WiFi Security:
WEP, WPA, and WPA2

- security requirements in wireless networks
- WiFi primer
- WEP and its flaws
- 802.11i
- WPA and WPA2 (RSN)

Why security is more of a concern in wireless?

- no inherent physical protection
 - physical connections between devices are replaced by logical associations
 - sending and receiving messages do not need physical access to the network infrastructure (cables, hubs, routers, etc.)
- broadcast communications
 - wireless usually means radio, which has a broadcast nature
 - transmissions can be overheard by anyone in range
 - anyone can generate transmissions,
 - which will be received by other devices in range
 - which will interfere with other nearby transmissions and may prevent their correct reception (jamming)
- eavesdropping is easy
- injecting bogus messages into the network is easy
- replaying previously recorded messages is easy
- illegitimate access to the network and its services is easy
- denial of service is easily achieved by jamming
Wireless communication security requirements

- **confidentiality**
 - messages sent over wireless links must be encrypted

- **authenticity**
 - origin of messages received over wireless links must be verified

- **replay detection**
 - freshness of messages received over wireless links must be checked

- **integrity**
 - modifying messages on-the-fly (during radio transmission) is not so easy, but possible ...
 - integrity of messages received over wireless links must be verified

- **access control**
 - access to the network services should be provided only to legitimate entities
 - access control should be permanent
 - it is not enough to check the legitimacy of an entity only when it joins the network and its logical associations are established, because logical associations can be hijacked

- **protection against jamming**

Introduction to WiFi

- "connected" scanning on each channel

 STA

 association request

 association response

 beacon
 - MAC header
 - timestamp
 - beacon interval
 - capability info
 - SSID (network name)
 - supported data rates
 - radio parameters
 - power slave flags

 AP
Introduction to WiFi

WEP – Wired Equivalent Privacy

- part of the IEEE 802.11 specification
- goal
 - make the WiFi network at least as secure as a wired LAN (that has no particular protection mechanisms)
 - WEP has never intended to achieve strong security
 - (at the end, it hasn’t achieved even weak security)
- services
 - access control to the network
 - message confidentiality
 - message integrity
WEP – Access control

- before association, the STA needs to authenticate itself to the AP
- authentication is based on a simple challenge-response protocol:
 - STA → AP: authenticate request
 - AP → STA: authenticate challenge \((r)\) // \(r\) is 128 bits long
 - STA → AP: authenticate response \((e_K(r))\)
 - AP → STA: authenticate success/failure
- once authenticated, the STA can send an association request, and the AP will respond with an association response
- if authentication fails, no association is possible

WEP – Message confidentiality and integrity

- WEP encryption is based on the RC4 stream cipher
 - operation:
 - for each message to be sent:
 - RC4 is initialized with the shared secret (between STA and AP)
 - RC4 produces a pseudo-random byte sequence (key stream)
 - this pseudo-random byte sequence is XORed to the message
 - reception is analogous
 - it is essential that each message is encrypted with a different key stream
 - the RC4 generator is initialized with the shared secret and an IV (initial value) together
 - shared secret is the same for each message
 - 24-bit IV changes for every message
- WEP integrity protection is based on an encrypted CRC value
 - operation:
 - ICV (integrity check value) is computed and appended to the message
 - the message and the ICV are encrypted together
WEP – Message confidentiality and integrity

- IV
- secret key
- RC4
- encode
- decode
- message + ICV

WEP – Keys

- two kinds of keys are allowed by the standard
 - default key (also called shared key, group key, multicast key, broadcast key, key)
 - key mapping keys (also called individual key, per-station key, unique key)

- in practice, often only default keys are supported
 - the default key is manually installed in every STA and the AP
 - each STA uses the same shared secret key → in principle, STAs can decrypt each other’s messages
WEP – Management of default keys

- the default key is a group key, and group keys need to be changed when a member leaves the group
 - e.g., when someone leaves the company and shouldn’t have access to the network anymore

- it is practically impossible to change the default key in every device simultaneously

- hence, WEP supports multiple default keys to help the smooth change of keys
 - one of the keys is called the active key
 - the active key is used to encrypt messages
 - any key can be used to decrypt messages
 - the message header contains a key ID that allows the receiver to find out which key should be used to decrypt the message

WEP – The key change process
WEP flaws - Authentication and access control

- authentication is one-way only
 - AP is not authenticated to STA
 - STA may associate to a rogue AP
- the same shared secret key is used for authentication and encryption
 - weaknesses in any of the two protocol can be used to break the key
 - different keys for different functions are desirable
- no session key is established during authentication
 - access control is not continuous
 - once a STA has authenticated and associated to the AP, an attacker send messages using the MAC address of STA
 - correctly encrypted messages cannot be produced by the attacker, but replay of STA messages is still possible
- STA can be impersonated
 - ... next slide

WEP flaws - Authentication and access control

- recall that authentication is based on a challenge-response protocol:

 \[
 \text{AP} \rightarrow \text{STA}: r \\
 \text{STA} \rightarrow \text{AP}: \text{IV} | r \oplus K
 \]

 where \(K \) is a 128 bit RC4 output on IV and the shared secret
- an attacker can compute \(r \oplus (r \oplus K) = K \)
- then it can use \(K \) to impersonate STA later:

 \[
 \text{AP} \rightarrow \text{attacker}: r' \\
 \text{attacker} \rightarrow \text{AP}: \text{IV} | r' \oplus K
 \]
WEP flaws – Integrity and replay protection

- there's no replay protection at all
 - IV is not mandated to be incremented after each message

- attacker can manipulate messages despite the ICV mechanism and encryption
 - CRC is a linear function wrt to XOR:
 \[\text{CRC}(X \oplus Y) = \text{CRC}(X) \oplus \text{CRC}(Y) \]
 - attacker observes \((M | \text{CRC}(M)) \oplus K\) where \(K\) is the RC4 output
 - for any \(\Delta M\), the attacker can compute \(\text{CRC}(\Delta M)\)
 - hence, the attacker can compute:
 \[
 ((M | \text{CRC}(M)) \oplus K) \oplus (\Delta M | \text{CRC}(\Delta M)) = \\
 ((M \oplus \Delta M) | (\text{CRC}(M) \oplus \text{CRC}(\Delta M))) \oplus K = \\
 ((M \oplus \Delta M) | \text{CRC}(M \oplus \Delta M)) \oplus K
 \]

WEP flaws – Confidentiality

- IV reuse
 - IV space is too small
 - IV size is only 24 bits \(\rightarrow\) there are 16,777,216 possible IVs
 - after around 17 million messages, IVs are reused
 - a busy AP at 11 Mbps is capable for transmitting 700 packets per second \(\rightarrow\) IV space is used up in around 7 hours
 - in many implementations IVs are initialized with 0 on startup
 - if several devices are switched on nearly at the same time, they all use the same sequence of IVs
 - if they all use the same default key (which is the common case), then IV collisions are readily available to an attacker

- weak RC4 keys
 - for some seed values (called weak keys), the beginning of the RC4 output is not really random
 - if a weak key is used, then the first few bytes of the output reveals a lot of information about the key \(\rightarrow\) breaking the key is made easier
 - for this reason, crypto experts suggest to always throw away the first 256 bytes of the RC4 output, but WEP doesn't do that
 - due to the use of IVs, eventually a weak key will be used, and the attacker will know that, because the IV is sent in clear
 \(\rightarrow\) WEP encryption can be broken by capturing a few million messages !!!
WEP – Lessons learnt

1. engineering security protocols is a very risky business
 - you may combine otherwise strong building blocks in a wrong way and obtain an insecure system at the end
 - example:
 - stream ciphers alone are OK
 - challenge-response protocols for entity authentication are OK
 - but they shouldn’t be combined
 - example:
 - encrypting a message digest to obtain an ICV is a good principle
 - but it doesn’t work if the message digest function is linear wrt to the encryption function
 - don’t do it alone (unless you are a security expert)
 - functional properties can be tested, but security is a non-functional property → it is extremely difficult to tell if a system is secure or not
 - using an expert in the design phase pays out (fixing the system after deployment will be much more expensive)
 - experts will not guarantee that your system is 100% secure
 - but at least they know many pitfalls that you don’t
 - they know the details of crypto algorithms better than you do

2. avoid the use of WEP (as much as possible)

Overview of 802.11i

- after the collapse of WEP, IEEE started to develop a new security architecture → 802.11i
- main novelties in 802.11i wrt to WEP
 - access control model is based on 802.1X
 - flexible authentication framework (based on EAP)
 - authentication can be based on strong protocols (e.g., TLS)
 - authentication process results in a shared session key (which prevents session hijacking)
 - different functions (encryption, integrity) use different keys derived from the session key using a one-way function
 - integrity protection is improved
 - encryption function is improved
- 802.11i defines the concept of RSN (Robust Security Network)
 - integrity protection and encryption is based on AES (in CCMP mode)
 - nice solution, but needs new hardware → cannot be adopted immediately
- 802.11i also defines an optional protocol called TKIP
 - integrity protection is based on Michael
 - encryption is based on RC4, but WEP’s problems have been avoided
 - ugly solution, but runs on old hardware (after software upgrade)
- industrial names
 - TKIP → WPA (WiFi Protected Access)
 - RSN/AES-CCMP → WPA2
802.1X authentication model

- the supplicant requests access to the services (wants to connect to the network)
- the authenticator controls access to the services (controls the state of a port)
- the authentication server authorizes access to the services
 - the supplicant authenticates itself to the authentication server
 - if the authentication is successful, the authentication server instructs the authenticator to switch the port on
 - the authentication server informs the supplicant that access is allowed

Mapping the 802.1X model to WiFi

- supplicant → mobile device (STA)
- authenticator → access point (AP)
- authentication server → server application running on the AP or on a dedicated machine
- port → logical state implemented in software in the AP

- one more thing is added to the basic 802.1X model in 802.11i:
 - successful authentication results not only in switching the port on, but also in a session key between the mobile device and the authentication server
 - the session key is sent to the AP in a secure way
 - this assumes a shared key between the AP and the auth server
 - this key is usually set up manually
Protocols – EAP, EAPOL, and RADIUS

- **EAP (Extensible Authentication Protocol) [RFC 3748]**
 - Carrier protocol designed to transport the messages of "real" authentication protocols (e.g., TLS)
 - Very simple, four types of messages:
 - EAP request – carries messages from the supplicant to the authentication server
 - EAP response – carries messages from the authentication server to the supplicant
 - EAP success – signals successful authentication
 - EAP failure – signals authentication failure
 - Authenticator doesn’t understand what is inside the EAP messages, it recognizes only EAP success and failure

- **EAPOL (EAP over LAN) [802.1X]**
 - Used to encapsulate EAP messages into LAN protocols (e.g., Ethernet)
 - EAPOL is used to carry EAP messages between the STA and the AP

- **RADIUS (Remote Access Dial-In User Service) [RFC 2865-2869, RFC 2548]**
 - Used to carry EAP messages between the AP and the auth server
 - MS-MPPE-Recv-Key attribute is used to transport the session key from the auth server to the AP
 - RADIUS is mandated by WPA and optional for RSN

EAP in action

- **STA**
 - Encapsulated in EAPOL
 - EAPOL-Start
 - EAP Request (Identity)
 - EAP Response (Identity)
 - EAP Request 1
 - EAP Response 1
 - EAP Request n
 - EAP Response n
 - EAP Success

- **AP**
 - Encapsulated in RADIUS
 - EAP Request (Identity)
 - EAP Response (Identity)
 - EAP Request 1
 - EAP Response 1
 - EAP Request n
 - EAP Response n
 - EAP Success
Protocols – LEAP, EAP-TLS, PEAP, EAP-SIM

- **LEAP (Light EAP)**
 - developed by Cisco
 - similar to MS-CHAP extended with session key transport

- **EAP-TLS (TLS over EAP)**
 - only the TLS Handshake Protocol is used
 - server and client authentication, generation of master secret
 - TLS master secret becomes the session key
 - mandated by WPA, optional in RSN

- **PEAP (Protected EAP)**
 - phase 1: TLS Handshake without client authentication
 - phase 2: client authentication protected by the secure channel established in phase 1

- **EAP-SIM**
 - extended GSM authentication in WiFi context
 - protocol (simplified):
 - STA → AP: EAP res ID (IMSI / pseudonym)
 - STA → AP: EAP res (nonce)
 - AP: [gets two auth triplets from the mobile operator’s AuC]
 - AP → STA: EAP req (2*RAND | MIC2*Kc | {new pseudonym}2*Kc)
 - STA → AP: EAP res (2*SRES)
 - AP → STA: EAP success

Summary of the protocol architecture

- **TLS (RFC 2246)**
- **EAP-TLS (RFC 2716)**
- **EAP (RFC 3748)**
- **EAPOL (802.1X)**
- **EAP over RADIUS (RFC 3579)**
- **RADIUS (RFC 2865)**
- **TCP/IP**
- **802.3 or else**

© Levente Buttyán
Key hierarchies

- **PMK (pairwise master key)**
 - key derivation in STA and AP
- **PTK (pairwise transient keys)**
 - key encryption key
 - key integrity key
 - data encryption key
 - data integrity key
- **GTK (group transient keys)**
 - group encryption key
 - group integrity key
- **GMK (group master key)**
 - key derivation in AP
 - transport to every STA

802.1X authentication

- random generation in AP

Four-way handshake

- **objective:**
 - prove that AP also knows the PMK (result of authentication)
 - exchange random values to be used in the generation of PTK

- **protocol:**

 AP : generate ANonce

 AP → STA : ANonce | KeyReplayCtr

 STA : generate SNonce and compute PTK

 STA → AP : SNonce | KeyReplayCtr | MIC_{KEK}

 AP : compute PTK, generate GTK, and verify MIC

 AP → STA : ANonce | KeyReplayCtr+1 | {GTK}_{KEK} | MIC_{KEK}

 STA : verify MIC and install keys

 STA → AP : KeyReplayCtr+1 | MIC_{KEK}

 AP : verify MIC and install keys
PTK and GTK computation

- for TKIP
 \[\text{PRF-512(PMK, \text{"Pairwise key expansion"}, MAC_1 | MAC_2 | Nonce_1 | Nonce_2)} = \text{KEK} | \text{KIK} | \text{DEK} | \text{DIK} \]
 \[\text{PRF-256(GMK, \text{"Group key expansion"}, MAC | GNonce)} = \text{GEK} | \text{GIK} \]

- for AES-CCMP
 \[\text{PRF-384(PMK, \text{"Pairwise key expansion"}, MAC_1 | MAC_2 | Nonce_1 | Nonce_2)} = \text{KEK} | \text{KIK} | \text{DEIK} \]
 \[\text{PRF-128(GMK, \text{"Group key expansion"}, MAC | GNonce)} = \text{GEIK} \]

TKIP

- runs on old hardware (supporting RC4), but ...
- WEP weaknesses are corrected
 - new message integrity protection mechanism called Michael
 - MIC value is added at SDU level before fragmentation into PDUs
 - implemented in the device driver (in software)
 - use IV as replay counter
 - increase IV length to 48 bits in order to prevent IV reuse
 - per-packet keys to prevent attacks based on weak keys
TKIP – Generating RC4 keys

![Diagram of TKIP key generation process]

AES-CCMP

- **CCMP means CTR mode and CBC-MAC**
 - Integrity protection is based on CBC-MAC (using AES)
 - Encryption is based on CTR mode (using AES)

- **CBC-MAC**
 - CBC-MAC is computed over the MAC header, CCMP header, and the MPDU (fragmented data)
 - Mutable fields are set to zero
 - Input is padded with zeros if length is not multiple of 128 (bits)
 - CBC-MAC initial block:
 - Flag (8)
 - Priority (8)
 - Source address (48)
 - Packet number (48)
 - Data length (16)
 - Final 128-bit block of CBC encryption is truncated to (upper) 64 bits to get the CBC-MAC value

- **CTR mode encryption**
 - MPDU and CBC-MAC value is encrypted, MAC and CCMP headers are not
 - Format of the counter is similar to the CBC-MAC initial block
 - “data length” is replaced by “counter”
 - Counter is initialized with 1 and incremented after each encrypted block
Summary

- security has always been considered important for WiFi
- early solution was based on WEP
 - seriously flawed
 - not recommended to use
- the new security standard for WiFi is 802.11i
 - access control model is based on 802.1X
 - flexible authentication based on EAP and upper layer authentication protocols (e.g., TLS, GSM authentication)
 - improved key management
 - TKIP
 - uses RC4 \(\rightarrow\) runs on old hardware
 - corrects WEP's flaws
 - mandatory in WPA, optional in RSN (WPA2)
 - AES-CCMP
 - uses AES in CCMP mode (CTR mode and CBC-MAC)
 - needs new hardware that supports AES

Recommended readings