222

SSL - Secure Socket Layer

- architecture and services

- sessions and connections

- SSL Record Protocol

- SSL Handshake Protocol

- key exchange alternatives

- analysis of the SSL Record and Handshake Protocols
- SSLvs. TLS

What is SSL?

= SSL - Secure Socket Layer

* it provides a secure transport connection between applications
(e.g., a web server and a browser)

* SSL was developed by Netscape

= SSL version 3.0 has been implemented in many web browsers
(e.g., Netscape Navigator and MS Internet Explorer) and web
servers and widely used on the Internet

» SSL v3.0 was specified in an Internet Draft (1996)

* it evolved into RFC 2246 and was renamed to TLS (Transport
Layer Security)

= TLS can be viewed as SSL v3.1

© Levente Buttydn H_

SSL architecture

ooF { =Ou Sst applications
Handshake | | Cipher Spec Alert (ePP W)
Protocol 4% Protocol Protocol 9.

&
.
SSL Record Protocol |
.
.

TCP L

IP

Architecture and services

© Levente Buttydn ‘_

SSL components

SSL Handshake Protocol
- negotiation of security algorithms and parameters
- key exchange
- server authentication and optionally client authentication
SSL Record Protocol
- fragmentation
- compression
- message authentication and integrity protection
- encryption
SSL Alert Protocol
- error messages (fatal alerts and warnings)
SSL Change Cipher Spec Protocol
- asingle message that indicates the end of the SSL handshake

Architecture and services

© Levente Buttydn I_

Sessions and connections

= an SSL session is an association between a client and a server

= sessions are stateful; the session state includes security
algorithms and parameters

* asession may include multiple secure connections between the
same client and server

= connections of the same session share the session state

= sessions are used to avoid expensive negotiation of new
security parameters for each connection

* there may be multiple simultaneous sessions between the same
two parties, but this feature is not used in practice

w
<
=
=
Q
Y]
<
<
o
Q
o
=
o
(4]
<
=
w
w
Q
(]

© Levente Buttydn E_

Session state

= session identifier

- arbitrary byte sequence chosen by the server to identify the
session

= peer certificate
- XB09 certificate of the peer
- may be null
= compression method
= cipher spec
- bulk data encryption algorithm (e.g., null, DES, 3DES, ...)
- MAC algorithm (e.g., MD5, SHA-1)
- cryptographic attributes (e.g., hash size, IV size, ...)
* master secret
- 48-byte secret shared between the client and the server
* is resumable

- a flag indicating whether the session can be used to initiate new
connections

= connection states

© Levente Buttydn n_

Sessions and connections

w
<
=
=
Q
Y]
<
<
o
Q
o
=
o
(4]
<
=
w
w
Q
(]

Sessions and connections

Connection state

= server and client random

- random byte sequences chosen by the server and the client for every
connection

= server write MAC secret
- secret key used in MAC operations on data sent by the server
= client write MAC secret
- secret key used in MAC operations on data sent by the client
= server write key
- secret encryption key for data encrypted by the server
= client write key
- secret encryption key for data encrypted by the client
* initialization vectors
- an IV is maintained for each encryption key if CBC mode is used
- initialized by the SSL Handshake Protocol

- final ciphertext block from each record is used as IV with the following
record

= sending and receiving sequence numbers
- sequence numbers are 64 bits long
- reset fo zero after each Change Cipher Spec message

© Levente Buttydn

N

State changes

= operating state
- currently used state
= pending state
- state to be used
- built using the current state
= operating state ¢ pending state
- at the transmission and reception of a Change Cipher Spec message

party A party B
(client or server) (server or client)

the sending part of the
pending state is copied

info the sending part Chq,
) n .
of the operating state € i hep 5 the receiving part of the
€c pending state is copied

into the receiving part
of the operating state

© Levente Buttydn

B

SSL Record Protocol - processing overview

* fragmentation

= compression

= MAC computation

= padding

= encryption

- SSL Record Protocol message:

|'rype| version | length

application data
(compressed fragment)

MAC

padding p.len

© Levente Buttydn

©
(%
o
+~
o
;3
a
©
=
o
QO
Q
o
|
V)
)

Header

= type
- the higher level protocol used to process the enclosed fragment
- possible types:
+ change_cipher_spec
- alert
+ handshake
+ application_data
= version
- SSL version, currently 3.0
* length
- length (in bytes) of the enclosed fragment or compressed
fragment
- max value is 214 + 2048

SSL Record Protocol

© Levente Buttydn n_

MAC

MAC = hash(MAC_wr_sec | pad_2 |
hash(MAC_wr_sec | pad_1 | seq_num | type | length |frag))

similar to HMAC but the pads are concatenated
supported hash functions:
- MD5
- SHA-1
pad_1 is 0x36 repeated 48 times (MD5) or 40 times (SHA-1)
pad_2 is Ox5C repeated 48 times (MD5) or 40 times (SHA-1)

SSL Record Protocol

© Levente Buttydn n_

Encryption

= supported algorithms
- block ciphers (in CBC mode)
- RC2_40
- DES_40
- DES_56
- 3DES_168
- IDEA_128
+ Fortezza_80
- stream ciphers
+ RC4_40
+ RC4_128
» if a block cipher is used, than padding is applied
- last byte of the padding is the padding length

SSL Record Protocol

© Levente Buttydn E_

SSL Alert Protocol

* each alert message consists of 2 fields (bytes)
= first field (byte): "warning” or “fatal”
» second field (byte):
- fatal
unexpected_message
bad_record_MAC
decompression_failure
handshake_failure
illegal_parameter
- warning
+ close_notify
no_certificate
bad_certificate
unsupported_certificate
certificate_revoked
certificate_expired
- certificate_unknown
= in case of a fatal alert
- cohnection is terminated

- session ID is invalidated = no new connection can be established within
this session

© Levente Buttydn H_

©
Q
o
+
(=]
13
[+
-
[.
S
<
.}
0
0

SSL Handshake Protocol - overview

client server
client_hello Phase 1: Negotiation of the session ID, key
server. hello exchange algorithm, MAC algorithm, encryption
= algorithm, and exchange of initial random numbers

certificate
<sk ””””” h ””””””” Phase 2: Server may send its certificate and key
PR erver_Key_exchange . exchange message, and it may request the client

certificate_request to send a certificate. Server signals end of hello

[4osmmmmmms oo T phase.

server_hello_done

-------------- F-e-r-‘jr-l-f-'-c-q-ei-------------> Phase 3: Client sends certificate if requested and
client_key_exchange may send an explicit certificate verification
sificat if message. Client always sends its key exchange
,,,,,,,,,, certiticate_verity ___,| message.

change_cipher_spec

finished

Phase 4: Change cipher spec and finish handshake
change_cipher_spec

finished

© Levente Buttydn H_

SSL Handshake Protocol

Client hello

= client_version
- the highest version supported by the client
= client_random
- current time (4 bytes) + pseudo random bytes (28 bytes)
» session_id
- empty if the client wants to create a new session, or
- the session ID of an old session within which the client wants to create the
new connection
= cipher_suites
- list of cryptographic options supported by the client ordered by
preference
- a cipher suite contains the specification of the
key exchange method, the encryption and the MAC algorithm

* the algorithms implicitly specify the hash_size, IV_size, and key_material
parameters (part of the Cipher Spec of the session state)

- exmaple: SSL_RSA_with_3DES_EDE_CBC_SHA
* compression_methods
- list of compression methods supported by the client

© Levente Buttydn E_

-~
Q
(%]
=]

£

a

~

©
Q
o
=
(<]
15

a
Q

=
=]

N~
w

©
<
(=]

ag

-

0

n

Server hello

= server_version
- min(highest version supported by client, highest version supported by
server)
= server_random
- current time + random bytes
- random bytes must be independent of the client random
= session_id
- session ID chosen by the server
- if the client wanted to resume an old session:

+ server checks if the session is resumable

if so, it responds with the session ID and the parties proceed to the finished
messages

- if the client wanted a new session
* server generates a hew session ID

» cipher_suite

- single cipher suite selected by the server from the list given by the client
= compression_method

- single compression method selected by the server

© Levente Buttydn E_

SSL Handshake Protocol / Phase 1

SSL Handshake Protocol / Phase 1

SSL Handshake Protocol / Phase 2

Supported key exchange methods

RSA based (SSL_RSA_with...)
- the secret key (pre-master secret) is encrypted with the server's public
RSA key
- the server's public key is made available to the client during the exchange
= fixed Diffie-Hellman (SSL_DH_RSA_with... or SSL_DH_DSS_with...)
- the server has fix DH parameters contained in a certificate signed by a CA

- the client may have fix DH parameters certified by a CA or it may send an
unauthenticated one-time DH public value in the client_key_exchange
message

» ephemeral Diffie-Hellman (SSL_DHE_RSA_with... or
SSL_DHE_DSS_with...)
- both the server and the client generate one-time DH parameters
- the server signs its DH parameters with its private RSA or DSS key
- the client may authenticate itself (if requested by the server) by signing
the hash of the handshake messages with its private RSA or DSS key
* anonymous Diffie-Hellman (SSL_DH_anon_with...)
- both the server and the client generate one-time DH parameters
- they send their parameters to the peer without authentication
* Fortezza
- Fortezza proprietary key exchange scheme

© Levente Buttydn n_

Server certificate and key exchange msgs

» certificate
- required for every key exchange method except for anonymous DH
- contains one or a chain of X.509 certificates (up to a known root CA)
- may contain
+ public RSA key suitable for encryption, or
+ public RSA or DSS key suitable for signing only, or
- fix DH parameters

» server_key_exchange
- sent only if the certificate does not contain enough information to
complete the key exchange (e.g., the certificate contains an RSA signing
key only)
- may contain
+ public RSA key (exponent and modulus), or
DH parameters (p, g, public DH value), or
Fortezza parameters
- digitally signed
- if DSS: SHA-1 hash of (client_random | server_random | server_params) is
signed
if RSA: MD5 hash and SHA-1 hash of (client_random | server_random |
server_params) are concatenated and encrypted with the private RSA key

© Levente Buttydn E_

N
Q
(%]
=]

£

a

~

©
Q
o

—
(<]
13

a
Q

=
=]

=
w
©
<
(=]
ag

-

0

n

SSL Handshake Protocol / Phase 3

Cert request and server hello done msgs

» certificate_request
- sent if the client needs to authenticate itself

- specifies which type of certificate is requested (rsa_sign,
dss_sign, rsa_fixed_dh, dss_fixed_dh, ..)

= gerver_hello_done
- sent fo indicate that the server is finished its part of the key
exchange
- after sending this message the server waits for client response

- the client should verify that the server provided a valid
certificate and the server parameters are acceptable

© Levente Buttydn H_

Client authentication and key exchange

= certificate
- sent only if requested by the server
- may contain
public RSA or DSS key suitable for signing only, or
fix DH parameters
» client_key_exchange
- always sent (but it is empty if the key exchange method is fix DH)
- may contain
RSA encrypted pre-master secret, or
client one-time public DH value, or
Fortezza key exchange parameters
» certificate_verify
- sent only if the client sent a certificate
- provides client authentication
- contains signed hash of all the previous handshake messages
if DSS: SHA-1 hash is signed
if RSA: MD5 and SHA-1 hash is concatenated and encrypted with the private key
MD5(master_secret | pad_2 | MD5(handshake_messages | master_secret | pad_1))

SHA(master_secret | pad_2 | SHA(handshake_messages | master_secret | pad_1))

© Levente Buttydn H_

Finished messages

= sent immediately after the change_cipher_spec message
= used to authenticate all previous handshake messages

» first message that uses the newly negotiated algorithms, keys,
IVs, etc.

= contains the MD5 and SHA-1 hash of all the previous
handshake messages:

MD5(master_secret | pad_2 | MD5(handshake_messages | sender | master_secret | pad_1)) |
SHA(master_secret | pad_2 | SHA(handshake_messages | sender | master_secret | pad_1))

where "sender” is a code that identifies that the sender is the client
or the server (client: 0x434C4E54; server: 0x53525652)

<
Q
(%]
=]
£
a
~
©
Q
o
—
(<]
13
a
Q
=
=]
=
w
©
<
(=]
ag
-
0
n

© Levente Buttydn H_

Cryptographic computations

" pre-master secret
- if key exchange is RSA based:
generated by the client
sent to the server encrypted with the server's public RSA key

- if key exchange is Diffie-Hellman based:
pre_master_secret = g mod p

* master secret (48 bytes)
master_secret = MD5(pre_master_sec | SHA("A" | pre_master_sec | client_random | server_random)) |
MD5(pre_master_sec | SHA("BB" | pre_master_sec | client_random | server_random)) |
MD5(pre_master_sec | SHA("CCC" | pre_master_sec | client_random | server_random))

» keys, MAC secrets, IVs

MD5(master_secret | SHA(A" | master_secret | client_random | server_random)) |
MD5(master_secret | SHA("BB" | master_secret | client_random | server_random)) |
MD5(master_secret | SHA("CCC" | master_secret | client_random | server_random)) | ...

s

key block :

’ client write MAC sec | server write MAC sec client write key server write key ‘

© Levente Buttydn E_

SSL Handshake Protocol / Cryptographic computations

Key exchange alternatives

= RSA / no client authentication

- server sends its encryption capable RSA public key in
server_certificate

- server_key_exchange is not sent
- client sends encrypted pre-master secret in client_key_exchange
- client_certificate and certificate_verify are not sent

- server sends its RSA or DSS public signature key in
server_certificate

- server sends a temporary RSA public key in server_key_exchange
- client sends encrypted pre-master secret in client_key_exchange
- client_certificate and certificate_verify are not sent

SSL Handshake Protocol

© Levente Buttydn H_

Key exchange alternatives cont'd

= RSA / client is authenticated

- server sends its encryption capable RSA public key in
server_certificate

- server_key_exchange is not sent

- client sends its RSA or DSS public signature key in
client_certificate

- client sends encrypted pre-master secret in client_key_exchange

- client sends signature on all previous handshake messages in
certificate_verify

- server sends its RSA or DSS public signature key in
server_certificate

- server sends a one-time RSA public key in server_key_exchange

- client sends its RSA or DSS public signature key in
client_certificate

- client sends encrypted pre-master secret in client_key_exchange

- client sends signature on all previous handshake messages in
certificate_verify

© Levente Buttydn H_

SSL Handshake Protocol

Key exchange alternatives cont'd

= fix DH / no client authentication
- server sends its fix DH parameters in server_certificate
- server_key_exchange is not sent
- client sends its one-time DH public value in client_key_exchange
- client_ certificate and certificate_verify are not sent

= fix DH / client is authenticated
- server sends its fix DH parameters in server_certificate
- server_key_exchange is not sent
- client sends its fix DH parameters in client_certificate
- client_key_exchange is sent but empty
- certificate_verify is not sent

SSL Handshake Protocol

© Levente Buttydn E_

Key exchange alternatives cont'd

= ephemeral DH / no client authentication

- server sends its RSA or DSS public signature key in
server_certificate

- server sends signed one-time DH parameters in
server_key_exchange

- client sends one-time DH public value in client_key_exchange
- client_certificate and certificate_verify are not sent

» ephemeral DH / client is authenticated

- server sends its RSA or DSS public signature key in
server_certificate

- server sends signed one-time DH parameters in
server_key_exchange

- client sends its RSA or DSS public signature key in
client_certificate

- client sends one-time DH public value in client_key_exchange

- client sends signature on all previous handshake messages in
certificate_verify

SSL Handshake Protocol

© Levente Buttydn E_

Key exchange alternatives cont'd

= anonymous DH / no client authentication
- server_certificate is not sent

- server sends (unsigned) one-time DH parameters in
server_key_exchange

- client sends one-time DH public value in client_key_exchange
- client_certificate and certificate_verify are not sent

= anonymous DH / client is authenticated
- not allowed

©
Q
o
+—
(=]
1 5
a
Q
X
[=]
=
(4]
©
<
(=]
I
.}
0
0

© Levente Buttydn

SSL vs. TLS

Miscellaneous changes

= version number
- for TLS 1.1 the version number is 3.2
= cipher suites

- TLS doesn't support Fortezza key exchange and Fortezza
encryption

* padding

- variable length padding is allowed (max 255 padding bytes)
= MAC

- TLS uses the latest version of HMAC

- the MAC covers the version field of the record header too
= certificate_verify message

- the hash is computed only over the handshake messages

- in SSL, the hash contained the master_secret and pads
= more alert codes

© Levente Buttydn H_

New pseudorandom function (PRF)

* P_hash(secret, seed) = HMAC_hash(secret, A(1) | seed) |
HMAC_hash(secret, A(2) | seed) |
HMAC_hash(secret, A(3) | seed) | ...
where
A(O) = seed
A(i) = HMAC_hash(secret, A(i-1))

= PRF(secret, label, seed) =
P_MDb5(secret_left, label | seed) ® P_SHA(secret_right, label | seed)

© Levente Buttydn H_

P_hash illustrated

seed

secret — HMAC

||)e— seed secret— HMAC

secret — HMAC A@)

@4— seed secret—| HMAC

A(3)

®<— seed

secret — HMAC

secret —| HMAC

| |

© Levente Buttydn

Usage of the new PRF

» finished message
PRF(master_secret,
“client finished",
MD5(handshake_messages) | SHA(handshake_messages))

= cryptographic computations
- pre-master secret is calculated in the same way as in SSL
- master secret:
PRF(pre_master_secreft,
“master secret”,
client_random | server_random)
- key block:
PRF(master_secret,
“key expansion”,
server_random | client_random)

© Levente Buttydn

Recommended readings

= SSL v3.0 specification, available on-line at
http://wp.netscape.com/eng/ssl3/index.html

= D. Wagner, B. Schneier, Analysis of the SSL 3.0 protocol, 2"
USENIX Workshop on Electronic Commerce, 1996.

* The TLS protocol v1.0, available on-line as RFC 2246

© Levente Buttydn

