History of Cryptography

Levente Buttyán CrySyS Lab, BME www.crysys.hu

© 2015 Levente Buttyán

History of crypto in a nutshell

- until the second half of the 20th century:
 - cryptography = encryption, ciphers
 - almost exclusively used in military and diplomacy
- from the second half of the 20th century:
 - cryptography is increasingly used in business applications (banking, electronic funds transfer)
 - besides confidentiality, integrity protection, authentication, and nonrepudiation becomes important too
- from the end of the 20th century:
 - cryptography is used in everyday life of people (although they may be unaware of that)
 - » SSL/TLS secure web transactions
 - » GSM/3G security subscriber authentiocation, encryption on the air interface
 - » WiFi, Bluetooth, smart cards, ...

Histrorical ciphers

- Skytale from Sparta
- Caesar cipher
- Vigenère cipher (le chifre indéchiffrable)
- German Enigma from WWII

Skytale

- used by the Spartans in the 3rd century BC
- transposition cipher (mixes letters of the plaintext)
- encoding and decoding:

- the key is the (diameter of the) rod
- key space is small → easy to break

- used by Julius Caesar
- substitution cipher (replaces letters of the plaintext)
- each letter is replaced by the letter at some fixed number of positions (e.g., 3) down the alphabet

plain:	Α	В	С	D	Ε	F	G	H	I	J	K	L	Μ	N	0	Ρ	Q	R	S	Т	U	V	W	X	Y	Z
cipher:	D	E	F	G	н	I	J	ĸ	L	М	N	0	P	Q	R	S	т	U	v	W	х	Y	Z	A	в	С

example: **CRYPTOGRAPHY** → **FUBSWRJUDSKB**

- the key is the value of the shift (of the alphabet)
- size of the key space is $26-1 = 25 \rightarrow easy$ to break

Monoalphabetic substitution

- generalization of the Caesar cipher
- replacement of letters is determined by a permutation

plain:ABCDEFGHIJKLMNOPQRSTUVWXYZcipher:HTKCUOISJYARGMZNBVFPXDLWQE

example: **CIPHER** \rightarrow **KJNSUV**

- the key is the permutation
- the key space is huge: 26! ~ 1.56*2⁸⁸

》	time left until the next ice age	2 ³⁹ se	С
»	time left until the Sun becomes a supernova	2 ⁵⁵ see	С
»	age of the Earth	2 ⁵⁵ se	С
»	age of the Universe	2 ⁵⁹ se	С

Breaking monoalphabetic substitutions

- in case of monoalphabetic substitution, the ciphertext preserves the letter statistics of the original plaintext!
 - after decoding the most frequent and least frequent letters, the rest of the text can be figured out much like solving a crossword puzzle

Polyalphabetic substitution(Vigenère)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Α A B C D E F G H I J K L M N <mark>O</mark> P Q R S <mark>T</mark> U V W X Y Z В B C D E F G H I J K L M N O P O R S T U V W X Y Z A С C D E F G H I J K L M N O P <mark>O</mark> R S T U <mark>V</mark> W X Y Z A B D F G H I J K L M N O P O R S T U V W X Y Z A B C EFGHIJKLMNOPQR STUVW XYZABCD E F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G G H I J K L M N O P O R S T U V W X Y Z A B C D E F н H I J K L M N O P Q R S T U V W X Y Z A B C DEFG Ι I J K L M N O P O R S T U V W X Y Z A B C D E FGH J JKLMNOPQRSTUVWXYZABCDE FGHI ĸ K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L L M N O P Q R S T U V W X Y <mark>Z</mark> A B C D <mark>E</mark> F G H I J K М MNOPORSTUVWXYZ<mark>A</mark>BCDE<mark>F</mark>GHIJKL Ν N O P Q R S T U V W X Y Z A <mark>B</mark> C D E F <mark>G</mark> H I J K L M 0 O P Q R S T U V W X Y Z A B C D E F G HIJKLMN Ρ P Q R S T U V W X Y Z A B C <mark>D E F G H I</mark> J K L M N O Q UVWXYZABCD<mark>E</mark>FGHI**J**KLMNOP ORST R S T U V W X Y Z A B C D E F G H I J K L M N O P O R S S T U V W X Y Z A B C D E F <mark>G</mark> H I J K <mark>L</mark> M N O P O R т T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U UVWXYZABCDEFGH<mark>I</mark>JKLM<mark>N</mark>OPQRST v VWXYZABCDEFGHI<mark>J</mark>KLMN<mark>O</mark>PQRSTU W W X Y Z A B C D E F G H I J <mark>K L M N O P</mark> O R S T U V х X Y Z A B C D E F G H I J K <mark>L</mark> M N O P <mark>O</mark> R S T U V W Y Y Z A B C D E F G H I J K L M N O P O R S T U V W X Z Z A B C D E F G H I J K L M N O P Q R <mark>S</mark> T U V W X Y

coding:

key: RELAT IONSR ELA plaintext: TOBEO RNOTT OBE ciphertext: KSMEH ZBBLK SME

Polyalphabetic substitution(Vigenère)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Α В B C D E F G H I J K L M N O P O R S T U V W X Y Z A С C D E F G H I J K L M N O P <mark>O</mark> R S T U <mark>V</mark> W X Y Z A B D F G H I J K L M N O P O R S T U V W X Y Z A B C EFGHIJKLMNOPQR STUVW XYZABCD E F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G G H I J K L M N O P O R S T <mark>U</mark> V W X Y <mark>Z</mark> A B C D E F н H I J K L M N O P Q R S T U V W X Y Z A B C D E F G Ι I J K L M N O P O R S T U V W X Y Z A B C D E FGH J JKLMNOPQRSTUVWXYZABCDE FGHI ĸ K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L L M N O P Q R S T U V W X Y <mark>Z</mark> A B C D <mark>E</mark> F G H I J K М MNOPQRSTUVWXYZ<mark>A</mark>BCDE<mark>F</mark>GHIJKL Ν N O P Q R S T U V W X Y Z A <mark>B</mark> C D E F <mark>G</mark> H I J K L M 0 O P Q R S T U V W X Y Z A B <mark>C</mark> D E F G HIJKLMN Ρ P Q R S T U V W X Y Z A B C <mark>D E F G H I</mark> J K L M N O Q O R S T U V W X Y Z A B C D <mark>E</mark> F G H I <mark>J</mark> K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P O R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S т T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U UVWXYZABCDEFGH<mark>I</mark>JKLM<mark>N</mark>OPQRST v VWXYZABCDEFGHI<mark>J</mark>KLMN<mark>O</mark>PQRSTU W W X Y Z A B C D E F G H I J <mark>K L M N O P</mark> O R S T U V х X Y Z A B C D E F G H I J K <mark>L</mark> M N O P <mark>O</mark> R S T U V W Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z Z A B C D E F G H I J K L M N O P Q R <mark>S</mark> T U V W X Y

coding:

key: RELAT IONSR ELA plaintext: TOBEO RNOTT OBE ciphertext: KSMEH ZBBLK SME

decoding:

key: RELAT IONSR ELA ciphertext: KSMEH ZBBLK SME plaintext: TOBEO RNOTT OBE

The Enigma

- first electro-mechanical cipher
- patented by Arthur Scherbius in 1918
- adopted by the German Army in 1926

Main components of the Enigma

- four main components:
 - keyboard
 - for input of the plaintext / ciphertext
 - lampboard
 - for display of the ciphertext / plaintex
 - plugboard
 - for swapping some input letter pairs
 - scrambler unit (including the rotors) producing the ciphertext from the plaintext (and vice versa)

The rotors

The scrambler unit and the plugboard

Enigma in action

rotor advances automatically

Enigma key space

- the key consists of the following basic settings:
 - letter pairs swapped (e.g., A/L P/R T/D B/W K/F O/Y)
 - order of rotors in the slots (e.g., II III I)
 - initial position of the rotors (e.g., R D D)
- key space size:
 100391791500 x 6 x 26³ ~ 2⁵³
- yet, Enigma was broken by the Allies in WWII
 - exploiting protocol weaknesses and weak keys
 - code breaking was partly automated \rightarrow birth of first computers
 - credit goes to Marian Rejewski and Alan Turing

- every morning, the Germans distribute a daily key to their units to be used with Enigma
- however, they do not directly use the daily key to encrypt messages
- instead:
 - they generate a fresh message key for every message
 - they encrypt the message key with the daily key, and send this at the beginning of the communication
 - then they encrypt the message with the message key, and send it to the receiver
 - the receiver first decrypts the message key with the daily key and then decrypts the message with the message key
- in order to cope with errors during transmission, the message key is repeated twice at the beginning of the message!
- example:

- Rejewski thought that the repetition of the message key at the beginning of the message is a weakness that may be exploited
 - a guess for the daily key can be confirmed by checking if decoding with the guessed key produces a repeating letter triplet at the beginning of the decoded message
- the Polish codebreakers built a machine that tried different guesses for the daily key in an automated way
 - the machine consisted of 6 Enigma copies (each corresponding to one of the 6 possible rotor orders)
 - the machine continuously modified the position setting of the rotors, and attempted decrypting some intercepted message, until it found the daily key
- from 1933, Poland was able to routinly break encrypted German communications

- in December 1938, the Germans increase the security of the Enigma
 - they introduce 2 new rotors (operators have to choose 3 rotors out of 5, and the order in which they are put in the machine → this increases possible rotor placements from 6 to 60)
 - they increase the number of letter pairs swapped on the plugboard from 6 to 10
 - key space grows to ~2⁶⁶
- in April 1939, Hitler breaks the non-aggression treaty with Poland
- in July 1939, Poland reveals their Enigma breaking capability to England
- on August 16, 1939, the design documents of the Enigma breaking machine are transferred to London
- on September 1, 1939, Germany invades Poland

- some weaknesses exploited by the British
 - cillies
 - » German Enigma operators sometimes used very weak (far from random) message keys (e.g., QWE, BNM)
 - » an operator always used the same message key (C.I.L.) perhaps the initials of his wife or girl friend?
 - » these weak keys were called *cillies* (~silly)
 - Germans had usage constraints that actually weakened their system
 - » rotors had to be changed every day, and the same rotor must not be placed in the same slot on two consecutive days
 - » e.g., after I-II-V, they could not use III-II-IV
 - » this actually reduced the size of the key space that the British had to search over

- in September 1939, Alan Turing joins the code breakers in Bletchley Park
- his task is to find a new method for breaking the cipher that does not rely on the repetition of the message key at the beginning of the coded message
- Turing invents a new method that is essentially an attack known today as the known-plaintext attack
 - German messages are well structured
 - some messages contain guessable words at guessable locations
 - e.g., every morning at 6am, they send a weather forecast, which includes the world "wetter" always at the same position within the message
- the British build new Enigma breaking machines (Victory, Agnus Dei) based on the plans of Turing in 1940
- indeed, Germans change their message key sending protocol in May 1940, but this does not affect the cryptanalytic capabilities of the British anymore

Modern cryptography

- Shannon's work on information theoretical characterization of encryption [1948]
- substitution-permutation ciphers and the Data Encryption Standard (DES) [1970's]
- the birth of public key cryptography [1976-78]
- quantum cryptography [1980's]

The birth of modern cryptography

- first theoretically sound formulation of the notion of security of an encryption algorithm
 - used information theory to define the concept of perfect secrecy
 - gave necessary conditions for a cipher to be perfectly secure
 - proved that the one-time pad provides perfect secrecy

Claude E. Shannon

- ideas to build strong block ciphers usable in practice
 - create a complex cipher by repeated use of otherwise simple transformations
 - none of the simple transformations alone would be sufficiently strong, but their repeated use and the large number of iterations would ultimately result in a strong cipher (aka. product ciphers)

Data Encryption Standard (DES)

- based on Lucifer, a cipher developed by IBM in the 70's
- symmetric key block cipher
- features:
 - Feistel structure (same structure can be used for encoding and decoding)
 - number of rounds: 16
 - input block size: 64 bits
 - output block size: 64 bits
 - key size: 56 bits

DES round function F

S4

0 7 D

1 D 8

0 1 2 3

E 3 0 9

2 A 6 9 0 C B 7 D F 1 3 E 5 2 8 4

3 3 F 0 6 A 1 D 8 9 4 5 B C 7 2 E

6

B 5 6 F 0 3

2

4 7 C 1

2

5

» linear bit permutation

6

3 2 1 E 7 4 A 8 D F C 9 0 3 5 6 B

6 A D 3 5 8

3 7

S8

0 D 2

1 1

CDEF

C 4 F

AE9

0 1 2 3

8 6 в

D 8

2 7 B 4 1 9 C E 2 0

Security of DES

- average complexity of a brute force attack is 2⁵⁵
 - was suspected breakable by NSA back in the 70's
 - definitely became breakable by the late 90's by distributed computing
 - new standard AES was accepted in 2001
- algebraic attacks
 - DES has never been broken in a practical sense
 - best known attacks:
 - » linear cryptanalysis (LC)
 - requires ~2⁴³ known plaintext ciphertext pairs
 - » differential cryptanalysis (DC)
 - requires ~2⁴⁷ chosen plaintexts (and corresponding ciphertexts)
 - DC and LC were discovered in the late 80's and early 90's
 - it was revealed in the late 90's that the designers of DES had known about DC, and optimized the DES S-boxes such that DES provides maximum resistance against DC

A breakthrough in modern cryptography

Whitfield Diffie and Martin Hellman. New Directions in Cryptography. *IEEE Transactions on Information Theory*, 1976

Raplh Merkle, Martin Hellman, and Whitfield Diffie

The key exchange problem

- by the 70's digital computers and telecommunication networks were increasingly used in the financial sector
- banks could use symmetric key ciphers, such as Lucifer and later DES, to encrypt sensitive data
- but they faced a practical question: how to setup a shared DES key between two end points (e.g., two remote branches of the same bank) ???
 - in case of earlier military and diplomatic applications, keys were transferred by agents in a physically secure way
 - this was expensive and inflexible for banks

public parameters:

a large prime p and a generator element g of $Z_p^* = \{1, 2, ..., p-1\}$

The Diffie-Hellman key exchange protocol

- if an attacker can only eavesdrop the communications between Alice and Bob, then he has only g^x mod p and g^y mod p
- to compute g^{xy} mod p, he would need x or y
- it is hard to compute x from g^x mod p
 - this is the so called "discrete logarithm" problem
 - no polynomial time algorithm is known to solve it
 - if p is large, then computing discrete logarithm (mod p) is practically infeasible
- there seem to exist one way functions:
 - given x, it is easy to compute f(x)
 - given y, it is hard to find an x for which y = f(x)
- can we use such functions to realize a sort of asymmetric key cryptography ???

The idea of asymmetric key cryptography

- encoding and decoding keys are not the same (unlike in symmetric key cryptography)
- computing the decoding key from the encoding key is hard (infeasible in practice)
- encoding key can be made public, decoding key should be kept secret
 - anybody can obtain the public encoding key of Alice, and send an encrypted message to her
 - only Alice can decrypt the message with the private decoding key
 - an attacker cannot compute the private key from the public key
 - aka. public key cryptography
 - solves the key exchange problem (but has other issues to solve)

The RSA cryptosystem

Ronald Rivest, Adi Shamir, Leonard Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, 1978

Adi Shamir, Ronald Rivest, and Leonard Adleman

The RSA cryptosystem

- key-pair generation algorithm:
 - choose two large primes p and q (easy)
 - $n = pq, \phi(n) = (p-1)(q-1)$ (easy)
 - choose e, such that $1 < e < \phi(n)$ and $gcd(e, \phi(n)) = 1$ (easy)
 - compute the inverse d of e mod $\phi(n)$, i.e., d such that ed mod $\phi(n) = 1$ (easy if p and q are known)
 - output public key: (e, n) (public exponent and modulus)
 - output private key: d (private exponent)
- encryption algorithm:
 - represent the plaintext message as an integer $m \in [0, n-1]$
 - compute the ciphertext c = m^e mod n
- decryption algorithm:
 - compute the plaintext from the ciphertext c as $m = c^d \mod n$

Security of asymmetric key algortihms

- security is typically related to the difficulty of solving some hard mathematical problem
 - e.g., factoring or discrete logarithm
- provable security by reduction proofs:
 - we show that any efficient algorithm that breaks our crypto scheme could be used to efficiently solve a believed to be hard mathematical problem
 - this means that breaking our crypto scheme is at least as hard as solving the hard mathematical problem
- there exist provably secure crypto systems, but most of them are not efficient (fast) enough for practical applications
- most of the public key crypto schemes that we use in pracitce are not provably secure (or only partial proofs exist)

Example: Security of the RSA crypto system

- factoring integers is believed to be a hard problem
 - given a composit integer n, find its prime factors
 - true complexity is unknown
 - it is believed that no polinomial time algortihm exists to solve it
- computing d from (e, n) is equivalent to factoring n
- computing m from c and (e,n) may not be equivalent to factoring n (this is known as the RSA problem)
 - if the factors p and q of n are known, then one can easily compute d, and using d, one can also compute m from c
 - we don't know if one could factor n, given that he can efficiently compute m from c and (e,n)

The secret story of public key cryprography

James Ellis

Clifford Cocks

Malcolm Williamson

The secret story of public key cryprography

- Ellis, Cocks, and Williamson worked for GCHQ (British security agency)
- in 1969, Ellis defined the general model of asymmetric key cryptography (called it non-secret key coding)
 - public and private keys
 - (trap-door) one way functions
- in 1973, Cocks invented a cryptosystem same as RSA
 - he was introduced to the idea of non-secret key crypto
 - he worked in the field of number theory, and immediately thought of using factoring as a hard problem
- in 1974, Williamson (a friend of Cocks) invented a key exchange protocol same as the Diffie-Hellman protocol
- by 1975, Ellis, Cocks, and Williamson worked out all the major results of public key cryptography, which were (re)invented some years later
- the story was made pulic only in 1997

Quantum and post-quantum crypto

- quantum cryptography
 - using quantum effects to solve traditional problems in new ways
 - » e.g., quantum key exchange using polarized photons
 - using quantum computers to break modern ciphers efficiently
 - » e.g., the Schor factorization algortihm to break RSA
- post-quantum cryptography
 - developing cryptographic algorithms that resist even attacks by a quantum computer
 - » see <u>http://pqcrypto.org/</u>

Practical applications of cryptography

- secure communication over public channels / networks
 - WWW (https / TLS)
 - WiFi (WPA, WPA2)
 - GSM/3G
 - Bluetooth
- secure data storage
 - disk encryption (TrueCrypt, BitLocker, ...)
 - encrypted cloud strage (Tresorit, CipherCloud, ...)
- authentication
 - smart cards (e.g., bank cards)
 - ignition keys of cars
 - electronic tickets in public transport (automated fare collection systems)
- software authentication and integrity protection
 - digitally signed code (e.g., drivers, applets, Android packages)

Further readings

https://avatao.com/

- Goal: Mastering Cryptographic Engineering
- Module: Challenges for a Cryptographic Protocols course
- Challenges:
 - Breaking the Nihilist historical cipher
 - Trithemius cipher
 - Four-Square game