Hash functions

- definition and properties
- birthday paradox
- a provably secure construction
- iterative hash functions
- hash functions based on block ciphers
- customized hash functions (SHA-1)

Definition

a hash function maps bit strings of arbitrary finite length to bit strings of fixed length (n bits)

many-to-one mapping \(\rightarrow\) collisions are unavoidable

however, finding collisions are difficult \(\rightarrow\) the hash value of a message can serve as a compact representative image of the message (similar to fingerprints)
Properties

- **compression**
 - by definition
- **ease of computation**
 - given an input \(x \), the hash value \(h(x) \) of \(x \) is easy to compute
- **weak collision resistance (2nd preimage resistance)**
 - given an input \(x \), it is computationally infeasible to find a second input \(x' \) such that \(h(x') = h(x) \)
- **strong collision resistance (collision resistance)**
 - it is computationally infeasible to find any two distinct inputs \(x \) and \(x' \) such that \(h(x) = h(x') \)
- **one-way hash function (preimage resistance)**
 - given a hash value \(y \) (for which no preimage is known), it is computationally infeasible to find any input \(x \) s.t. \(h(x) = y \)

Motivation for the properties

- **weak collision resistance**
 - assume that the hash-and-sign paradigm is used
 - signed message: \((m, \sigma_B(h(m)))\)
 - if an attacker can find \(m' \) such that \(h(m') = h(m) \), then he can forge a signed message \((m', \sigma_B(h(m')))\) = \((m', \sigma_B(h(m)))\)
- **strong collision resistance**
 - the same setup as above but assume that the attacker can choose the message that \(B \) signs
 - now it is enough to find a collision pair \((m, m')\)
 - the attacker obtains the signature \(\sigma_B(h(m)) \) on \(m \) from \(B \) and claims that \(m' \) has been signed by presenting \((m', \sigma_B(h(m)))\)
- **one-way property**
 - RSA signature on \(y \) is \(y^d \mod n \)
 - the attacker chooses a random value \(z \) and computes \(y = z^e \mod n \)
 - if the attacker can find an \(x \), such that \(h(x) = y \), then he can forge a signed message \((x, (h(x))^d \mod n) = (x, z)\)
Relationship between the properties

- **strong collision resistance implies weak collision resistance**
 - assume that \(h \) is strongly collision resistant but not weakly collision resistant
 - given an input \(x \), one can find an \(x' \), such that \(h(x) = h(x') \)
 - \((x, x')\) is a collision pair → contradicts the assumption that \(h \) is strongly collision resistant

- **strong collision resistance implies the one-way property**
 - if one can find preimages easily, then she can also find collisions easily
 - here’s a Las Vegas algorithm for finding collisions:

```
choose a random \( x \)
compute \( h(x) \)
find \( x' \) such that \( h(x') = h(x) \)  // this is easy by assumption
if \( x' = x \) then output “failure”
else output the collision \((x, x')\)
```

THEOREM: Let \(h: X \rightarrow Y \), where \(|X| \geq 2|Y|\). The success probability of the above algorithm is at least \(\frac{1}{2} \).

proof:
- let \(Z_y = \{x : h(x) = y\} \)
- given \(h(x) \), one can find an \(x' \) such that \(h(x') = h(x) \)
- the probability of \(x \neq x' \) is \((|Z_{h(x)}| - 1)/|Z_{h(x)}| \)
- the success probability of the algorithm is

\[
\sum_{x \in X} \frac{1}{|X|} \left(\frac{|Z_{h(x)}| - 1}{|Z_{h(x)}|} \right) = \\
\sum_{y \in Y} \sum_{x \in Z_y} \frac{(|Z_y| - 1)}{|Z_y|} = \\
\sum_{y \in Y} \sum_{x \in Z_y} \frac{(|Z_{h(x)}| - 1)}{|Z_{h(x)}|} = \\
\sum_{y \in Y} \frac{(|Z_y| - 1)}{|X|} \geq \\
\frac{(|X| - |Y|)}{|X|} \geq \\
\frac{|X| - |X|/2}{|X|} = \frac{1}{2}
\]
Birthday paradox

Two variants:

- when drawing elements randomly (with replacement) from a set of \(N \) elements, with high probability a repeated element will be encountered after \(\sqrt{N} \) selections

- if we have a set of \(N \) elements, and we randomly select two subsets of size \(\sqrt{N} \) each, then with high probability, the intersection of the two subsets will not be empty

These facts have a profound impact on the design of hash functions (and other cryptographic algorithms and protocols)!

Birthday paradox

- Given a set of \(N \) elements, from which we draw \(k \) elements randomly (with replacement). What is the probability of encountering at least one repeating element?

- first, compute the probability of no repetition:
 - the first element \(x_1 \) can be anything
 - when choosing the second element \(x_2 \), the probability of \(x_2 \neq x_1 \) is \(1-1/N \)
 - when choosing \(x_3 \), the probability of \(x_3 \neq x_2 \) and \(x_3 \neq x_1 \) is \(1-2/N \)
 - ...
 - when choosing the \(k \)-th element, the probability of no repetition is \(1-(k-1)/N \)
 - the probability of no repetition is \((1 - 1/N)(1 - 2/N)...(1 - (k-1)/N) \)
 - when \(x \) is small, \((1-x) \approx e^{-x} \)
 - \((1 - 1/N)(1 - 2/N)...(1 - (k-1)/N) = e^{-1/N}e^{-2/N}...e^{-(k-1)/N} = e^{-k(k-1)/2N} \)

- the probability of at least one repetition after \(k \) drawing is \(1 - e^{-k(k-1)/2N} \)
Birthday paradox

- How many drawings do you need, if you want the probability of at least one repetition to be \(\varepsilon \)?
- solve the following for \(k \):
 \[
 \varepsilon = 1 - e^{-k(k-1)/2N} \\
 k(k-1) = 2N \ln(1/1-\varepsilon) \\
 k \approx \sqrt{2N \ln(1/1-\varepsilon)}
 \]
- examples:
 \[
 \varepsilon = \frac{1}{2} \rightarrow k \approx 1.177 \sqrt{N} \\
 \varepsilon = \frac{3}{4} \rightarrow k \approx 1.665 \sqrt{N} \\
 \varepsilon = 0.9 \rightarrow k \approx 2.146 \sqrt{N}
 \]
- origin of the name "birthday paradox":
 - elements are dates in a year (\(N = 365 \))
 - among \(1.177 \sqrt{365} \approx 23 \) randomly selected people, there will be at least two that have the same birthday with probability \(\frac{1}{2} \)

Choosing the output size of a hash function

- good hash functions can be modeled as follows:
 - given a hash value \(y \), the probability that a randomly chosen input \(x \) maps to \(y \) is \(\sim 2^{-n} \)
 - the probability that two randomly chosen inputs \(x \) and \(x' \) map into the same hash value is also \(\sim 2^{-n} \)
 - \(n \) should be at least 64, but 80 is even better
- birthday attacks
 - among \(\sim \sqrt{2^n} = 2^{n/2} \) randomly chosen messages, with high probability there will be a collision pair
 - it is easier to find collisions than to find preimages or 2\(^{rd}\) preimages for a given hash value
 - in order to resist birthday attacks, \(n \) should be at least 128, but 160 is even better
A discrete log hash function

- construction:
 - let p be a large prime such that $q = (p-1)/2$ is also prime
 - let a and b be two primitive elements of \mathbb{Z}_p^*
 - computing x such that $a^x \mod p = b$ is difficult (discrete log problem)
 - let $h: \{0, 1, \ldots, q-1\} \times \{0, 1, \ldots, q-1\} \rightarrow \mathbb{Z}_p^*$ be the following:
 $$h(x_1, x_2) = a^{x_1}b^{x_2} \mod p$$
 - if p is k bit long, then h maps $2(k-1)$ bits into k bits

THEOREM: if one can find a collision for h, then she can efficiently compute $d\log_ab$

Proof of the theorem

- suppose there's a collision $h(x_1, x_2) = h(x_3, x_4)$
- then we know that $a^{x_1-x_3} \equiv b^{x_4-x_2} \mod p$
- since $((x_1, x_2), (x_3, x_4))$ is a collision, $(x_1, x_2) \neq (x_3, x_4)$
- without loss of generality, assume that $x_2 \neq x_4$
- let $d = \gcd(x_4-x_2, p-1)$
- since $p-1 = 2q$, and q is prime, there are four cases:
 - $d = 1$
 - $d = 2$
 - $d = q$
 - $d = 2q \leq p-1$
- but $0 \leq x_2, x_4 < q$, and therefore, $-q < x_4-x_2 < q$
- in addition, we know that $x_4-x_2 \neq 0$
- this means that q and $2q$ cannot divide x_4-x_2
- hence, two cases remain: $d = 1$ and $d = 2$
Proof of the theorem

- **d = 1**
 - This means that $x_4 - x_2$ and $p - 1$ are relative primes, and thus, $x_4 - x_2$ has an inverse mod $p - 1$
 - $y = (x_4 - x_2)^{-1} \pmod{p - 1}$
 - $b^{(x_4 - x_2)y} = b^{k(p-1)-1} = b(b^{p-1})^k = b \pmod{p}$
 - $b^{(x_4 - x_2)y} = a^{(x_1 - x_3)y} \pmod{p}$
 - Thus, $b = a^{(x_1 - x_3)y} \pmod{p}$, and so $d \log_b a = (x_1 - x_3)y \pmod{p - 1}$

- **d = 2**
 - $b^{p-1} = (b^q)^2 = 1 \pmod{p} \Rightarrow b^q$ is a square root of 1 mod p
 - b^q cannot be 1, since b is a primitive element $\Rightarrow b^q = -1 \pmod{p}$
 - Since gcd($x_4 - x_2, 2q$) = 2, we must have gcd($x_4 - x_2, q$) = 1
 - Let $y = (x_4 - x_2)^{-1} \pmod{q}$
 - $b^{(x_4 - x_2)y} = b^{kq + 1} = b(b^q)^k = b(-1)^k = \pm b \pmod{p}$
 - Thus, either
 - $b = b^{(x_4 - x_2)y} = a^{(x_1 - x_3)y} \pmod{p}$, or
 - $b = -b^{(x_4 - x_2)y} = -a^{(x_1 - x_3)y} = a^{(x_1 - x_3)y} = a^{(x_1 - x_3)y} \pmod{p}$

Iterated hash functions

- Input is divided into fixed length blocks
- Last block is padded if necessary
- Each input block is processed according to the following scheme

\[
\begin{align*}
\text{input } x &= x_1 x_2 x_3 \ldots x_L, \\
\text{input block } x_i &\rightarrow CV_i \\
CV_0 &= \text{IV} \\
f &: \text{compression function} \\
CV_{i+1} &= f(CV_i) \\
h(x) &= CV_L
\end{align*}
\]

Alternative illustration:

\[
\begin{align*}
x_1 &\rightarrow CV_1 \\
x_2 &\rightarrow CV_2 \\
x_3 &\rightarrow CV_3 \\
\ldots &\rightarrow CV_{i-1} \\
h(x) &= CV_L
\end{align*}
\]
Exercise

- Assume that an iterated hash function h has a small output size such that h is not collision resistant (the birthday attack works). One may try to increase the output size by using the last two chaining variables as the output:

$$h'(x) = CV_{L-1}CV_L$$

Prove that this is insecure by showing that h' is still not collision resistant.

Merkle-Damgard (MD) strengthening

THEOREM: if f is strongly collision resistant, then h is strongly collision resistant too.
Proof of the MD theorem

- Let's assume that one has found a collision pair \((x, x')\) for \(h\).
- There are three possible cases:
 1. \(|x| \equiv |x'| \pmod{b}\)
 2a. \(|x| = |x'| \pmod{b}\) and \(|x| = |x'|\)
 2b. \(|x| = |x'| \pmod{b}\) but \(|x| \neq |x'|\)

- Case 1:
 - \(d \neq d' \Rightarrow y_{k+1} \neq y'_{k+1}\)
 - \(f(cv_k|1|y_{k+1}) = h(x) = h(x') = f(cv'_k|1|y'_{k+1})\)
 - \((cv_k|1|y_{k+1}, cv'_k|1|y'_{k+1})\) is a collision for \(f\)
 - This contradicts with the assumption that \(f\) is collision resistant

- Case 2a:
 - \(y_{k+1} = y'_{k+1}\)
 - \(f(cv_k|1|y_{k+1}) = h(x) = h(x') = f(cv'_k|1|y'_{k+1})\)
 - \(cv_k = cv'_k\) since otherwise we found a collision for \(f\)
 - \(f(cv_{k-1}|1|y_{k}) = cv_k = cv'_k = f(cv'_{k-1}|1|y'_{k})\)
 - \(cv_{k-1} = cv'_{k-1}\) and \(y_k = y'_k\) since otherwise we found a collision for \(f\)
 - ...
 - \(f(0^{n-1}|y_1) = cv_1 = cv'_1 = f(0^{n-1}|y'_1)\)
 - \(y_1 = y'_1\) since otherwise we found a collision for \(f\)
 - This means that \(y_i = y'_i\) for all \(i = 1, 2, \ldots, k+1\)
 - Hence \(x = x'\), but this contradicts with the assumption that \((x, x')\)
 is a collision pair
Proof of the MD theorem

- case 2b:
 - $y_{k+1} = y'_{k+1}$
 - $f(cv_k|1|y_{k+1}) = h(x) = h(x') = f(cv'_k|1|y'_{k+1})$
 - $cv_k = cv'_k$ since otherwise we found a collision for f
 - $f(cv_{k+1}|1|y_{k+1}) = cv_k = cv'_k = f(cv'_{k+1}|1|y'_k)$
 - $cv_{k+1} = cv'_{k+1}$ and $y_k = y'_k$ since otherwise we found a collision for f
 - ...
 - assume that $k < k'$
 - ...
 - $f(0^{n-1}|y_1) = cv_i = cv'_{k-k-1} = f(cv'_{k-k}|1|y'_{k-k+1})$
 - $(0^{n-1}|y_1, cv_{k-k}|1|y'_{k-k+1})$ is a collision pair for f, because they differ in their $(n+1)$st bits
 - this contradicts with the assumption that f is collision resistant

Hash functions based on block ciphers

- Miyaguchi-Preneel
- Matyas - Meyer - Oseas
- Davies - Meyer
SHA1 – Secure Hash Algorithm

- output size (n): 160 bits
- input block size (b): 512 bits
- padding is always used

CV₀:
A = 67 45 23 01
B = EF CD AB 89
C = 98 BA DC FE
D = 10 32 54 76
E = C3 D2 E1 F0

SHA1 compression function f

SHA1 compression function f

- CV₀
- A = 67 45 23 01
- B = EF CD AB 89
- C = 98 BA DC FE
- D = 10 32 54 76
- E = C3 D2 E1 F0

Hash functions / SHA 1
SHA1 compression function \(f \) cont’d

- \(f[t](B, C, D) \)
 \(t = 0..19 \) \(f[t](B, C, D) = (B \land C) \lor (\neg B \land D) \)
 \(t = 20..39 \) \(f[t](B, C, D) = B \oplus C \oplus D \)
 \(t = 40..59 \) \(f[t](B, C, D) = (B \land C) \lor (B \land D) \lor (C \land D) \)
 \(t = 60..79 \) \(f[t](B, C, D) = B \oplus C \oplus D \)

- \(W[t] \)
 \(W[0..15] = x_i \)
 \(t = 16..79 \) \(W[t] = \text{LROT}(W[t-16] \oplus W[t-14] \oplus W[t-8] \oplus W[t-3]) \)

- \(K[t] \)
 \(t = 0..19 \) \(K[t] = 5A \ 82 \ 79 \ 99 \) \([2^{30} \times 2^{1/2}]\)
 \(t = 20..39 \) \(K[t] = 6E \ D9 \ EB \ A1 \) \([2^{30} \times 3^{1/2}]\)
 \(t = 40..59 \) \(K[t] = 8F \ 1B \ BC \ DC \) \([2^{30} \times 5^{1/2}]\)
 \(t = 60..79 \) \(K[t] = CA \ 62 \ C1 \ D6 \) \([2^{30} \times 10^{1/2}]\)
Message authentication codes

- definition and properties
- constructions based on block ciphers
- constructions based on hash functions

Definition

MAC functions can be viewed as hash functions with two functionally distinct inputs: a message and a secret key. They produce a fixed size output (say n bits) called the MAC. Practically it should be infeasible to produce a correct MAC for a message without the knowledge of the secret key. MAC functions can be used to implement data integrity and message origin authentication services.
MAC generation and verification

Properties

- **ease of computation**
 - given an input x and a secret key k, it is easy to compute $\text{MAC}_k(x)$
- **compression**
 - MAC_k maps an input of arbitrary finite length to an output of fixed length (n bits)
- **key non-recovery**
 - it is computationally infeasible to recover the secret key k, given one or more text-MAC pairs $(x_i, \text{MAC}_k(x_i))$ for that k
- **computation resistance**
 - given zero or more text-MAC pairs $(x_i, \text{MAC}_k(x_i))$, it is computationally infeasible to find a text-MAC pair $(x, \text{MAC}_k(x))$ for any new input $x \neq x_i$
 - computation resistance implies key non-recovery but the reverse is not true in general
CBC MAC

- CBC MAC is secure for messages of a fixed number of blocks
- (adaptive chosen-text existential) forgery is possible if variable length messages are allowed

Existential forgery of CBC MAC

- example 1
 - given a known text-MAC pair \((x_1, M_1)\)
 - request MAC for \(M_1\), receive \(M_2 = E_k(M_1 \oplus 0) = E_k(M_1)\)
 - \(M_2\) is the MAC of the two block message \((x_1|0)\)
Existential forgery of CBC MAC

- example 2
 - given two known text-MAC pairs: \((x_1, M_1), (x_2, M_2)\)
 - request MAC for message \(x_1|M_1 \oplus M_2 \oplus z\), where \(z\) is an arbitrary block
 - receive \(M_3 = E_k(M_1 \oplus M_2 \oplus z \oplus M_1) = E_k(M_2 \oplus z)\)
 - \(M_3\) is also the MAC for message \(x_2|z\)

<table>
<thead>
<tr>
<th>Example Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1) \hspace{5mm} (M_1 \oplus M_2 \oplus z)</td>
</tr>
<tr>
<td>(k) \hspace{5mm} (M_1)</td>
</tr>
<tr>
<td>(E) \hspace{5mm} (M_3 = E_k(M_2 \oplus z))</td>
</tr>
</tbody>
</table>

Secret prefix method

- \(\text{MAC}_h(x) = h(k|x)\)
 - insecure
 - assume an attacker knows the MAC on \(x\): \(M = h(k|x)\)
 - he can produce the MAC on \(x|y\) as \(M' = f(M,y)\), where \(f\) is the compression function of \(h\)

\[x = x_1'|x_2|...|x_L \]

<table>
<thead>
<tr>
<th>Example Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k</td>
</tr>
<tr>
<td>(f) \hspace{5mm} (f)</td>
</tr>
<tr>
<td>(CV_0) \hspace{5mm} (M)</td>
</tr>
<tr>
<td>(f) \hspace{5mm} (M' = \text{MAC}_h(x</td>
</tr>
</tbody>
</table>

© Levente Buttyán
Secret suffix method

- \(MAC_k(x) = h(x|k) \)
 - may be insecure
 - using a birthday attack, the attacker finds two inputs \(x \) and \(x' \) such that \(h(x) = h(x') \) (can be done off-line)
 - then obtaining the MAC \(M \) on one of the inputs, say \(x \), allows the attacker to forge a text-MAC pair \((x', M)\)
 - weaknesses
 - key is involved only in the last step
 - MAC depends only on the last chaining variable

MACs based on hash functions

\(CV_0 \) \(f \) \(x_1/x'_1 \) \(f \) \(x_2/x'_2 \) \(f \) \(x_L/x'_L \) \(h(x) = h(x') \) \(h(x) = h(x) \) \(k|padding \) \(M \)

HMAC

- **definition**
 \[
 HMAC_k(x) = h((k^* ⊕ opad) | h((k^* ⊕ ipad) | x))
 \]
 where
 - \(h \) is a hash function with input block size \(b \) and output size \(n \)
 - \(k^* \) is \(k \) padded with 0s to obtain a length of \(b \) bits
 - \(ipad \) is 00110110 repeated \(b/8 \) times
 - \(opad \) is 01011100 repeated \(b/8 \) times

- **design objectives**
 - to use available hash functions
 - easy replacement of the embedded hash function
 - preserve performance of the original hash function
 - handle keys in a simple way
 - allow mathematical analysis
HMAC illustrated

Digital signatures

- definitions
- types of attacks
- the “hash-and-sign” paradigm
- the RSA signature scheme
- the ElGamal signature scheme
Definition

- similar to MACs but
 - unforgeable by the receiver
 - verifiable by a third party
- used for message authentication and non-repudiation (of message origin)
- based on public-key cryptography
 - private key defines a signing transformation S_A
 - $S_A(m) = \sigma$
 - public key defines a verification transformation V_A
 - $V_A(m, \sigma) = \text{true}$ if $S_A(m) = \sigma$
 - $V_A(m, \sigma) = \text{false}$ otherwise

Types of attacks on signature schemes

- classification of attacks based on the goal of the attacker
 - total break
 - the attacker is able to compute the private key of the signer or finds an efficient signing algorithm functionally equivalent to the valid signing algorithm
 - selective forgery
 - the attacker is able to compute a valid signature for a particular message or class of messages
 - the legitimate signer is not involved directly
 - existential forgery
 - the attacker is able to forge a signature for at least one message
 - the attacker may not have control over the message for which the signature is obtained
 - the legitimate signer may be involved in the deception
Types of attacks on signature schemes

- classification of attacks based on the means of the attacker
 - key-only attack
 - only the public key is available to the attacker
 - known-message attack
 - the attacker has signatures for a set of messages known to the attacker but not chosen by him
 - chosen-message attack
 - the attacker obtains signatures for messages chosen by him before attempting to break the signature scheme
 - adaptive chosen-message attack
 - the attacker is allowed to use the signer as an oracle
 - he may request signatures for messages which depend on previously obtained signatures

“Hash-and-sign” paradigm

- motivation: public/private key operations are slow
- approach: hash the message first and apply public/private key operations to the hash value only
Yuval's birthday attack

- input: legitimate message m_1, fraudulent message m_2
- output: messages m_1', m_2' such that
 - m_1' and m_2' are minor modifications of m_1 and m_2, respectively
 - $h(m_1') = h(m_2')$
- generate $t = 2^{n/2}$ minor modifications of m_1
- hash each modifications and store the hash values
- generate a minor modification m_2' of m_2, compute its hash value $h(m_2')$, and look for matches among the stored hash values
- repeat the above step until a match is found (this is expected after t steps)
- complexity: $2^{n/2}$ storage and $\sim 2^{n/2}$ processing
- consequences: a signature on m_1' is also a valid signature on m_2'

RSA signature scheme

- signature generation (input: m)
 - compute $\mu = h(m)$
 - (PKCS #1 formatting)
 - compute $\sigma = \mu^d \mod n$
- signature verification (input: m, σ)
 - obtain the authentic public key (n, e)
 - compute $\mu' = \sigma^e \mod n$
 - (PKCS #1 processing, reject if μ' is not well formatted)
 - compute $\mu = h(m)$
 - compare μ and μ'
 - if they match, then output true
 - otherwise, output false
ElGamal signature scheme

- basis of the Digital Signature Standard (DSS)
- ElGamal is a randomized signature scheme
- key generation
 - generate a large random prime \(p \) and select a generator \(g \) of \(Z_p^* \)
 - select a random integer \(1 \leq a \leq p-2 \)
 - compute \(A = g^a \mod p \)
 - public key: \((p, g, A) \) private key: \(a \)
- signature generation for message \(m \)
 - select a random secret integer \(1 \leq r \leq p-2 \) such that \(\gcd(r, p-1) = 1 \)
 - compute \(r^{-1} \mod (p-1) \)
 - compute \(R = g^r \mod p \)
 - compute \(S = r^{-1}(h(m) - aR) \mod (p-1) \)
 - signature on \(m \) is \((R, S) \)

ElGamal signature scheme

- signature verification
 - obtain the public key \((p, g, A) \) of the signer
 - verify that \(0 < R < p \); if not then reject the signature
 - compute \(v_1 = AR^{S} \mod p \)
 - compute \(v_2 = g^{h(m)} \mod p \)
 - accept the signature iff \(v_1 = v_2 \)
- proof that signature verification works
 \[S = r^{-1}(h(m) - aR) \mod (p-1) \]
 \[rS = h(m) - aR \mod (p-1) \]
 \[h(m) = rS + aR \mod (p-1) \]
 \[g^{h(m)} = g^{rS + aR} = (g^r)^S (g^a)^S = A^{S} \mod (p) \]
 thus, \(v_1 = v_2 \) is required