
1

SSH – Secure Shell

- SSH Transport Layer Protocol
- Binary Packet Protocol
- key exchange
- server authentication

- SSH User Authentication Protocol
- SSH Connection Protocol

“Security, like correctness, is not an add-on feature.”
-- Andrew S. Tanenbaum

2© Levente Buttyán

What is SSH?

SSH – Secure Shell
SSH is a protocol for secure remote login and other secure
network services over an insecure network
developed by SSH Communications Security Corp., Finland
two distributions are available:
– commercial version
– freeware (www.openssh.com)

specified in a set of Internet drafts

2

3© Levente Buttyán

Major SSH components

SSH Transport Layer Protocol
– provides server authentication, confidentiality, and integrity

services (may provide compression too)
– runs on top of any reliable transport layer (e.g., TCP)

SSH User Authentication Protocol
– provides client-side user authentication
– runs on top of the SSH Transport Layer Protocol

SSH Connection Protocol
– multiplexes the secure tunnel provided by the SSH Transport

Layer and User Authentication Protocols into several logical
channels

– these logical channels can be used for a wide range of purposes
• secure interactive shell sessions
• TCP port forwarding
• carrying X11 connections

4© Levente Buttyán

SSH security features

strong algorithms
– uses well established strong algorithms for encryption, integrity,

key exchange, and public key management
large key size
– requires encryption to be used with at least 128 bit keys
– supports larger keys too

algorithm negotiation
– encryption, integrity, key exchange, and public key algorithms are

negotiated
– it is easy to switch to some other algorithm without modifying the

base protocol

3

5© Levente Buttyán

SSH TLP – Overview

client server

TCP connection setup

SSH version string exchange

SSH key exchange
(includes algorithm negotiation)

SSH data exchange

termination of the TCP connection

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

6© Levente Buttyán

Connection setup and version string exchange

TCP connection setup
– the server listens on port 22
– the client initiates the connection

SSH version string exchange
– both side must send a version string of the following form:

“SSH-protoversion-softwareversion comments” \CR \LF
– used to indicate the capabilities of an implementation
– triggers compatibility extensions
– current protocol version is 2.0
– all packets that follow the version string exchange is sent using

the Binary Packet Protocol

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

4

7© Levente Buttyán

Binary Packet Protocol

– packet length:
• length of the packet not including the MAC and

the packet length field
– padding length:

• length of padding
– payload:

• useful contents
• might be compressed
• max payload size is 32768

– random padding:
• 4 – 255 bytes
• total length of packet not including the MAC

must be multiple of max(8, cipher block size)
• even if a stream cipher is used

– MAC:
• message authentication code
• computed over the clear packet and an implicit

sequence number

packet length (4)

padding length (1)

random padding

MAC

payload
(may be compressed)

compression

encryption

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

8© Levente Buttyán

Encryption

the encryption algorithm is negotiated during the key exchange
supported algorithms
– 3des-cbc (required) (168 bit key)
– blowfish-cbc (recommended)
– twofish256-cbc (opt) / twofish192-cbc (opt) / twofish128-cbc (recomm)
– aes256-cbc (opt) / aes192-cbc (opt) / aes128-cbc (recomm)
– serpent256-cbc (opt) / serpent192-cbc (opt) / serpent128-cbc (opt)
– arcfour (opt) (RC4)
– idea-cbc (opt) / cast128-cbc (opt)

key and IV are also established during the key exchange
all packets sent in one direction is considered a single data
stream
– IV is passed from the end of one packet to the beginning of the

next one
encryption algorithm can be different in each direction

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

5

9© Levente Buttyán

MAC

MAC algorithm and key are negotiated during the key exchange
supported algorithms
– hmac-sha1 (required) [MAC length = key length = 160 bits]
– hmac-sha1-96 (recomm) [MAC length = 96, key length = 160 bits]
– hmac-md5 (opt) [MAC length = key length = 128 bits]
– hmac-md5-96 (opt) [MAC length = 96, key length = 128 bits]

MAC algorithms used in each direction can be different
MAC = mac(key, seq. number | clear packet)
– sequence number is implicit, not sent with the packet
– sequence number is represented on 4 bytes
– sequence number initialized to 0 and incremented after each

packet
– it is never reset (even if keys and algs are renegotiated later)

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

10© Levente Buttyán

Key exchange - Overview

client server

execution of the selected
key exchange protocol

SSH_MSG_KEXINIT

SSH_MSG_NEWKEYS

us
es

 n
ew

 k
ey

s
an

d
al

go
ri

th
m

s
fo

r
se

nd
in

g

us
es

 n
ew

 k
ey

s
an

d
al

go
ri

th
m

s
fo

r
re

ce
iv

in
g

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

6

11© Levente Buttyán

Algorithm negotiation

SSH_MSG_KEXINIT
– kex_algorithms (comma separated list of names)
– server_host_key_algorithms
– encryption_algorithms_client_to_server
– encryption_algorithms_server_to_client
– mac_algorithms_client_to_server
– mac_algorithms_server_to_client
– compression_algorithms_client_to_server
– compression_algorithms_server_to_client
– first_kex_packet_follows (boolean)
– random cookie (16 bytes)

algorithm lists
– the server lists the algorithms it supports
– the client lists the algorithms that it is willing to accept
– algorithms are listed in order of preference
– selection: first algorithm on the client’s list that is also on the server’s list

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

12© Levente Buttyán

Deriving keys and IVs

any key exchange algorithm produces two values
– a shared secret K
– an exchange hash H

H from the first key exchange is used as the session ID

keys and IVs are derived from K and H as follows:
– IV client to server = HASH(K | H | “A” | session ID)
– IV server to client = HASH(K | H | “B” | session ID)
– encryption key client to server = HASH(K | H | “C” | session ID)
– encryption key server to client = HASH(K | H | “D” | session ID)
– MAC key client to server = HASH(K | H | “E” | session ID)
– MAC key server to client = HASH(K | H | “F” | session ID)

where HASH is the hash function specified by the key exchange
method (e.g., diffie-hellman-group1-sha1)

if the key length is longer than the output of HASH…
– K1 = HASH(K | H | X | session ID)
– K2 = HASH(K | H | K1)
– K3 = HASH(K | H | K1 | K2)
– …
– key = K1 | K2 | K3 | …

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

7

13© Levente Buttyán

Diffie-Hellman key exchange

1.
– the client generates a random number x and computes e = gx mod p
– the client sends e to the server

2.
– the server generates a random number y and computes f = gy mod p
– the server receives e from the client
– it computes K = ey mod p = gxy mod p and H = HASH(client version string |

server version string | client kex init msg | server kex init msg | server
host key Ksrv | e | f | K)

– it generates a signature σ on H using the private part of the server host
key (may involve additional hash computation on H)

– it sends (Ksrv | f | σ) to the client
3.

– the client verifies that Ksrv is really the host key of the server
– the client computes K = fx mod p = gxy mod p and the exchange hash H
– the client verifies the signature σ on H

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

14© Levente Buttyán

Server authentication

based on the server’s host key Ksrv

the client must check that Ksrv is really the host key of the
server
models
– the client has a local database that associates each host name

with the corresponding public host key
– the host name – to – key association is certified by a trusted CA

and the server provides the necessary certificates or the client
obtains them from elsewhere

– check fingerprint of the key over an external channel (e.g., phone)
– best effort:

• accept host key without check when connecting the first time to the
server

• save the host key in a local database, and
• check against the saved key on all future connections to the same

server

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

8

15© Levente Buttyán

Key re-exchange

either party may initiate a key re-exchange
– sending an SSH_MSG_KEXINIT packet when not already doing a

key exchange
key re-exchange is processed identically to the initial key
exchange
– except for the session ID, which will remain unchanged

algorithms may be changed
keys and IVs are recomputed
encryption contexts are reset
it is recommended to change keys after each gigabyte of
transmitted data or after each hour of connection time

SS
H
 T

ra
ns

po
rt

 L
ay

er
 P

ro
to

co
l

16© Levente Buttyán

SSH – User Authentication Protocol

the protocol assumes that the underlying transport protocol provides
integrity and confidentiality (e.g., SSH Transport Layer Protocol)
the protocol has access to the session ID
the server should have a timeout for authentication and disconnect if
the authentication has not been accepted within the timeout period
– recommended value is 10 minutes

the server should limit the number of failed authentication attempts a
client may perform in a single session
– recommended value is 20 attempts

three authentication methods are supported
– publickey
– password
– hostbased

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

9

17© Levente Buttyán

User authentication overview

USERAUTH_REQUEST
– user name
– service name
– method name
– … method specific fields …

USERAUTH_FAILURE
– list of authentication methods

that can continue
– partial success flag

• TRUE: previous request was
successful, but further
authentication is needed

• FALSE: previous request was
not successful

USERAUTH_SUCCESS
(authentication is complete, the
server starts the requested
service)

client server

SSH_MSG_USERAUTH_REQUEST

SSH_MSG_USERAUTH_FAILURE
(further authentication needed)

SSH_MSG_USERAUTH_REQUEST

SSH_MSG_USERAUTH_FAILURE
(further authentication needed)

…

SSH_MSG_USERAUTH_REQUEST

SSH_MSG_USERAUTH_SUCCESS

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

18© Levente Buttyán

The “publickey” method

all implementations must support this method
however, most local policies will not require authentication with
this method in the near future, as users don’t have public keys
authentication is based on demonstration of the knowledge of
the private key (the client signs with the private key)
the server verifies that
– the public key really belongs to the user specified in the

authentication request
– the signature is correct

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

10

19© Levente Buttyán

The “publickey” method cont’d

SSH_MSG_USERAUTH_REQUEST
– user name
– service name
– “publickey”
– TRUE (a flag set to TRUE)
– public key algorithm name (e.g., ssh-dss)
– public key
– signature (computed over the session ID and the data in the

request)

the server responds with SSH_MSG_USERAUTH_FAILURE if
the request failed or more authentication is needed, or
SSH_MSG_USERAUTH_SUCCESS otherwise

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

20© Levente Buttyán

The “publickey” method cont’d

using the private key
– involves expensive computations
– may require the user to type a password if the private key is

stored in encrypted form on the client machine

in order to avoid unnecessary processing, the client may check
whether authentication using the public key would be
acceptable
– SSH_MSG_USERAUTH_REQUEST

• user name
• service name
• “publickey”
• FALSE
• public key algorithm name
• public key

– if OK then the server responds with
SSH_MSG_USERAUTH_PK_OK

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

11

21© Levente Buttyán

The “password” method

all implementations should support this method
this method is likely the most widely used
SSH_MSG_USERAUTH_REQUEST
– user name
– service name
– “password”
– FALSE (a flag set to FALSE)
– password (plaintext)

the server may respond with
SSH_MSG_USERAUTH_FAILURE,
SSH_MSG_USERAUTH_SUCCESS, or
SSH_MSG_USERAUTH_PASSWD_CHANGEREQ

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

22© Levente Buttyán

The “password” method cont’d

changing the password
– SSH_MSG_USERAUTH_REQUEST

• user name
• service name
• “password”
• TRUE
• old password (plaintext)
• new password (plaintext)

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

12

23© Levente Buttyán

The “hostbased” method

authentication is based on the host where the user is coming
from
this method is optional
the client sends a signature that has been generated with the
private host key of the client
the server verifies that
– the public key really belongs to the host specified in the

authentication request
– the signature is correct

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

24© Levente Buttyán

The “hostbased” method cont’d

SSH_MSG_USERAUTH_REQUEST
– user name
– service name
– “hostbased”
– public key algorithm name
– public key and certificates for client host
– client host name
– user name on client host
– signature (computed over the session ID and the data in the

request)

SS
H
 U

se
r

A
ut

he
nt

ic
at

io
n

Pr
ot

oc
ol

13

25© Levente Buttyán

Recommended readings

Internet drafts available at
http://www.ietf.org/html.charters/secsh-charter.html
– SSH Protocol Architecture
– SSH Transport Layer Protocol
– SSH User Authentication Protocol
– SSH Connection Protocol

