The obvious mathematical breakthrough would be development of an easy way to factor large prime numbers.

--- Bill Gates, *The Road Ahead*, page 265

Public-key encryption

- general principles
- RSA cryptosystem
 - operation
 - properties of the textbook RSA
 - PKCS#1
- ElGamal cryptosystem

Reminder

- asymmetric-key encryption
 - it is hard (computationally infeasible) to compute k' from k
 - k can be made public (public-key cryptography)

- public-keys are not confidential but they must be authentic!
- most popular public-key encryption methods are several orders of magnitude slower than the best known symmetric key schemes

© Levente Buttyán
Digital enveloping

plaintext message

symmetric-key cipher (e.g., in CBC mode)

generate random symmetric key

public key of the receiver

asymmetric-key cipher

bulk encryption key

digital envelop

Two important complexity classes

- **class P**: problems solvable with an algorithm that is deterministic and p-time bounded
 - asymptotic worst case complexity is a polynomial function of the input length n

- **class NP**: problems solvable with an algorithm that is non-deterministic and run in p-time on a non-deterministic machine
 - problems in NP have no known deterministic p-time algorithms
 - asymptotic worst case complexity of the most efficient algorithms known is often an exponential function of the input length n
 - however, a solution to an NP problem can be verified in p-time on a deterministic machine

- it is conjectured that P ≠ NP, but it has not been proven yet
Examples

- **factoring problem**
 - given a positive integer \(n \), find its prime factors
 - true complexity is unknown
 - it is believed that it does not belong to \(P \)

- **discrete logarithm problem**
 - given a prime \(p \), a generator \(g \) of \(\mathbb{Z}_p^* \), and an element \(y \) in \(\mathbb{Z}_p^* \), find
 the integer \(x \), \(0 \leq x \leq p-2 \), such that \(g^x \mod p = y \)
 - true complexity is unknown
 - it is believed that it does not belong to \(P \)

- **Diffie-Hellman problem**
 - given a prime \(p \), a generator \(g \) of \(\mathbb{Z}_p^* \), and elements \(g^x \mod p \) and
 \(g^y \mod p \), find \(g^{xy} \mod p \)
 - true complexity is unknown
 - it is believed that it does not belong to \(P \)

RSA (Rivest–Shamir–Adleman) cryptosystem

- **key generation**
 - select \(p, q \) large primes (about 500 bits each)
 - \(n = pq \), \(\phi(n) = (p-1)(q-1) \)
 - select \(e \) such that \(1 < e < \phi(n) \) and \(\gcd(e, \phi(n)) = 1 \)
 - compute \(d \) such that \(ed \mod \phi(n) = 1 \) (this is easy if \(\phi(n) \) is known)
 - the public key is \((e, n)\)
 - the private key is \(d \)

- **encryption**
 - represent the message as an integer \(m \) in \([0, n-1]\)
 - compute \(c = m^e \mod n \)

- **decryption**
 - compute \(m = c^d \mod n \)
Proof of RSA decryption

- \(c^d \mod n = m^e \mod n = m^{k \phi(n) \cdot 1} \mod n = m^{k(p-1)(q-1)} \mod n \)
- since \(m < n \), it is enough to prove that \(m^{k(p-1)(q-1)} = m \mod n \)
- Fermat theorem
 - if \(r \) is a prime and \(\gcd(a, r) = 1 \), then \(a^{r-1} = 1 \mod r \)
- if \(\gcd(m, p) = 1 \)
 - \(m^{p-1} = 1 \mod p \)
 - \(m^{k(p-1)(q-1)} = m \mod p \)
- if \(\gcd(m, p) = p \)
 - \(p \mid m \)
 - \(m^{k(p-1)(q-1)} = m = 0 \mod p \)
- for all \(m \), \(m^{k(p-1)(q-1)} = m \mod p \)
- similarly, for all \(m \), \(m^{k(p-1)(q-1)} = m \mod q \)
- \(p, q \mid m \)
 - \(m^{k(p-1)(q-1)} = m \mod pq \)

Implementing RSA – Computing \(d \)

- \(d \) can be computed using the extended Euclidean algorithm
- complexity:
 - let \(k \) be the length of \(n \) in bits (\(k = \lceil \log_2 n \rceil + 1 \))
 - adding two \(k \)-bit integers: \(O(k) \)
 - multiplication of two \(k \)-bit integers: \(O(k^2) \)
 - reduction modulo \(n \) of a \(2k \)-bit integer: \(O(k^2) \)
 - modular multiplication of two \(k \)-bit integers: \(O(k^2) \)
 - complexity of each step of the Euclidean algorithm: \(O(k^2) \)
 - number of iterations in the Euclidean algorithm: \(O(k) \)
 - complexity of computing \(d \): \(O(k^2) \)
Implementing RSA – Modular exponentiation

- naive approach:
 - \(m^n \mod n = \underbrace{m \cdot m \cdot m \ldots m}_{\text{mod } n} \)
 - complexity of \(x \)-1 modular multiplication is \(O(xk^2) \)
 - unfortunately \(x \) can be as big as \(\phi(n) \)-1, hence \(x \sim O(n) = O(2^k) \)
 - complexity of the naive approach is \(O(2^k) \)

there’s a better method for modular exponentiation

- \(x = b_k 2^{k-1} + b_{k-2} 2^{k-2} + \ldots + b_2 + b_0 \)
- \(m^x = \underbrace{m^0(m^x)^2}_x \) where \(x_0 = (x-b_0)/2 = b_k 2^{k-1} + b_{k-2} 2^{k-2} + \ldots + b_1 \)
- \(m^x = \underbrace{m^1(m^x)^2}_x \) where \(x_1 = (x_0-b_1)/2 = b_{k-1} 2^{k-3} + b_{k-2} 2^{k-4} + \ldots + b_2 \)
- \(\ldots \)
- \(m^{x_k} = \underbrace{m^{k-3}(m^{x_k})^2}_{x_k} \) where \(x_k = (x_{k-2}-b_{k-2})/2 = b_{k-1} \)
- \(m^{x_{k-2}} = \underbrace{m^{k-2}(m^{x_{k-2}})^2}_{x_{k-2}} \) where \(x_{k-2} = (x_{k-3}-b_{k-3})/2 = b_{k-2} \)
- \(m^{x_{k-1}} = \underbrace{m^{k-1}}_{x_{k-1}} \)

- “square and multiply” algorithm

 \[
 \begin{cases}
 c = 1 \\
 \text{for } i = k-1 \text{ to } 0 \text{ do} \\
 \quad c = c^2 \mod n \\
 \quad \text{if } b_i = 1 \text{ then } c = c \cdot m \mod n \\
 \text{end for} \\
 \text{output } c = m^x \mod n
 \end{cases}
 \]

- complexity:
 - \(k \) modular squaring (multiplication)
 - at most \(k \) modular multiplication
 - complexity of the clever approach is \(O(kk^2) = O(k^3) \)
RSA toy example

- key generation
 - let \(p = 73, q = 151 \)
 - \(n = 73 * 151 = 11023 \)
 - \(\phi(n) = 72*150 = 10800 \)
 - let \(e = 11 \)
 - compute \(d \) with the extended Euclidean algorithm as follows:

 \[
 \begin{align*}
 10800 &= 981 * 11 + 9 \\
 t_2 &= 0 - 981x1 \mod 10800 = 9819 \\
 t_1 &= 1 - 1x9819 \mod 10800 = 982 \\
 t_0 &= 9819 - 4x982 = 5891 \\
 \end{align*}
 \]
 - public key is \((11, 11023)\), private key is \(5891\)

- encryption
 - let \(m = 17 \)
 - we compute \(c \) with the "square and multiply" algorithm as follows:

 \[
 \begin{align*}
 e &= 11 = 1011 \text{ (in binary)} \\
 c &= 1 \\
 b_3 &= 1 \rightarrow c &= c \cdot m \mod n = 17 \\
 b_2 &= 0 \rightarrow c &= c^2 \mod n = 289 \\
 b_1 &= 1 \rightarrow c &= c \cdot m \mod n = 1419957 \mod 11023 = 8913 \\
 b_0 &= 1 \rightarrow c &= c^2 \mod n = 1419957^2 \mod 11023 = 1782 \\
 \text{output } c &= 1711 \mod 11023 = 1782 \\
 \end{align*}
 \]

- decryption
 - \(d = 5891 = 1011100000011 \) (in binary)
 - we compute \(m = c^d \mod n \) with the "square and multiply" algorithm as above

Implementing RSA – Primality testing

- what is the probability of the event that a randomly selected large integer is prime?
 - prime number theorem:
 number of primes smaller than \(n \) is approximately \(\Pi(n) \sim n/\ln(n) \)
 - corollary:
 probability that a randomly selected \(k \)-bit long integer is prime is
 \[
 \frac{\Pi(2^k) - \Pi(2^{k-1})}{2^k - 2^{k-1}} \sim \frac{1}{(k-1)\ln(2)}
 \]
 - example:
 \(k = 512 \), probability is \(1/354 = 0.0028 \)
 if we consider only randomly selected odd integers, then the probability is \(1/177 \)

- how can we know if a given integer is prime or not?
 - PRIME is in \(P \) (there is a polynomial time deterministic decision algorithm)
 - in practice, people use probabilistic primality testing algorithms
Implementing RSA – Fermat-test

- **Fermat theorem:**
 - if p prime and gcd(b, p) = 1, then $b^{p-1} \equiv 1 \pmod{p}$

- a composite number n is pseudo-prime for a base b if
 - $b^{n-1} \equiv 1 \pmod{n}$
 - where $1 < b < n$ and gcd(b, n) = 1

- **testing approach**
 - choose a random base b, and check if $b^{n-1} \equiv 1 \pmod{n}$ holds
 - if not, then n is composite
 - if yes, then n may be prime and we need to test it further with other bases
 - if n passes the test for many bases, then we accept it as a prime
 - this is a Monte Carlo algorithm
 - the algorithm always gives an answer
 - the answer may be wrong with some probability ε

- **what is the probability of a false answer?**

Implementing RSA – Fermat-test

- **bad news:**
 - there exist composite numbers that always pass the Fermat-test (for every possible base)
 - these are called Carmichael-numbers, and they are quite rare
 - example: 561

- **good news:**
 - if n is composite and not a Carmichael number, then n passes the test for at most half of the possible bases
 - if we run T tests, and n passes all of them, then the probability of error is upper bounded by 2^{-T}
 - error probability can be made arbitrarily low
Relation to factoring

- the problem of computing d from (e, n) is computationally equivalent to the problem of factoring n
 - if one can factor n, then he can easily compute d
 - if one can compute d, then he can efficiently factor n
- the problem of computing m from c and (e, n) (RSA problem) is believed to be computationally equivalent to factoring
 - if one can factor n, then he can easily compute m from c and (e, n)
 - there's no formal proof for the other direction
- given the latest progress in developing algorithms for factoring, the size of the modulus should at least be 1024 bits

Problems - Unconcealed messages

- a message is unconcealed if it encrypts to itself (i.e., if $m^e \mod n = m$)
- trivial examples for unconcealed messages are $m = 0$, $m = 1$, and $m = n-1$
- the exact number of unconcealed messages is $(1 + \gcd(e-1, p-1))(1 + \gcd(e-1, q-1))$
 - if p, q, and e are selected at random (or e is small such as $e = 3$), then the number of unconcealed messages is negligibly small
Problems - Small encryption exponent e

- To improve efficiency of encryption, it is desirable to select a small exponent e (e.g., $e = 3$ is typical).
- A group of entities may use the same exponent, but different moduli (e.g., $e = 3$, and $n_1, n_2, ...$).
- In this case, an attacker may find a plaintext m efficiently, if m is sent to several (at least 3) recipients:
 - Assume that the attacker observes $c_i = m^e \mod n_i$ ($i = 1, 2, 3$).
 - Let $x = m^e$.
 - The attacker must solve for x the following system of congruences:
 - $x \equiv c_1 \mod n_1$.
 - $x \equiv c_2 \mod n_2$.
 - $x \equiv c_3 \mod n_3$.
 - Chinese remainder theorem: If $n_1, n_2, ..., n_k$ are pairwise relatively primes, then such a system has a unique solution $(\mod n_1 \cdot n_2 \cdot \ldots \cdot n_k)$.
 - Since $m^e < n_1 \cdot n_2 \cdot n_3$, the solution found must be m^e.
 - The attacker then computes the cube root of m^e to get m.

Salting

- Appending a (pseudo) random bit string to the plaintext prior to encryption.
- Salting is a solution to the small exponent problem:
 - Even if the same message m has to be sent to many recipients, the actual plaintext that is encrypted will be different for everyone due to salting.
- Another problem of small exponents where salting helps:
 - If $m < n^{1/e}$, then $m^e < n$, and hence $c = m^e$.
 - m can be computed from c by taking the eth root of c.
 - Salting helps, because it increases the plaintext so that it becomes larger than $n^{1/e}$.
- It is also good for preventing forward search attacks:
 - If the message space is small and predictable, then an attacker can pre-compute a dictionary by encrypting all possible plaintexts.
 - Salting increases the number of possible plaintexts and makes pre-computing a dictionary harder.
Problems - Homomorphic property

- if \(m_1 \) and \(m_2 \) are two plaintext messages and \(c_1 \) and \(c_2 \) are the corresponding ciphertexts, then the encryption of \(m_1 m_2 \mod n \) is \(c_1 c_2 \mod n \)
 \[
 (m_1 m_2)^e = m_1^e m_2^e = c_1 c_2 \mod n
 \]
- this leads to an adaptive chosen-ciphertext attack on RSA
 - assume that the attacker wants to decrypt \(c = m \mod n \) intended for Alice
 - assume that Alice will decrypt arbitrary ciphertext for the attacker, except \(c \)
 - the attacker can select a random number \(r \) and submit \(c \cdot r^e \mod n \) to Alice for decryption
 - since \((c \cdot r^e)^d = c^d \cdot r^{ed} = m \cdot r \mod n \), the attacker will obtain \(m \cdot r \mod n \)
 - he then computes \(m \) by multiplication with \(r^{-1} \mod n \)
- this attack can be circumvented by imposing some structural constraints on plaintext messages
 - e.g., a plaintext must start with a well-known constant bit string
 - since \(r \) is random, \(m \cdot r \mod n \) will not have the right structure with very high probability, and Alice can refuse to respond

RSA encryption in practice: PKCS #1

- PKCS v1.5 encoding
 \[
 \begin{array}{c|c|c|c}
 0x00 & 0x02 & \text{at least 8 non-zero random bytes} & 0x00 \text{ message to be encrypted} \\
 \end{array}
 \]
- PKCS v2.0 encoding
 \[
 \begin{array}{c|c|c|c}
 \text{hashed label} & \text{some 0x00 bytes} & 0x01 & \text{message to be encrypted} \\
 \end{array}
 \]

\[0x00 \text{ masked seed} \quad \text{masked message} \]

© Levente Buttyán
Bleichenbacher’s attack on PKCS1 v1.5

- adaptive chosen ciphertext attack
- the goal is to decrypt a message with the help of an oracle that
 - inputs an arbitrary message
 - decrypts it
 - verifies PKCS formatting
 - responds with 1 if the obtained plaintext is PKCS conform, and 0 otherwise
- the attack needs $\sim 2^{20}$ oracle call only

ElGamal cryptosystem

- key generation
 - generate a large random prime p and choose generator g of the
 multiplicative group $\mathbb{Z}_p^* = \{1, 2, \ldots, p-1\}$
 - select a random integer a, $1 \leq a \leq p-2$, and compute $A = g^a \mod p$
 - the public key is (p, g, A)
 - the private key is a
- encryption
 - represent the message as an integer m in $[0, p-1]$
 - select a random integer r, $1 \leq r \leq p-2$, and compute $R = g^r \mod p$
 - compute $C = m \cdot A^r \mod p$
 - the ciphertext is the pair (R, C)
- decryption
 - compute $m = C \cdot R^{p-1-a} \mod p$
- proof of decryption
 \[C \cdot R^{p-1-a} = m \cdot A^r \cdot R^{p-1-a} = m \cdot g^a \cdot g^{r(p-1-a)} = m \cdot (g^{p-1})^r = m \mod p \]
Relation to hard problems

- security of the ElGamal scheme is said to be based on the discrete logarithm problem in \mathbb{Z}_p^*, although equivalence has not been proven yet
- recovering m given p, g, A, R, and C is equivalent to solving the Diffie-Hellman problem
- given the latest progress on the discrete logarithm problem, the size of the modulus p should at least be 1024 bits

Notes on the ElGamal scheme

- encryption requires two modular exponentiations, whereas decryption requires only one
- encrypted message is twice as long as the plaintext (message expansion)
- all entities in a system may choose to use the same prime p and generator g
 - size of the public key is reduced
 - encryption can be speed up by pre-computation