v
e
rific

a
tio

n
 fu

n
c
tio

n

4482

6598

PIN encrypting key K’

D
6598

Decimalization attack – illustrated

0223456789012345

E481

2116

Tamper resistant devices 54
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Check value function

 encrypts the all 0 input with a user supplied key (token)

 used for test purposes

E

0

c
h
e
c
k
 v

a
lu

e
 f

n

encrypted key K

EK(0)

Tamper resistant devices 55
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Check value attack

PIN generation key K

PAN’ = 0

Dec Table

Offset*

E

decim.

add

compare enc PIN block + key

accept

P
IN

 v
e
rific

a
tio

n
 fu

n
c
tio

n

EK(0)

IPIN’

UPIN

E

EK(0)

0

c
h
e
c
k
 v

a
lu

e
 f

n

decim.

add

IPIN’

UPIN

determine Offset* with

exhaustive search

Tamper resistant devices 56
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Lessons learnt

 no matter how secure the device is physically if it leaks

secrets due to API attacks

 most tamper resistant devices are vulnerable to some form

of API attacks

 careful design and analysis of the API is indeed very

important with respect to overall security

Tamper resistant devices 57
© Buttyán Levente, HIT

Budapesti Műszaki és Gazdaságtudományi Egyetem

Security analysis of APIs

 API attacks can be very subtle and hard to discover by

informal analysis

 the problem of API analysis seems to be very similar to that

of analyzing authentication and key exchange protocols

• the attacker interacts with the device using a well defined set

of “messages”

• the goal is to obtain some secret or bring the device in a “bad”

state

 formal analysis techniques developed for key exchange

protocols may be amenable to the analysis of crypto APIs

