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ABSTRACT
We describe LEAP (Localized Encryption and Authentica-
tion Protocol), a key management protocol for sensor net-
works that is designed to support in-network processing,
while at the same time restricting the security impact of a
node compromise to the immediate network neighborhood
of the compromised node. The design of the protocol is
motivated by the observation that different types of mes-
sages exchanged between sensor nodes have different secu-
rity requirements, and that a single keying mechanism is not
suitable for meeting these different security requirements.
LEAP supports the establishment of four types of keys for
each sensor node – an individual key shared with the base
station, a pairwise key shared with another sensor node, a
cluster key shared with multiple neighboring nodes, and a
group key that is shared by all the nodes in the network.
The protocol used for establishing and updating these keys
is communication- and energy-efficient, and minimizes the
involvement of the base station. LEAP also includes an
efficient protocol for local broadcast authentication based
on the use of one-way key chains. A salient feature of
the authentication protocol is that it supports source au-
thentication without precluding in-network processing. Our
performance analysis shows that LEAP is very efficient in
computation, communication, and storage. We analyze the
security of LEAP under various attack models and show
that LEAP is very effective in defending against many so-
phisticated attacks such as HELLO Flood attack, Sybil at-
tack, and Wormhole attack. A prototype implementation of
LEAP in a sensor network testbed is also reported.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
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1. INTRODUCTION
Many sensor systems are deployed in unattended and of-

ten adversarial environments such as a battlefield. Hence,
security mechanisms that provide confidentiality and au-
thentication are critical for the operation of many sensor
applications. Providing security is particularly challenging
in sensor networks due to the resource limitations of sensor
nodes. As a specific example, it is not practical to use asym-
metric cryptosystems in a sensor network where each node
consists of a slow (7.8 MHz) under-powered processor with
only 4 KB of RAM space (Mica2 Motes [10]). Thus, key
management protocols for sensor networks are based upon
symmetric key algorithms.

A fundamental issue that must be addressed when using
key management protocols based on symmetric shared keys
is the mechanisms used for establishing the shared keys in
the first place. The constrained energy budgets and the lim-
ited computational and communication capacities of sensor
nodes make protocols such as TLS [13] and Kerberos [23]
proposed for wired networks impractical for use in large-
scale sensor networks. At present, the most practical ap-
proach for bootstrapping secret keys in sensor networks is
to use pre-deployed keying in which keys are loaded into sen-
sor nodes before they are deployed. Several solutions based
on pre-deployed keying have been proposed in the literature
including approaches based on the use of a global key shared
by all nodes [5, 8], approaches in which every node shares a
unique key with the base station [36], and approaches based
on random key sharing [9, 15, 16, 28].

An important design consideration for security protocols
based on symmetric keys is the degree of key sharing be-
tween the nodes in the system. At one extreme, we can have
network-wide keys that are used for encrypting data and for
authentication. This key sharing approach has the lowest
storage costs and is very energy-efficient since no communi-
cation is required between nodes for establishing additional



keys. However, it has the obvious security disadvantage that
the compromise of a single node will reveal the global key.

At the other extreme, we can have a key sharing approach
in which all secure communication is based on keys that
are shared pairwise between two nodes. From the security
point of view, this approach is ideal since the compromise
of a node does not reveal any keys that are used by the
other nodes in the network. However, under this approach,
each node will need a unique key for every other node that it
communicates with. Moreover, in many sensor networks, the
immediate neighbors of a sensor node cannot be predicted in
advance; consequently, these pairwise shared keys will need
to be established after the network is deployed.

A unique issue that arises in sensor networks that needs
to be considered while selecting a key sharing approach is its
impact on the effectiveness of in-network processing [24]. In
many applications, sensors in the network are organized into
a data fusion or aggregation hierarchy for efficiency. Sensor
readings or messages from several sensors are processed at a
data fusion node and aggregated into a more compact report
before being relayed to the parent node in the data fusion
hierarchy [21] (see Figure. 1(a)). Passive participation (Fig-
ure. 1(b)) is another form of in-network processing in which
a sensor node can take certain actions based on overheard
messages [22, 30], e.g., a sensor can decide to not report an
event if it overhears a neighboring node reporting the same
event.

Particular keying mechanisms may preclude or reduce the
effectiveness of in-network processing. To support passive
participation, it is essential that intermediate nodes are able
to decrypt or verify a secure message exchanged between
two other sensor nodes. Thus, passive participation of se-
cure messages is only possible if multiple nodes share the
keys used for encryption and authentication. Clearly, if a
pairwise shared key is used for encrypting or authenticating
a message, it effectively precludes passive participation in
sensor networks.

Contributions We describe LEAP (Localized Encryption
and Authentication Protocol), a key management protocol
for sensor networks that is designed to support in-network
processing, while providing security properties similar to
those provided by pairwise key sharing schemes. In other
words, the keying mechanisms provided by LEAP enable
in-network processing, while restricting the security impact
of a node compromise to the immediate network neighbor-
hood of the compromised node.

LEAP includes support for multiple keying mechanisms.
The design of these mechanisms is motivated by the obser-
vation that different types of messages exchanged between
sensor nodes have different security requirements, and that
a single keying mechanism is not suitable for meeting these
different security requirements. Specifically, LEAP supports
the establishment of four types of keys for each sensor node
– an individual key shared with the base station, a pairwise
key shared with another sensor node, a cluster key shared
with multiple neighboring nodes, and a group key shared by
all the nodes in the network. Moreover, the protocol used
for establishing these keys for each node is communication-
and energy-efficient, and minimizes the involvement of the
base station.

LEAP also includes an efficient protocol for local broad-
cast authentication based on the use of one-way key chains.

A salient feature of the authentication protocol is that it
supports source authentication (unlike a protocol where a
globally shared key is used for authentication) without pre-
venting passive participation (unlike a protocol where a pair-
wise shared key is used for authentication).

Organization The rest of this paper is organized as follows.
We discuss our design goals and assumptions in Section 2,
then present the LEAP protocol in detail in Section 3. The
local broadcast authentication protocol is described in Sec-
tion 3.6. In Section 4 and 5, we analyze the performance
and security of the LEAP protocol. A prototype implemen-
tation of LEAP is reported in Section 6. We discuss related
work in Section 7 before concluding the paper in Section 8.

2. ASSUMPTIONS AND DESIGN GOALS
We describe below our assumptions regarding the sensor

network scenarios in which our keying protocols will be used,
followed by the discussion of our design goals.

2.1 Network and Security Assumptions
We assume a static sensor network, i.e., sensor nodes are

not mobile. The base station, acting as a controller (or a
key server), is assumed to be a laptop class device and sup-
plied with long-lasting power. The sensor nodes are similar
in their computational and communication capabilities and
power resources to the current generation sensor nodes, e.g.
the Berkeley MICA motes [10]. We assume that every node
has space for storing up to hundreds of bytes of keying ma-
terials. The sensor nodes can be deployed via aerial scatter-
ing or by physical installation. We assume however that the
immediate neighboring nodes of any sensor node will not be
known in advance.

Because wireless communication is not secure, we assume
an adversary can eavesdrop on all traffic, inject packets, or
replay older messages. We assume that if a node is com-
promised, all the information it holds will be known to the
attacker. However, we assume that the base station will not
be compromised.

We assume that the physical layer of a wireless sensor net-
work could use techniques such as spread spectrum [34] to
prevent physical jamming attack if necessary. Techniques
such as ALOHA and Slotted ALOHA [1] may be used to
relieve attacks on the underlying Media Access Control pro-
tocol. In this paper, we do not address these attacks.

2.2 Design Goal
LEAP is designed to support secure communications in

sensor networks; therefore, it provides the basic security ser-
vices such as confidentiality and authentication. In addition,
LEAP is to meet several security and performance require-
ments that are considerably more challenging to sensor net-
works.

• Supporting Various Communication Patterns

There are typically three types of communication pat-
terns in sensor networks: unicast (addressing a mes-
sage to a single node), local broadcast (addressing a
message to all the nodes in the neighborhood), and
global broadcast (addressing a message to all the nodes
in the network). Different security mechanisms pro-
viding confidentiality and authentication are needed
to support all these communication patterns.
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overheard values

Figure 1: In-network Processing

• Supporting In-network Processing Security mech-
anisms should permit in-network processing operations
such as data aggregation and passive participation. In-
network processing could significantly reduce energy
consumption in sensor networks.

• Survivability Due to the unattended nature of sensor
networks, an attacker could launch various security at-
tacks and even compromise sensor nodes without be-
ing detected. Therefore, a sensor network should be
robust against security attacks, and if an attack suc-
ceeds, its impact should be minimized. For example,
the compromise a single sensor node should not break
the security of the entire network.

• Energy Efficiency Due to the limited battery life-
time, security mechanisms for sensor networks must
be energy efficient. Especially, the number of message
transmissions and the number of expensive computa-
tions should be as few as possible. Moreover, the size
of a sensor network should not be limited by the per-
node storage and energy resources.

• Avoiding Message Fragmentation A unique chal-
lenge in sensor networks is due to small packet size. In
TinyOS [20], the operating system for Mica series sen-
sors [10], the default supported packet size is only 36
bytes for increasing the reliability of packet delivery.
Thus, messages in a security protocol have to be small
enough to fit in one packet to avoid message fragmen-
tation. Message fragmentation is very undesirable for
sensor networks because it increases the implementa-
tion complexity and difficulty. High packet loss in a
sensor network and limited buffer space of a sensor
node also contribute to this difficulty.

As we will show in the following sections, LEAP meets all
these requirements, except that it does not include a global
broadcast authentication protocol. We assume the existence
of such a protocol, e.g., µTESLA [36].

3. LEAP: LOCALIZED ENCRYPTION AND
AUTHENTICATION PROTOCOL

LEAP provides multiple keying mechanisms for providing
confidentiality and authentication in sensor networks. We
first motivate and present an overview of the different key-
ing mechanisms in Section 3.1 before describing the schemes
used by LEAP for establishing these keys. The local broad-
cast authentication mechanism that is part of LEAP is dis-
cussed separately in Section 3.6.

3.1 Overview
The packets exchanged by nodes in a sensor network can

be classified into several categories based on different crite-
ria, e.g. control packets vs data packets, broadcast packets
vs unicast packets, queries or commands vs sensor readings,
etc. The security requirements for a packet will typically de-
pend on the category it falls in. Authentication is required
for all types of packets, whereas confidentiality may only be
required for some types of packets. For example, routing
control information usually does not require confidentiality,
whereas (aggregated) readings reported by a sensor node
and the queries sent by the base station may require confi-
dentiality.

We argue that no single keying mechanism is appropriate
for all the secure communications that are needed in sensor
networks. As such, LEAP supports the establishment of four
types of keys for each sensor node – an individual key shared
with the base station, a pairwise key shared with another
sensor node, a cluster key shared with multiple neighboring
nodes, and a group key that is shared by all the nodes in
the network. We now discuss each of these keys in turn and
describe our reasons for including it in our protocol.

Individual Key Every node has a unique key that it shares
with the base station. This key is used for secure com-
munication between the node and the base station. For
example, a node can use its individual key to compute
message authentication codes (MACs) for its sensed
readings if the readings are to be verified by the base



station. A node may also send an alert to the base
station if it observes any abnormal or unexpected be-
havior of a neighboring node. Similarly, the base sta-
tion can use this key to encrypt any sensitive informa-
tion, e.g. keying material or special instruction, that
it sends to an individual node.

Group Key This is a globally shared key that is used by
the base station for encrypting messages that are broad-
cast to the whole group. For example, the base station
issues missions, sends queries and interests. Note that
from the confidentiality point of view there is no ad-
vantage to separately encrypting a broadcast message
using the individual key of each node. However, since
the group key is shared among all the nodes in the net-
work, an efficient rekeying mechanism is necessary for
updating this key after a compromised node is revoked.

Cluster Key A cluster key is a key shared by a node and
all its neighbors, and it is mainly used for securing
locally broadcast messages, e.g., routing control infor-
mation, or securing sensor messages which can benefit
from passive participation. Researchers have shown
that in-network processing techniques, including data
aggregation and passive participation are very impor-
tant for saving energy consumption in sensor networks
[21, 22, 30]. For example, a node that overhears a
neighboring sensor node transmitting the same read-
ing as its own current reading can elect to not trans-
mit the same. In responding to aggregation operations
such as MAX, a node can also suppress its own read-
ing if its reading is not larger than an overheard one.
Clearly, for passive participation to be feasible, sen-
sor nodes should be able to decrypt or verify some
classes of messages, e.g., sensor readings, transmitted
by their neighbors. This requires that such messages
be encrypted or authenticated by a locally shared key.
As such, LEAP provides each node a unique cluster
key shared with all its neighbors for securing its mes-
sages. Its neighbors use the same key for decrypting
or verifying its messages.

Pairwise Shared Key Every node shares a pairwise key
with each of its immediate neighbors. In LEAP, pair-
wise keys are used for securing communications that
require privacy or source authentication. For example,
a node can use its pairwise keys to secure the distribu-
tion of its cluster key to its neighbors, or to secure the
transmission of its sensor readings to an aggregation
node. Note that the use of pairwise keys precludes
passive participation.

In the following subsections, we describe the schemes pro-
vided by LEAP to establish and update individual keys,
pairwise shared keys, cluster keys, and group keys for each
node. The key establishment (and re-keying) protocol for
the group key uses cluster keys, whereas cluster keys are
established (and re-keyed) using pairwise shared keys.

Notation We list below notations which appear in the rest
of this discussion.

• N is the number of nodes in the network

• u, v (in lower case) are principals such as communi-
cating nodes.

• {fk} is a family of pseudo-random functions [17].

• {s}
k

means encrypting message s with key k.

• MAC(k, s) is the message authentication code (MAC)
of message s using a symmetric key k.

From a key K a node can derive other keys for various
security purposes. For example, a node can use K0 = fK(0)
for encryption and use K1 = fK(1) for authentication. For
ease of exposition, in the following discussion we simply say
that a message is encrypted or authenticated with key K,
although the message is really encrypted with K0 or authen-
ticated with K1.

3.2 Establishing Individual Node Keys
Every node has an individual key that is only shared with

the base station. This key is generated and pre-loaded into
each node prior to its deployment.

The individual key Km
u for a node u (each node has a

unique id) is generated as follows: Km
u = fKm(u). Here f is

a pseudo-random function and Km is a master key known
only to the controller. In this scheme the controller might
only keep its master key to save the storage needed to keep
all the individual keys. When it needs to communicate with
an individual node u, it computes Km

u on the fly. Due to
the computational efficiency of pseudo random functions,
the computational overhead is negligible.

3.3 Establishing Pairwise Shared Keys
In this paper, we focus on establishing pairwise keys that

are shared only between nodes and their immediate neigh-
bors (i.e. one-hop neighbors). A sensor node always commu-
nicates with its immediate neighbors in any sensor network
applications. Therefore, this type of pairwise keys is most
commonly used. If a sensor network application has spe-
cial requirements of establishing pairwise keys for two nodes
that are multiple hops away, the multiple-path scheme [44]
or a probabilistic key sharing scheme [15, 28, 47] may be
employed.

For nodes whose neighbor relationship are predetermined,
e.g., via physical installation, pairwise key establishment can
be simply done by pre-loading the sensor nodes with the
corresponding pairwise keys. Here we are interested in es-
tablishing pairwise keys for sensor nodes that are unaware
of their neighbors until they have been deployed, e.g., via
aerial scattering. Our approach exploits the special property
of sensor networks consisting of stationary nodes that the set
of neighbors of a node is relatively static, and that a sensor
node that is being added to the network will discover most
of its neighbors at the time of its initial deployment. Sec-
ond, it is our belief that a sensor node deployed in a security
critical environment must be manufactured to sustain pos-
sible break-in attacks at least for a short time interval (say
several seconds) when captured by an adversary; otherwise,
the adversary could easily compromise all the sensor nodes
in a sensor network and then take over the network. To this
end, instead of assuming that sensor nodes are tamper re-
sistant which often turns out not to be true [2], we assume
there exists a lower bound on the time interval Tmin that
is necessary for an adversary to compromise a sensor node,
and that the time Test for a newly deployed sensor node to
discover its immediate neighbors is smaller than Tmin. In
practice, we expect Test to be of the order of several seconds,
so we believe it is a reasonable assumption that Tmin > Test.



Below we describe our scheme in detail, given this lower
bound Tmin. Note that the approach used by key establish-
ment by nodes that are incrementally added to the network
is identical to the approach used at the time of initial net-
work deployment. The four steps described below demon-
strate the way a newly added node u establishing a pairwise
key with each of its neighbors that were deployed earlier.

Key Pre-distribution The controller generates an initial
key KI and loads each node with this key. Each node
u derives a master key Ku = fKI

(u).

Neighbor Discovery When it is deployed, node u first ini-
tializes a timer to fire after time Tmin. It then tries to
discover its neighbors. It broadcasts a HELLO mes-
sage which contains its id, and waits for each neighbor
v to respond with an ACK message including the iden-
tity of node v. The ACK from every neighbor v is au-
thenticated using the master key Kv of node v, which
was derived as Kv = fKI

(v). Since node u knows KI ,
it can derive Kv and then verify node v’s identity.

u −→ ∗ : u.

v −→ u : v, MAC(Kv, u|v).

Pairwise Key Establishment Node u computes its pair-
wise key with v, Kuv, as Kuv = fKv (u). Node v can
also compute Kuv in the same way. Kuv serves as
their pairwise key. No message is exchanged between
u and v in this step. Note that node u does not have
to authenticate itself to node v by sending a special
message, because any future messages authenticated
with Kuv by node u will prove node u’s identity.

Key Erasure When its timer expires, node u erases KI

and all the master keys Kv’s of its neighbors, which it
computed in the neighbor discovery phase. Note that
node u does not erase its own master key Ku. Every
node keeps its own master key.

After the above steps, node u will have established a pair-
wise shared key with each of its neighbors and the pair-
wise key is used for securing data exchanged between them.
There is no need for two nodes to use one pairwise key in
one direction and another key in the reverse direction dur-
ing their secure communication. Further, no nodes in the
network possess KI . An adversary may have eavesdropped
on all the traffic in this phase, but without KI it cannot in-
ject erroneous information or decrypt any of the messages.
An adversary compromising a sensor node Tmin after the
node was deployed only obtains the keying material of the
compromised node, not that of any other nodes. When a
compromised node is detected, its neighbors simply delete
the keys that were shared with this node.

The above scheme can be further simplified when two
neighboring nodes, say u and v, are added at the same time.
For example, if u receives v’s response to u’s HELLO before
u responds to v’s HELLO, u will suppress its own response.
However, if u and v finish their neighbor discovery phase
separately, in the pairwise key establishment step they will
have two different pairwise keys, Kuv and Kvu. In this case,
they may choose Kuv as their pairwise key if u < v.

Handling Sleeping Nodes For a high density sensor
network, it is suggested that maintaining only a necessary

set of working nodes while turning off redundant ones would
extend the lifetime of a sensor network [7, 43]. To employ
our scheme in these applications, a new node u can establish
pairwise keys with the working nodes. However, node u will
not be able to establish pairwise keys with nodes that are in
sleeping mode during the initial Tmin. To address this issue,
we let node u obtain neighbor lists from the working nodes.
These lists will include most of the nodes within the two-
hop range of node u. Node u can then proceed to compute
the pairwise keys with the sleeping nodes and then erase KI

and other intermediate keys. Alternatively, two nodes can
establish a pairwise key on the fly with the help of one or
multiple neighboring nodes even if they have not established
one yet within Tmin [44].

3.3.1 Performance Analysis
Our pairwise key establishment scheme incurs the follow-

ing computational overhead. The joining node needs to ver-
ify a MAC from every neighbor and evaluate a pseudo ran-
dom function to generate their pairwise key. Every neigh-
bor node computes a MAC and generate a pairwise key.
The communication overhead for establishing a pairwise key
mainly includes an ACK message, which has two fields: a
node id and a MAC. A HELLO message only includes a node
id. Both these messages can be easily fit into one packet.
Moreover, the required space for storing preloaded keys is
only one key, which is KI . Thus, the computational, com-
munication, and storage overhead of our scheme for pairwise
key establishment is very small.

3.3.2 Security Analysis
A critical assumption made by our scheme is that the ac-

tual time Test to complete the neighbor discovery phase is
smaller than Tmin. We believe that this is a reasonable as-
sumption for many sensor networks and adversaries. The
current generation of sensor nodes can transmit at the rate
of 19.2 Kbps [10] whereas the size of an ACK message is
very small (12 bytes if the size of an id is 4 bytes and the
MAC size is 8 bytes). Packet losses, due to unreliable chan-
nel and collision, do impose a challenge to our scheme (as
well as to any other practical protocols for sensor networks).
In Section 6 we discuss several techniques to reduce packet
losses so that a sensor node can establish pairwise keys with
most of its neighbors, if not all, within Tmin.

In the previous description, a HELLO message is not au-
thenticated. An adversary may exploit this to launch re-
source consumption attacks by injecting a large number of
HELLO messages. For every HELLO message it receives, if
not dropped due to buffer overflow, a neighbor node com-
putes a MAC and sends back an ACK message. There are
two solutions to mitigate this attack. First, the network con-
troller can in addition pre-load a new sensor node with the
current group key (not the initial network key KI). A new
node can authenticate its HELLO message to its neighbors
using the current group key. Thus, a false HELLO message
will be detected and dropped, and no ACK message will be
sent. This approach however can only prevent outsider at-
tacks. An insider adversary might know the current group
key if it has compromised a sensor node that was deployed
earlier. Our second solution adds some randomness into the
ids of the newly added nodes such that false ids will be de-
tected and dropped. This solution will be described in more
detail shortly.



Furthermore, to increase the difficulty for an adversary to
recover KI after it has physically captured a sensor node,
the node can copy KI from non-volatile memory into volatile
memory as soon as it is powered on, while erasing the copy of
the key in the non-volatile memory. An implicit assumption
here is that a sensor node is able to erase a key completely.
While this may not be true for keys stored on a disk, this
is true for keys stored in memory because the keys are not
cached in any other spaces. Another implicit assumption is
that node u will not keep the master key of another node v.
We believe as long as the program loaded in a sensor node
is executed correctly, this situation will not occur.

We stress that this scheme has a unique security property
that is not possessed by other pairwise key establishment
schemes [9, 15, 16, 47, 28]. Once a node has erased KI , it will
not be able to establish a pairwise key with any other nodes
that have also erased KI (but a newly added node can still
establish a pairwise key with it anyway). This helps prevent
node clone attacks or sybil attacks [14]. In a clone attack, an
attacker loads its own nodes with the keys of a compromised
node, then deploys these cloned nodes in different locations
of the sensor network. These cloned nodes then try to es-
tablish pairwise keys with their neighbors. Once they are
accepted by their neighbors, they can launch various insider
attacks such as injecting false data packets. Consequently,
an attacker might only need to compromise a few sensor
nodes to bring down the entire network due to the unat-
tended nature of a sensor network. The reason that our
scheme is robust to this attack is that a cloned node cannot
establish pairwise keys with nodes that are not the neighbors
of the compromised nodes. Thus, our scheme can localize
the security impact of a node compromise. We shall discuss
the capability of our scheme in defending against several
very sophisticated attacks such as sinkhole attacks [25] and
wormhole attacks [19] in Section 5.2.1.

Increasing the Security of the Scheme In the described
scheme, a newly added sensor node uses the same initial net-
work key KI to derive its master key and its pairwise keys
shared with its neighbors. Given the assumption that a sen-
sor node cannot be compromised within Tmin, the scheme is
secure because KI is secure. Next we consider more power-
ful attacks by assuming that KI can be compromised (either
by compromising a sensor node within Tmin or via a secu-
rity breach at the mission authority). As a result, all the
pairwise keys in the network will be compromised. More-
over, an attacker will be able to add its own new nodes into
the sensor network due to KI . Below we discuss several
countermeasures that can be used to mitigate these attacks.

First, we describe a simple scheme to prevent an attacker
from deriving the master keys and pairwise keys of the nodes
that were deployed earlier or will be deployed later, even if
the attacker has managed to obtain the initial key KI . The
basic idea behind this scheme is to remove the dependence
on a single initial key KI ; instead, there is a sequence of
initial keys used for deriving the master keys of individual
nodes.

Assume that there are at most m node addition events for
a sensor network and that these m events occur in m inter-
vals T1, T2, ..., Tm, respectively, where these intervals could
be of different lengths. The network controller randomly
generates m keys: K1, K2, ..., Km. These keys serve as ini-
tial keys. A node u deployed in time interval Ti is loaded

with the initial key Ki, from which it derives its master key
Ki(u) = fKi

(u) for Ti. It is also loaded with master keys
Kj(u) = fKj

(u)s for all i < j ≤ m, and it will use a master
key Kj(u) (i < j ≤ m) for establishing pairwise keys with
nodes that will be deployed in Tj . When deployed, node
u uses Ki to establish pairwise keys with its neighbors and
then erases Ki, as in our original scheme.

For example, a node u deployed in the first time interval T1

is loaded with K1 and Kj(u)s for all 1 < j ≤ m. It derives
its master key K1(u) and uses K1 as the initial network
key to establish pairwise keys with its neighbors, and then
erases K1 after Tmin. Note that the network controller or
the mission authority should also erase the initial key K1,
since it is no longer needed. When adding a sensor node v
in T2, the network controller loads node v with initial key
K2, from which the node derives its master key K2(v), and
m− 1 master keys K2(v), K3(v), ..., Km(v). Node v uses K2

to establish pairwise keys with the neighboring nodes that
were deployed in T1 or T2, because v can derive the master
keys of its neighbors used in T2. When its timer expires,
node v erases K2.

As a result, we can see that an attacker compromising
a new node u deployed in Ti within Tmin obtains Ki and
m− i + 1 master keys of node u. The attacker cannot know
any pairwise keys that the other nodes established in pre-
vious time intervals because node u does not know any Kj

(1 ≤ j < i) and the master keys of any other nodes for
time intervals before Ti. Therefore, this scheme provides
backward confidentiality. Furthermore, the attacker cannot
derive any Kj (i < j ≤ m) either, so it cannot know any
pairwise keys that other nodes will establish in the follow-
ing time intervals. To this end, this scheme also provides
forward confidentiality.

We note however that this scheme does not provide confi-
dentiality for the time interval when a node is compromised
in Tmin, because an attacker can derive the master keys of
the nodes that are deployed in the same time interval. This
attack can be mitigated in practice if two nodes negotiate a
new pairwise key through multiple round message exchanges
instead of deriving their pairwise key from their master keys
as discussed in our original scheme. In this case, an attacker
has to intercept all the messages exchanged between the two
sensor nodes to be able to recover their pairwise key.

If an attacker can compromise a sensor node within Tmin,
it can also launch a node addition attack in which it intro-
duces new nodes into the network by loading them with
correct master keys. These new nodes can then be used
to launch a variety of attacks that defeat the mission of
the sensor network. This attack can be addressed as fol-
lows. Suppose that the network controller wants to add
Ni nodes into a network at the time interval Ti. It gen-
erates Ni ids for these nodes based on a random seed si

and a well-known pseudo-random number generator such as
LFSR; each of the Ni nodes is loaded with one unique id.
When deployed, each node establishes a pairwise key with
each neighbor based on our original scheme. Tmin later, the
network control broadcasts Ni and si in the network, using
for example µTESLA [36] for broadcast source authentica-
tion. A neighbor node deployed earlier thus is able to verify
if the id of the new node is valid based on si and Ni. If not,
it will discard its pairwise key shared with this new node.
We see that if the size of a node id is large enough, it is very
hard for an attacker to forge valid ids. Thus this defeats the



node addition attack.

3.3.3 Comparison with Other Pairwise Key Estab-
lishment Schemes

Next we compare our scheme with several other pair-
wise key establishment schemes based on security and per-
formance. The results are shown in Table. 1. The KDC
scheme [36] is a Kerberos-like scheme in which the base sta-
tion helps two nodes to establish a pairwise key. In addition
to MAC computations, the KDC scheme also involves en-
cryption/decryption because the base station needs to en-
crypt pairwise keys for transmission. An encrypted key is
transmitted with at least two hops (two hops when two
nodes are direct neighbors of the base station). The KDC
scheme provides deterministic security in the sense that a
node cannot know a pairwise key shared between two other
nodes, although the base station knows all the pairwise keys
in the system and hence is a single point of failure from the
standpoint of security. Moreover, the KDC scheme cannot
prevent the Sybil attack unless the base station knows the
topology of the network and only help those neighboring
nodes establish pairwise keys.

There are two types of probabilistic key sharing schemes:
those based on symmetric key cryptography [9, 16, 47] and
those based on threshold cryptography [15, 28]. We de-
note them as Prob(1) and Prob(2), respectively. In these
schemes, a node only has a certain probability to establish
a pairwise key with other nodes directly. If two nodes have
to resort to a third node that might be one or multiple hops
away for helping establishing a pairwise key, larger com-
putational (e.g., encryptions) and communication overhead
will be incurred. Especially, those threshold cryptography
based schemes involve relatively expensive operations such
as modular multiplications. Moreover, these schemes only
provide probabilistic security in the sense that a coalition
of nodes can know the pairwise keys shared between other
nodes with some probability.

The table shows that overall our scheme has much smaller
performance overhead than other schemes, and it provides
deterministic security although it has a small vulnerability
window. Our scheme can also prevent Sybil attacks and
other attacks (discussed in Section 5).

3.4 Establishing Cluster Keys
The cluster key establishment phase follows the pairwise

key establishment phase, and the process is very straight-
forward. Consider the case that node u wants to establish a
cluster key with all its immediate neighbors v1, v2, ..., vm.
Node u first generates a random key Kc

u, then encrypts
this key with the pairwise key shared with each neighbor,
and then transmits the encrypted key to each neighbor vi,
1 ≤ i ≤ m.

u −→ vi : (Kc
u)

Kuvi
. (1)

Node vi decrypts the key Kc
u, stores it in a table, and then

sends back its own cluster key to node u. When one of the
neighbors is revoked, node u generates a new cluster key and
transmits it to all the remaining neighbors in the same way.
It is easy to see that for a new node the cost of establishing
a cluster key is O(d) keys, where d is the number of neighbor
nodes.

3.5 Establishing Group Keys

A group key is a key shared by all the nodes in the net-
work, and it is necessary when the controller distributes a
confidential message, e.g., a query on some event of interest
or an instruction, to all the nodes in the network.

One way for the base station to distribute a message M
securely to all the nodes is using hop-by-hop translation.
Specifically, the base station encrypts M with its cluster
key and then broadcasts the message. Each neighbor re-
ceiving the message decrypts it to obtain M , re-encrypts M
with its own cluster key, and then re-broadcasts the mes-
sage. The process is repeated until all the nodes receive
M . However, this approach has a major drawback, that
is, each intermediate node needs to encrypt and decrypt
the message, consuming a nontrivial amount of energy on
computation. Therefore, using a group key for encrypting
a broadcast message is more preferable that using cluster
keys.

A simple way to bootstrap a group key for a sensor net-
work is to pre-load every node with the group key. An im-
portant issue that arises immediately is the need to securely
update this key when a compromised node is detected. In
other words, the group key must be changed and distributed
to all the remaining nodes in a secure, reliable, and timely
fashion. This is referred to as group rekeying.

Unicast-based group rekeying, in which the key server
sends a group key to every individual node, has the com-
munication complexity of O(N) keys, where N is the group
size. Recently proposed group rekeying schemes [4, 31, 33,
41, 39] use logical key trees to reduce the complexity of
a group rekeying operation from O(N) to O(logN). Note
that in all these schemes, the key server includes keys for all

the member nodes when distributing its rekeying message,
and every member receives the entire message although it is
only interested in a small fraction of the content. Recent ef-
fort [29] attempts to reduce the unnecessary keys a node has
to receive by mapping the physical locations of the member
nodes to the logical key tree in LKH [41] for a static sensor
network. However, the result is not very promising. Com-
pared to the original LKH scheme, it is possible to reduce
the energy cost of a group rekeying by 15% ∼ 37%, but it
may incur a larger overhead in some scenarios. Moreover,
for this scheme to work, the key server must have the global
knowledge on the network topology.

The above schemes, when employed in sensor networks,
raise a practical issue due to the small packet size [20]. Con-
sider a group of N = 1024 nodes. To revoke a node, the
number of keys to be distributed is 10 (assuming a binary
key tree). Assume that every key is 10 bytes (8 bytes plus a
2-byte key id field), and that the payload of a packet is 29
bytes. The key server needs to broadcast 5 packets to avoid
the fragmentation of keys. These packets must be reliably

forwarded to all the nodes in a hop-by-hop fashion. This is a
non-trivial task because of the unreliable transmission links
and hidden terminal problems in wireless sensor networks.

Below we propose an efficient group rekeying scheme based
on cluster keys. In our scheme the amortized transmission
cost is one key, thus it can be easily fit into one packet. We
first discuss authenticated node revocation, which is a prereq-
uisite for group keying, then show the secure key distribution

mechanism in detail.

3.5.1 Authenticated Node Revocation
In a sensor network, all the messages broadcast by the



Table 1: Comparison with Other Schemes

Performance Security
Scheme Computation Communic- Pre-storage Deterministic Sybil

ation(hops) (keys) Prevention
KDC MACs+Enc ≥ 2 One Yes No

Prob(1) MACs+Enc > 1 hundreds No No
Prob(2) Modular+MACs+Enc > 1 hundreds No No

Our MACs 1 One Yes Yes

base station must be authenticated; otherwise, an outsider
adversary may impersonate the base station. Therefore, a
node revocation announcement must be authenticated dur-
ing its distribution.

We employ the µTESLA [36] protocol for broadcast au-
thentication because of its efficiency and tolerance to packet
loss. µTESLA is based on the use of a one-way key chain
along with delayed key disclosure. To use µTESLA, we as-
sume that all the sensor nodes and the base station are
loosely time synchronized, i.e., a node knows the upper
bound on the time synchronization error with the base sta-
tion.

To bootstrap its µTESLA key chain, the controller pre-
loads every node with the commitment (i.e., the first key) of
the key chain prior to the deployment of the network. The
base station then discloses the keys in the key chain period-
ically in the order reverse to the generation of these keys.
Since µTESLA uses delayed key disclosure, a node needs to
buffer a received message until it receives the µTESLA key
used for authenticating this message. Hence, there is a one
µTESLA interval latency for node revocation.

Let u be the node to be revoked, and k′

g the new group key.

Let the to-be-disclosed µTESLA key be kT
i . The controller

broadcasts the following message M :

M : Controller −→ ∗ : u, fk′

g
(0), MAC(kT

i , u|fk′

g
(0)).

Here we refer to fk′

g
(0) as the verification key because it

enables a node to verify the authenticity of the group key
k′

g that it will receive later. The key server then distributes

the MAC key kT
i after one µTESLA interval. After a node

v receives message M and the MAC key that arrives one
µTESLA interval later, it verifies the authenticity of M us-
ing µTESLA. If the verification is successful, node v will
store the verification key fk′

g
(0) temporarily. Finally, if a

node v is a neighbor of node u, v will remove its pairwise
key shared with u and updates its cluster key.

3.5.2 Secure Key Distribution
Secure key distribution does not require the use of a spe-

cific routing protocol. However, for concreteness, in this
paper we assume the use of a routing protocol similar to
the TinyOS beaconing protocol [20, 25]. In this protocol,
the nodes in the network are organized into a breadth first
spanning tree on the basis of routing updates that are peri-
odically broadcast by the base station and recursively prop-
agated to the rest of the network. Each node keeps track
of not only its parent and its children in the spanning tree,
and also other neighbors. Note that in the TinyOS bea-
coning protocol a node does not maintain any information
regarding any non-parent nodes in the spanning tree; how-
ever, this information is needed for secure key distribution
and is critical for defending against various security attacks

introduced in Section 5.
The new group key k′

g is distributed to all the legitimate
sensor nodes via a recursive process over the spanning tree
set up by the routing protocol. The base station (controller)
initiates the process by sending k′

g to each of its children in
the spanning tree using its cluster key for encryption. Note
that a node v that receives k′

g can verify the authenticity
of k′

g by computing and checking if fk′

g
(0) is the same as

the verification key it received earlier in the node revoca-
tion message. The algorithm continues recursively down the
spanning tree, i.e., each node v that has received k′

g trans-
mits k′

g to its children in the spanning tree, using its own
cluster key for encryption.

Note that although we pointed out that hop-by-hop trans-
lation of regular broadcast messages involves non-trivial over-
head for sensor nodes, it is not an issue for broadcasting a
group key because only one key needs to be translated and
group rekeying is a relatively less frequent event.

Finally, we note that it is desirable that the group key
be updated more frequently even when no node revocation
events occur. This is important to defend against crypt-
analysis and to prevent an adversary from decrypting all the
previously broadcast messages after compromising a sensor
node. In our scheme, the controller can periodically broad-
cast an authenticated key updating instruction. Alterna-
tively, every node can update the group key periodically on
its own. For example, every node generates a new group key
K′

g = fKg (0) and then erases the old key Kg.

3.6 Local Broadcast Authentication
A mandatory requirement for a secure sensor network is

that every message in the network must be authenticated
before it is forwarded or processed; otherwise, an adver-
sary can simply deplete the energy of the sensor nodes by
injecting spurious packets into the network, even without
compromising a single node. Moreover, the authentication
scheme must be very lightweight in computation; otherwise,
a sensor node may be engaged in verifying the false packets
injected by an adversary.

Previous work [36] has studied unicast authentication (used
when a node authenticates a packet to another node) and
global broadcast authentication (used when the base sta-
tion authenticates a packet to all the nodes in the network).
A missing link is local broadcast authentication, which is
needed for authenticating local broadcast messages (e.g.,
routing control packets) or supporting passive participation.
We note that locally broadcast messages are usually event-
or time-driven; for example, a node generates and broad-
casts routing control messages periodically, or broadcasts
aggregated sensor readings. Often, a node does not know in
advance what is the next packet to transmit.

µTESLA [36] is not suitable for local broadcast authen-



tication, although in Section 3.5 we employed µTESLA for
providing global broadcast authentication of a node revo-
cation message. This is because µTESLA does not provide
immediate authentication. For every received packet, a node
has to wait for one µTESLA interval to receive the MAC key
used in computing the MAC for the packet. As a result, if
µTESLA is used for local broadcast authentication, a mes-
sage traversing l hops will take at least l µTESLA intervals
to arrive at the destination. In addition, a sensor node has
to buffer all the unverified packets. Both the latency and
the storage requirement limit the scheme for authenticat-
ing infrequent messages (e.g., rekeying messages) broadcast
by the base station. Nor are pairwise keys suitable for lo-
cal broadcast authentication, because otherwise a node has
to compute and attach m MACs for a message if it has m
neighbors.

To support local broadcast authentication, a node needs
to use a key that is known by all its neighbors so that the
node only has to compute and attach one MAC to a message.
The cluster key established in Section 3.4 meets this require-
ment. A cluster-key–based scheme, however, is subject to
node impersonation attacks. If an adversary has compro-
mised a sensor node, it can inject spurious packets into the
network while impersonating a neighbor by using the cluster
key of that neighbor for authenticating messages. Figure 2
depicts this attack. Here node u has two neighbors x and v,
and x is compromised. Since x knows u’s cluster key Kc

u, it
can send packets to node v while impersonating node u by
using Kc

u in computing MACs.
Due to the symmetric nature of cluster keys, this imper-

sonation attack cannot be completely defeated. Therefore,
our goal is to design a scheme to thwart this attack at the
maximum. The main idea is to use one-time authentication
key.

3.6.1 One-way Key Chain Based Authentication
We propose to use one-way key chain [26] for one-hop

broadcast authentication. Unlike µTESLA, this technique
does not use delayed key disclosure and does not require
time synchronization between neighboring nodes. Basically,
every node generates a one-way key chain of certain length,
then transmits the commitment (i.e., the first key) of the
key chain to each neighbor, encrypted with their pairwise
shared key. We refer to a key in a node’s one-way key chain
as its AUTH key. Whenever a node has a message to send, it
attaches to the message the next AUTH key in the key chain.
The AUTH keys are disclosed in an order reverse to their
generation. A receiving neighbor can verify the message
based on the commitment or an AUTH key it received from
the sending node more recently.

The design of our authentication scheme is motivated by
two observations. First, a node only needs to authenticate
a packet (e.g., a routing control packet) to its immediate

neighbors. Second, when a node sends a packet, a neighbor
will normally receive the packet before it receives a copy
forwarded by any other nodes. This is true due to the trian-

gular inequality among the distances of the involved nodes,
which is illustrated in Figure. 2. When node u sends a packet
that contains the content M and an AUTH key K, node v
will receive the packet before it receives a forwarded copy
from node x because |uv| < |ux| + |xv|. Thus, once node v
receives the message M , the adversary x cannot reuse the
AUTH key K to inject another packet while impersonating

|uv| < |ux| + |xv|u

v
x

Figure 2: Triangular Inequality

node u.
The above authentication scheme provides source authen-

tication (like an authentication scheme based on pairwise
shared keys) while not precluding passive participation (un-
like an authentication scheme based on pairwise shared keys).
However, we note that an attacker can overcome our scheme
by preventing node v from receiving the packet from u di-
rectly. For example, the adversary might shield node v or
jam node v by letting another node w transmitting to v at
the same time when node u is transmitting. Later the adver-
sary sends a modified packet to node v while impersonating
node u. Because node v has not received a packet with the
same AUTH key, it will accept the modified packet.

We can prevent an outsider attacker from launching the
above attack by combining AUTH keys with cluster keys.
For example, node u can compute a new AUTH key by
XORing an AUTH key with its cluster key, and use the
new AUTH key for packet authentication. Without knowing
node u’s cluster key, the outsider attacker is unable to imper-
sonate node u. Unfortunately, we do not have a lightweight
countermeasure to prevent the attack by an insider attacker
that knows node u’s cluster key. Nevertheless, we note that
(i) the maximum number of false packets that a compro-
mised node x can inject into the network, while imperson-
ating node u, is bounded by the number of packets node u
has transmitted, due to the one-wayness property of hash
functions (ii) the compromise of a sensor node x only allows
the adversary to launch such attacks in a two-hop zone cen-
tered at node x, because node x has only the cluster keys of
its one-hop neighbors.

4. PERFORMANCE EVALUATION
We only consider the overhead for updating cluster keys

and group keys in the case of a node revocation. The perfor-
mance of our pairwise key establishment has been analyzed
in Section 3.3. We assume that the rekeying protocol uses
a spanning tree for delivering new group keys to the nodes
in the system.

4.1 Computational Cost
When updating a cluster key, a node that is a neighbor of

the node being revoked needs to encrypt its new cluster key
using the pairwise key shared with each neighbor. There-
fore, the number of such encryptions is determined by the
number of neighbors, which depends on the density of the
sensor network. Let d0 be the number of neighbors of the
node being revoked, and di, i = 1, 2, ..., d0 the number of le-
gitimate neighbors of each of these d0 neighbors. The total
number of encryptions is simply Se =

∑d0

i=1
di. The total



number of decryptions is the same, although the number of
decryptions for an individual node that is a neighbor to any
of these d0 nodes depends on its location. In the worse case
where a node is a neighbor to all these d0 nodes, it needs
to decrypt d0 keys. For an individual node, the total num-
ber of symmetric key operations it performs is bounded by
(max(di) + d0 − 1). For a network of size N , the average
number of symmetric key operations a node performs during
cluster key updating is 2Se

N
.

During the secure distribution of a group key, the number
of decryptions is equal to the network size N because every
node needs to decrypt once. Recall that we use cluster keys
for secure forwarding of the group key, which means a parent
node only needs to encrypt once for all its children. Thus
the total number of encryptions depends on the network
topology and is at most N . Therefore, the total number of
symmetric key operations is at most 2N and the amortized
cost is at most 2 symmetric key operations per node.

The above analysis shows that the computational cost in a
node revocation is determined by the network density. In a
network of size N where every node has a connection degree
d, the average number of symmetric key operations for every
node is about 2(d − 1)2/(N − 1) + 2. For a network of
reasonable density, we believe that computational overhead
will not become a performance bottleneck in our schemes.
For example, for a network of size N = 1000 and connection
degree 20, the average computational cost is 2.7 symmetric
key operations per node per revocation. This cost becomes
smaller for a larger N .

4.2 Communication Cost
The analysis of communication cost for a group rekeying

event is similar to that of computational cost. For updating
cluster keys due to a node revocation, the average number of
keys a node transmits and receives is equal to (d−1)2/(N−1)
for a network of degree d and size N . During the secure dis-
tribution of a group key, the average number of keys a node
transmits and receives is equal to one. For example, for a
network of size N = 1000 and connection degree d = 20,
the average transmission and receiving costs are both 1.4
keys per node per revocation. The average communication
cost increases with the connection degree of a sensor net-
work, but decrease with the network size N . Note that in
a group rekeying scheme based on logical key tree such as
LKH [41], the communication cost of a group rekeying is
O(logN). Thus, our scheme is more scalable than LKH if
LKH is used for group rekeying in sensor networks.

4.3 Storage Requirement
In our schemes, a node needs to keep four types of keys. If

a node has d neighbors, it needs to store one individual key,
d pairwise keys, d cluster keys, and one group key. In addi-
tion, in our local broadcast authentication scheme, a node
also keeps its own one-way key chain as well as the commit-
ment or the most recent AUTH key of each neighbor. In a
sensor network the packet transmission rate is usually low.
For example, the readings may be generated and forwarded
periodically, and the routing control information may be ex-
changed less often. Thus, a node could store a key chain of
a reasonable length. After the keys in the key chain are used
up, it can generate and bootstrap a new key chain. Let L
be the number of keys a node stores for its key chain. Thus,
the total number of keys a node stores is 3d + 2 + L.

Although memory space is a very scarce resource for the
current generation of sensor nodes (4 KB RAM in a Berkeley
Mica Mote), for a reasonable degree d, storage is not an issue
in our scheme. For example, when d = 20 and L = 20, a
node stores 82 keys (totally 656 bytes when the key size is
8 bytes).

Overall, we conclude our scheme is scalable and efficient
in computation, communication and storage.

5. SECURITY ANALYSIS
In this section, we analyze the security of the keying mech-

anisms in LEAP. We first discuss the survivability of the net-
work when undetected compromises occur, and then study
the robustness of our scheme in defending against various
attacks on routing protocols.

5.1 Survivability
When a sensor node u is compromised, the adversary can

launch attacks by utilizing node u’s keying materials. If the
compromise event is detected somehow, our group rekey-
ing scheme can efficiently revoke node u from the group.
Basically, every neighbor of node u deletes its pairwise key
shared with u and updates its cluster key. The group key is
also updated efficiently. After the revocation, the adversary
cannot launch further attacks.

However, compromise detection in sensor systems is more
difficult than in other systems because sensor systems are of-
ten deployed in unattended environments. Thus, we believe
survivability under undetected node compromises is one of
the most critical security requirements for sensor networks.
Below we first consider in general what the adversary can
accomplish after it has compromised a sensor node. We
then discuss some detailed attacks on routing protocols in
Section 5.2.

First, if every node reports its readings to the base station
directly using its individual key, obtaining the individual key
allows the compromised node to inject a false sensor read-
ing. Second, possessing the pairwise keys and cluster keys
of a compromised node allows the adversary to establish
trust with all the neighboring nodes. Thus the adversary
can inject some malicious routing control information or er-
roneous sensor readings (in case of in-network processing)
into the network. However, in our scheme the adversary
usually has to launch such attacks by using the identity of
the compromised node due to our one-time key based local
broadcast authentication scheme. We note a salient feature
of our protocol is its ability in localizing the possible damage,
because after the network deployment, every node keeps a
list of trusted neighboring nodes. Thus, neither can a com-
promised node establish trust relationship with any nodes
other than its neighbors, nor can it jeopardize the secure
links between other nodes.

Third, possessing the group key allows the adversary to
decrypt the messages broadcast by the base station. Since
a broadcast message, by its nature, is intended to be known
by every node, compromising one single node is enough to
reveal the message, no matter what security mechanisms are
used for securing message distribution. Moreover, possessing
the group key does not enable the adversary to flood the
entire network with malicious packets while impersonating
the base station, because any messages sent by the base
station are authenticated using µTESLA. Finally, because
we deploy a periodic group rekeying scheme, the adversary



can decrypt only the messages being encrypted using the
current group key.

5.2 Defending against Various Attacks on Se-
cure Routing

Karlof and Wagner [25] have studied various attacks on
the security of routing protocols for wireless sensor network.
We now show how our schemes can defend against the at-
tacks they described. In LEAP routing control informa-
tion is authenticated by the local broadcast authentication
scheme, which prevents most outsider attacks (with the ex-
ception of the wormhole attack which we introduce in Sec-
tion 5.2.1). Therefore, in the discussion below we mainly
consider attacks launched by an insider adversary that has
compromised one or more sensor nodes.

An insider adversary may attempt to spoof, alter or re-

play routing information, in the hope of creating routing
loops, attracting or repelling network traffic, generating false
error messages. The adversary may also launch the Se-

lective Forwarding attack in which the compromised node
suppresses the routing packets originating from a select few
nodes while reliably forwarding the remaining packets. Our
scheme cannot prevent the adversary from launching these
attacks. However, our scheme can thwart or minimize the
consequences of these attacks. First, our local broadcast
authentication scheme makes these attacks only possible
within a two-hop zone of the compromised node. Second,
because the attacks are localized in such a small zone, the
adversary takes a high risk of being detected in launching
these attacks. The altering attack is also likely to be de-
tected because the sending node may overhear its message
being altered while being forwarded by the compromised
node. Third, once a compromised node is detected, our
group rekeying scheme can revoke the node from the net-
work very efficiently.

Our scheme can prevent the following attacks. The ad-
versary may try to launch a HELLO Flood Attack in which
it sends a HELLO message to all the nodes with transmis-
sion power high enough to convince all the nodes that it is
their neighbor. If this attack succeeds, all the nodes may
send their readings or other packets into oblivion. However,
this attack will not succeed in LEAP because every node
only accepts packets from its authenticated neighbors. As
we discussed earlier, our scheme can also prevent the Sybil

attack.

5.2.1 Dealing with the Wormhole and Sinkhole At-
tacks

The attack that is most difficult to detect or prevent is
one that combines the Sinkhole and the Wormhole attacks.
In a sinkhole attack, a compromised node may try to attract
packets (e.g., sensor readings) from its neighbors and then
drop them, by advertising information such as high remain-
ing energy or high end-to-end reliability. This information is
hard to verify. In the wormhole attack, typically two distant
malicious nodes, which have an out-of-band low latency link
that is invisible to the underlying sensor network, collude
to understate their distance form each other. When placing
one such node close to the base station and the other close
to the target of interest, the adversary could convince the
nodes near the target who would normally be multiple hops
away from the base station that they are only one or two
hops away. Thus this creates a sinkhole. Similarly, nodes

that are multiple hops away from each other may believe
they are neighbors via the wormhole. The wormhole attack
is very powerful because the adversary does not have to
compromise any sensor nodes to be able to launch it. In the
literature, Hu, Perrig, and Johnson [19] propose two schemes
to detect wormhole attacks for ad hoc networks. The first
scheme requires every node to know its geographic coordi-
nate (using GPS). The second scheme requires an extremely
tight time synchronization between nodes and is thus in-
feasible for most sensor networks. More importantly, these
schemes can only mitigate such attacks against two honest
nodes; they do not prevent a malicious node from deceiving
another node by for example lying about its coordinate.

In LEAP, an outsider adversary cannot succeed in launch-
ing wormhole attacks in any time other than the neighbor

discovery phase of the pairwise key establishment process.
After that phase, a node knows all its neighbors. Thus the
adversary cannot later convince two distant nodes that they
are neighbors. Since the time for neighbor discovery is very
small (in the order of seconds) compared to the lifetime of
the network, the probability that the adversary succeeds in
such attacks will also be very small. We note that authen-

ticated neighborhood knowledge is critical to defend against
wormhole attacks.

An insider adversary needs to compromise at least two
sensor nodes to create a wormhole in LEAP. Even so, it still
cannot convince two distant nodes that they are neighbors
after they have completed their neighbor discovery phase.
However, if the adversary compromises one node u that is
close to the base station, the other one v in the area of
interest, it may succeed in creating node v as a sinkhole

because the number of hops between the node v and the base
station becomes smaller, making node v especially attractive
to surrounding nodes. In applications where the location of
a base station is static, a node will know the approximate
number of hops it is away from the base station after the
network topology is constructed. Thus it is difficult for the
adversary to create a very attractive sinkhole without being
detected.

6. THE IMPLEMENTATION OF LEAP
We have implemented a prototype of LEAP in the TinyOS

platform [20]. The programs were written in nesC, a C-like
language for developing applications in TinyOS. Figure. 3
depicts the components and the interfaces of TinyOS used by
LEAP. Basically, LEAP uses several Timer interfaces (pro-
vided by a Timer component) for providing its key erasure
time threshold and for handling message retransmission as
a result of packet losses during key establishment phases.
It uses a linear-feedback shift register (LFSR) component
to generate pseudo-random numbers. LEAP uses the RC5
block cipher [37] to provide both encryption and CBC-MAC.
The pseudo random functions, which are used in deriving
master keys and pairwise keys, and the one-way functions,
which are used in constructing one-way key chains, are both
replaced with MACs. As such, LEAP uses RC5 to provide
all the security primitives. This code reuse saves code space
in ROM as well as data space in RAM because less variables
and cipher contexts have to be defined.

In LEAP, a newly added node needs to exchange one mes-
sage with every neighbor node to establish a pairwise key
and exchange another message to establish a cluster key.
Clearly, reliable transmission mechanisms are needed to en-
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sure that a new node establishes keys with the majority of
its neighbors, if not all. Providing perfect reliability is a non-
trivial task for sensor networks. Recall that in the neighbor
discovery phase every neighbor sends back an ACK message
to a new node after receiving a HELLO message from the
new node. This leads to feedback implosion, especially when
the network node density d is high (e.g., > 20 neighbors).
As a result, a new node probably misses one or several of
the ACKS due to high collision probability. We note that
although the media access control component in TinyOS,
ChannelMonM, has a random backoff mechanism to address
the packet collision issue, the parameters for the random
function are fixed and do not adapt to network node density
d. Our experiments shows that a node often misses at least
one ACK once d grows larger than 5. This indicates that the
random backoff mechanism does not scale with d when feed-
back implosion occurs. To address this issue, LEAP adds a
random backoff mechanism on its own. That is, after a node
receives a HELLO message, it delays a random time between
0 ∼ T1 before sending its ACK message, where T1 is chosen
based on d. This greatly reduces the probability of packet
collision.

We add the following mechanisms in the implementation
of LEAP to further increase the probability of two nodes
establishing pairwise/cluster keys. First, a new node broad-
casts its first HELLO message at a random time between
0 ∼ T2 (e.g., T2 = 3) seconds after it is deployed and
it broadcasts the HELLO message multiple times (e.g., 3
times with an interval of 3 seconds if Tmin > 12 seconds).
Second, motivated by the TCP protocol, we integrate the
pairwise key establishment phase with the cluster establish-
ment phase to mimic the TCP three-way handshake process.
Assuming that node u is a new node, and v is a neighbor
node. The messages exchanged in the pairwise/cluster key
establishment phases are rewritten as follows.

u −→ ∗ : u.

v −→ u : v, {Kc
v}Kv , MAC(Kv, u|v|{Kc

v}Kv ).

u −→ v : u, {Kc
u}Kv , MAC(Kv, u|{Kc

u}Kv ).

Here node v includes its cluster key, encrypted with its mas-
ter key, in its ACK message to avoid sending a separate
message for establishing a cluster key. Upon receiving an
ACK message from v, node u immediately replies an ACK2
message, which includes its cluster key, encrypted also with
Kv (or Kuv. Recall that node u can derive Kv and Kuv from
KI). The advantage of this integration is that both nodes
u and v can infer if their messages are lost and schedule re-
transmission if necessary. For example, if node v does not

receive an ACK2 message from node u within a threshold
time, it retransmits its ACK message. If node u receives a
retransmitted ACK messages, it infers that its ACK2 mes-
sage is lost, so it can schedule to retransmit it. These mech-
anisms help a new node establish keys with all its neighbors.
We note that the number of neighbors a new node can estab-
lish keys with highly depends on the number of maximum
retransmissions chosen in the implementation.

We upload and run the code1 in Mica2 Motes [10]. The
code space is 17.9KB (out of 128 KB) in ROM. The usage of
data space in RAM (totally 4 KB) depends on the number
of neighbors d a node has. If a node has more neighbors,
it has to store more pairwise keys and cluster keys, thus
more RAM space is needed. Table 2 shows the usage of
RAM space as a function of d. Here the size of a key is 8
bytes; the length of a key chain is 20 keys. We can see that
the requirement on memory space is feasible for the Mica2
motes.

Finally, we should mention that packet loss and feedback
implosion are not unique issues to LEAP. Most practical se-
curity and non-security protocols for sensor networks face
the same issues, although they have rarely touched these
issues. Therefore, although the techniques for addressing
packet losses are discussed in the context of LEAP, we be-
lieve that our experience could benefit the implementation
of other protocols [15, 16, 28].

7. RELATED WORK
Stajano and Anderson discuss various issues that arise for

secure devices consisting of “peanut nodes” [38]. In partic-
ular, they propose that nodes bootstrap trust relationship
through physical contact. Zhu et al [46] propose an efficient
scheme for bootstrapping trust among mobile nodes based
on the combination of TESLA [32] and one-way hash chain.
Carman, Kruus and Matt have analyzed several approaches
for key management and distribution in sensor networks [8].
In particular, they discuss the energy consumption of three
different approaches for key establishment – pre-deployed
keying protocols, arbitrated protocols involving a trusted
server, and autonomous key agreement protocols. Basagni
et al [5] discuss a cluster-based rekeying scheme for period-
ically updating the group-wide traffic encryption key in a
sensor network. However, they assume that sensor nodes
are tamper-proof and can trust each other. In contrast, our
pairwise key establishment scheme only requires that a sen-
sor node not be compromised for a short time interval at the
time of its deployment.

Eschenauer and Gligor [16] present a key management
scheme for sensor networks based on probabilistic key pre-
deployment. Chan et al [9] extend this scheme and present
three mechanisms for key establishment. Zhu et al [47]
present an approach for establishing a pairwise key that
is exclusively known to a pair of nodes with overwhelm-
ing probability, based on the combination of probabilistic
key sharing and threshold secret sharing. Du et al [15], Liu
and Ning [28] combine the technique of probabilistic key
predeployment with the Blom’s [3] or the Blundo’s [6] key
management schemes for establishing pairwise keys in sensor

1The current version of our code only provides pairwise key
establishment, cluster key establishment, and one-way key
chain generation. It does not include the group rekeying
scheme and the broadcast source authentication based on
µTESLA.



Table 2: The required RAM space as a function of the number of neighbors d
d 1 5 10 15 20 25 30

RAM (bytes) 600 736 906 1076 1246 1416 1586

networks. They have shown that their schemes are more ro-
bust to node collusion attacks than the previous schemes [9,
16]. We have compared in detail both the performance and
the security of our pairwise key establishment scheme with
these schemes in Section 3.3.

Perrig et al present security protocols for sensor networks
[36]. In particular, they describe SNEP, a protocol for data
confidentiality and two-party data authentication, and µTESLA,
a protocol for broadcast data authentication. We note that
their scheme uses the base station to help establish a pair-
wise key between two nodes, which limits its scalability and
leaves it subject to Sybil attacks [14]. In contrast, in our
scheme pairwise keys are established in a distributed fash-
ion without the involvement of the base station.

Karlof et al [24] describe TinySec, a link layer security
mechanism using a single preloaded fixed group key for both
encryption and authentication, assuming no node compro-
mises. They also discuss the impact of different keying mech-
anisms on the effectiveness of in-network processing in sen-
sor networks. Deng et al [11] discuss several security mech-
anisms for supporting in-network processing in hierarchical
sensor networks. Karlof and Wagner [25] describe several
security attacks on routing protocols for sensor networks.
As we have shown in Section 5.2, our scheme can prevent or
thwart many of these attacks very efficiently.

Liu and Ning [27] present a multi-level key chain scheme
for µTESLA. Hu and Evans [18] propose a secure hop-by-
hop data aggregation scheme that works if one node is com-
promised. Ye et al [42] propose a statistical en-route detec-
tion scheme called SEF, which allows both the base station
and en-route nodes to detect false data with a certain prob-
ability. Zhu et al [45] introduce an interleaved hop-by-hop
authentication scheme that can filter false data packets in-
jected by a certain number of compromised colluding nodes.
Przydatek et al [35] present SIA, a secure information ag-
gregation scheme for sensor networks. Through statistical
techniques and interactive proofs, SIA allows an end-user
to decide with high probability if an aggregated sensor re-
port from an aggregation point(AP) is authenticated with-
out having to obtain all the original sensor readings from the
AP. Wood and Stankovic [40] identify a number of DOS at-
tacks in sensor networks. Deng et al [12] propose a multiple-
base station and multiple-path strategy to increase intrusion
tolerance, and an anti-traffic analysis strategy to disguise the
location of a base station.

8. CONCLUSIONS
We have presented LEAP (Localized Encryption and Au-

thentication Protocol), a key management protocol for sen-
sor networks. LEAP has the following properties:

• LEAP includes support for establishing four types of
keys per sensor node – individual keys shared with
the base station, pairwise keys shared with individual
neighboring nodes, cluster keys shared with a set of
neighbors, and a group key shared with all the nodes
in the network. These keys can be used to increase the
security of many non-secure protocols.

• LEAP includes an efficient protocol for local broadcast
authentication based on the use of one-way key chains.

• A distinguishing feature of LEAP is that its key shar-
ing approach supports in-network processing, while re-
stricting the security impact of a node compromise to
the immediate network neighborhood of the compro-
mised node.

• LEAP can prevent or increase the difficulty of launch-
ing many security attacks on sensor networks.

• The key establishment and key updating procedures
used by LEAP are efficient and the storage require-
ments per node are small. Our implementation indi-
cates LEAP is feasible for the current generation sen-
sor nodes.
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