Why is security more of a concern in wireless?

- no inherent physical protection
 - physical connections between devices are replaced by logical associations
 - sending and receiving messages do not need physical access to the network infrastructure (cables, hubs, routers, etc.)

- broadcast communications
 - wireless usually means radio, which has a broadcast nature
 - transmissions can be overheard by anyone in range
 - anyone can generate transmissions,
 - which will be received by other devices in range
 - which will interfere with other nearby transmissions and may prevent their correct reception (jamming)

➢ eavesdropping is easy
➢ injecting bogus messages into the network is easy
➢ replaying previously recorded messages is easy
➢ illegitimate access to the network and its services is easy
➢ denial of service is easily achieved by jamming
GSM Security

- main security requirement
 - subscriber authentication (for the sake of billing)
 - challenge-response protocol
 - long-term secret key shared between the subscriber and the home network operator
 - supports roaming without revealing long-term key to the visited networks

- other security services provided by GSM
 - confidentiality of communications and signaling over the wireless interface
 - encryption key shared between the subscriber and the visited network is established with the help of the home network as part of the subscriber authentication protocol
 - protection of the subscriber’s identity from eavesdroppers on the wireless interface
 - usage of short-term temporary identifiers

The SIM card (Subscriber Identity Module)

- tamper-resistant
- protected by a PIN code (checked locally by the SIM)
- removable from the terminal
- contains all data specific to the end user which have to reside in the Mobile Station:
 - IMSI: International Mobile Subscriber Identity (permanent user’s identity)
 - PIN
 - TMSI (Temporary Mobile Subscriber Identity)
 - K_i: User’s secret key
 - CK: Ciphering key
 - List of the last call attempts
 - List of preferred operators
 - Supplementary service data (abbreviated dialing, last short messages received, ...)

GSM and UMTS security
GSM and UMTS security

GSM authentication and cipher key setup

- Mobile phone + SIM card
- Visited network
- Home network

RAND → **K** → **A3** → **A8** → **SRES’** → **CK’**

- PRNG
- RAND → **A3** → **A8** → **RAND** → **SRES** → **CK**

IMSI → **(RAND, SRES, CK)**

SRES = SRES’

Ciphering in GSM

- **Kc** → **FRAME NUMBER** → **A5** → **CIPHERING SEQUENCE** → **PLAINTEXT SEQUENCE** → **CIPHERTEXT SEQUENCE** → **Kc** → **FRAME NUMBER** → **A5** → **CIPHERING SEQUENCE** → **PLAINTEXT SEQUENCE** → **CIPHERTEXT SEQUENCE**

Sender (Mobile Station or Network) → **Receiver** (Network or Mobile Station)
Conclusion on GSM security

- focused on the protection of the air interface
- no protection on the wired part of the network (neither for privacy nor for confidentiality)
- the visited network has access to all data (except the secret key of the end user)
- generally robust, but a few successful attacks have been reported:
 - faked base stations
 - cloning of the SIM card

3GPP security design principles

- Reuse of 2nd generation security principles (GSM):
 - Removable hardware security module
 - In GSM: SIM card
 - In 3GPP: USIM (User Services Identity Module)
 - Radio interface encryption
 - Limited trust in the Visited Network
 - Protection of the identity of the end user (especially on the radio interface)

- Correction of the following weaknesses of the previous generation:
 - Possible attacks from a faked base station
 - Cipher keys and authentication data transmitted in clear between and within networks
 - Encryption not used in some networks ➔ open to fraud
 - Data integrity not provided
 - ...
3GPP authentication vectors

AMF: Authentication and Key Management Field

Processing in the USIM

USIM: User Services Identity Module

- Verify that SQN is in the correct range
- Verify MAC = XMAC
Conclusion on 3GPP security

- Some improvement with respect to 2nd generation
 - Cryptographic algorithms are published
 - Integrity of the signalling messages is protected
- Quite conservative solution
- Privacy/anonymity of the user not completely protected
- 2nd/3rd generation interoperation will be complicated and might open security breaches