"Security, like correctness, is hot an add-on feature.”
-- Andrew S. Tanenbaum

SSH - Secure Shell

- SSH Transport Layer Protocol

- Binary Packet Protocol

- key exchange

- server authentication
- SSH User Authentication Protocol
- SSH Connection Protocol

What is SSH?

= SSH - Secure Shell

* SSHis a protocol for secure remote login and other secure
network services over an insecure network

= developed by SSH Communications Security Corp., Finland
* two distributions are available:

- commercial version

- freeware (www.openssh.com)
» specified in a set of Internet drafts

© Levente Buttydn

Major SSH components

= SSH Transport Layer Protocol

- provides server authentication, confidentiality, and integrity
services (may provide compression t00)

- runs on top of any reliable transport layer (e.g., TCP)
* SSH User Authentication Protocol

- provides client-side user authentication

- runs on top of the SSH Transport Layer Protocol
= SSH Connection Protocol

- multiplexes the secure tunnel provided by the SSH Transport
Layer and User Authentication Protocols into several logical
channels

- these logical channels can be used for a wide range of purposes

+ secure interactive shell sessions
+ TCP port forwarding
+ carrying X11 connections

© Levente Buttydn ‘_

SSH security features

* strong algorithms

- uses well established strong algorithms for encryption, integrity,
key exchange, and public key management

* large key size
- requires encryption to be used with at least 128 bit keys
- supports larger keys too
= algorithm negotiation
- encryption, integrity, key exchange, and public key algorithms are
negotiated

- it is easy to switch to some other algorithm without modifying the
base protocol

© Levente Buttydn I_

SSH TLP - Overview

client server

TCP connection setup

SSH version string exchange

SSH key exchange
(includes algorithm negotiation)

SSH data exchange

termination of the TCP connection

SSH Transport Layer Protocol

© Levente Buttydn E_

Connection setup and version string exchange

= TCP connection setup
- the server listens on port 22
- the client initiates the connection

= SSH version string exchange
- both side must send a version string of the following form:
"SSH-protoversion-sof twareversion comments” \CR \LF
- used fo indicate the capabilities of an implementation
- triggers compatibility extensions
- current protocol version is 2.0

- all packets that follow the version string exchange is sent using
the Binary Packet Protocol

©
(%]
o
+-—
[«
1 3
a
I
(Y
>~
[~]
-
+—
i .
o
a
(4]
<
[~]
{8
(=
X
0
n

© Levente Buttydn n_

Binary Packet Protocol

- packet length:
length of the packet not including the MAC and

/) the packet length field
% - padding length:

A + length of padding
b

- payload:

+ useful contents
+ might be compressed
+ max payload size is 32768

- random padding:

—_ 4 - 255 bytes

8 payload + total length of packet not including the MAC
2 (may be compr‘essed) must be multiple of max(8, cipher block size)
8 + even if a stream cipher is used

a - MAC

[N + message authentication code

g + computed over the clear packet and an implicit
5] sequence number

-

o+

5 %

a]

g

8 MAC

+ VA7 encryption

X

g V| compression

© Levente Buttydn '_

Encryption

* the encryption algorithm is negotiated during the key exchange

= supported algorithms
- 3des-cbc (required) (168 bit key)
- blowfish-cbc (recommended)
- twofish256-cbc (opt) / twofish192-cbc (opt) / twofish128-cbc (recomm)
- aes256-cbc (opt) / aes192-cbc (opt) / aes128-cbc (recomm)
- serpent256-cbc (opt) / serpent192-cbc (opt) / serpent128-cbc (opt)
- arcfour (opt) (RC4)
- idea-cbc (opt) / cast128-cbc (opt)
» key and IV are also established during the key exchange
* all packets sent in one direction is considered a single data
stream
- IVis passed from the end of one packet to the beginning of the
hext one
= encryption algorithm can be different in each direction

© Levente Buttydn H_

SSH Transport Layer Protocol

MAC

SSH Transport Layer Protocol

SSH Transport Layer Protocol

* MAC algorithm and key are negotiated during the key exchange
= supported algorithms

- hmac-shal (required) [MAC length = key length = 160 bits]

- hmac-shal-96 (recomm) [MAC length = 96, key length = 160 bits]

- hmac-md5 (opt) [MAC length = key length = 128 bits]

- hmac-md5-96 (opt) [MAC length = 96, key length = 128 bits]
* MAC algorithms used in each direction can be different

* MAC = mac(key, seq. number | clear packet)
- sequence number is implicit, not sent with the packet
- sequence number is represented on 4 bytes

- sequence number initialized to O and incremented after each
packet

- it is never reset (even if keys and algs are renegotiated later)

© Levente Buttydn H_

Key exchange - Overview

client server

SSH_MSG_KEXINIT

execution of the selected
key exchange protocol

SSH_MSG_NEWKEYS

uses new keys
and algorithms
for sending

uses new keys

and algorithms
for receiving

© Levente Buttydn n_

Algorithm negotiation

= SSH_MSG_KEXINIT
- kex_algorithms (comma separated list of names)
- server_host_key_algorithms
- encryption_algorithms_client_to_server
- encryption_algorithms_server_to_client
- mac_algorithms_client_to_server
- mac_algorithms_server_to_client
- compression_algorithms_client_to_server
- compression_algorithms_server_to_client
- first_kex_packet_follows (boolean)
- random cookie (16 bytes)

= algorithm lists
- the server lists the algorithms it supports
- the client lists the algorithms that it is willing to accept
- algorithms are listed in order of preference
- selection: first algorithm on the client's list that is also on the server's list

SSH Transport Layer Protocol

© Levente Buttydn n_

Deriving keys and IVs

= any key exchange algorithm produces two values
- ashared secret K
- an exchange hash H

* H from the first key exchange is used as the session ID

* keys and IVs are derived from K and H as follows:
- IV client to server = HASH(K | H | “A" | session ID)
- IV server to client = HASH(K | H | "B" | session ID)
- encryption key client to server = HASH(K | H | “C" | session ID)
- encryption key server to client = HASH(K | H | "D" | session ID)
- MAC key client to server = HASH(K | H | "E" | session ID)
MAC key server to client = HASH(K | H | "F" | session ID)
where HASH is the hash function specnfled by the key exchange
method (e.g., diffie-hellman-groupl-shal)

» if the key length is longer than the output of HASH...
- Kl=HASH(K|H| X | sessionID)
K2 = HASH(K | H | K1)
K3 = HASH(K | H | K1 |

K2)

key = K1 | K2 | K3 | ..

© Levente Buttydn E_

SSH Transport Layer Protocol

Diffie-Hellman key exchange

1.
- the client generates a random number x and computes e = g* mod p
- the client sends e to the server
2.
- the server generates a random number y and computes f = g¥ mod p
- the server receives e from the client
- it computes K = e¥ mod p = g¥ mod p and H = HASH(client version string |
server version string | client kex init msg | server kex init msg | server
host key K., | e | f|K)
- it generates a signature c on H using the private part of the server host
key (may involve additional hash computation on H)
- it sends (K., | f | o) to the client
3.

- the client verifies that K., is really the host key of the server
- the client computes K = f* mod p = g¥ mod p and the exchange hash H
- the client verifies the signature c on H

© Levente Buttydn H_

SSH Transport Layer Protocol

Server authentication

= based on the server's host key K.,

* the client must check that K,,, is really the host key of the
server

* models
- the client has a local database that associates each host name
with the corresponding public host key
- the host name - to - key association is certified by a trusted CA
and the server provides the necessary certificates or the client
obtains them from elsewhere
- check fingerprint of the key over an external channel (e.g., phone)

- best effort:
+ accept host key without check when connecting the first time to the
server
+ save the host key in a local database, and

+ check against the saved key on all future connections to the same
server

© Levente Buttydn H_

SSH Transport Layer Protocol

Key re-exchange

= either party may initiate a key re-exchange
- sending an SSH_MSG_KEXINIT packet when not already doing a
key exchange
= key re-exchange is processed identically to the initial key
exchange
- except for the session ID, which will remain unchanged
= algorithms may be changed
= keys and IVs are recomputed
= encryption contexts are reset
* it is recommended to change keys after each gigabyte of
transmitted data or after each hour of connection time

SSH Transport Layer Protocol

© Levente Buttydn E_

SSH - User Authentication Protocol

* the protocol assumes that the underlying transport protocol provides
integrity and confidentiality (e.g., SSH Transport Layer Protocol)
» the protocol has access to the session ID
* the server should have a timeout for authentication and disconnect if
the authentication has not been accepted within the timeout period
- recommended value is 10 minutes
= the server should limit the number of failed authentication attempts a
client may perform in a single session
- recommended value is 20 attempts
* three authentication methods are supported
- publickey
- password
- hostbased

©
QO
o
+—
(=}
| 3
a
<
S
-
[~}
=
+-
<
Q
=
=
3
<
|
Q
v
=)
X
0
n

© Levente Buttydn E_

User authentication overview

USERAUTH_REQUEST
- user name

client server - service name

- method name

SSH_MS6_USERAUTH_REQUEST - .. method specific fields ...

SSH_MS6_USERAUTH_FAILURE USERAUTH_FAILURE
(further authentication needed) - list of authentication methods
that can continue
- partial success flag
+ TRUE: previous request was
successful, but further
authentication is needed
5SH_MS6_USERAUTH_FAILURE - FALSE: previous request was
(further authentication needed) not successful

SSH_MSG_USERAUTH_REQUEST

USERAUTH_SUCCESS

(authentication is complete, the
SSH_MS6_USERAUTH_REQUEST server starts the requested

service)

SSH_MSG_USERAUTH_SUCCESS

©
O
o
-
(=]
1 3
a
<
&=
+-
(=]
&
-
<
Q
=
=
=)
<
[
(Y}
[d
)
I
)
(D]

© Levente Buttydn n_

The “publickey” method

= all implementations must support this method
* however, most local policies will not require authentication with
this method in the near future, as users don't have public keys
* authentication is based on demonstration of the knowledge of
the private key (the client signs with the private key)
* the server verifies that
- the public key really belongs to the user specified in the
authentication request
- fthe signature is correct

SSH User Authentication Protocol

© Levente Buttydn E_

The “publickey” method cont'd

* SSH_MSG_USERAUTH_REQUEST
- user name
- service name
- "publickey"
- TRUE (a flag set to TRUE)
- public key algorithm name (e.g., ssh-dss)
- public key
- signature (computed over the session ID and the data in the
request)

* the server responds with SSH_MSG_USERAUTH_FAILURE if
the request failed or more authentication is needed, or
SSH_MSG_USERAUTH_SUCCESS otherwise

©
O
o
-
(=]
1 3
a
<
&=
+-
(=]
&
-
<
Q
=
=
=)
<
[
(Y}
[d
)
I
)
(D]

© Levente Buttydn H_

The “publickey” method cont'd

= using the private key
- involves expensive computations

- may require the user to type a password if the private key is
stored in encrypted form on the client machine

* in order to avoid unnecessary processing, the client may check
whether authentication using the public key would be
acceptable

- SSH_MSG_USERAUTH_REQUEST
* user name
* Service name
+ “publickey”
- FALSE
+ public key algorithm name
+ public key
- if OK then the server responds with
SSH_MSG_USERAUTH_PK_OK

© Levente Buttydn H_

SSH User Authentication Protocol

The "password” method

©
O
o
-
(=]
1 3
a
<
&=
+-
(=]
&
-
<
Q
=
=
=)
<
[
(Y}
[d
)
I
)
(D]

SSH User Authentication Protocol

all implementations should support this method
= this method is likely the most widely used

* SSH_MSG_USERAUTH_REQUEST

- user name

- service hame

- “password”

- FALSE (a flag set to FALSE)

- password (plaintext)

* the server may respond with
SSH_MSG_USERAUTH_FAILURE,
SSH_MSG_USERAUTH_SUCCESS, or
SSH_MSG_USERAUTH_PASSWD_CHANGEREQ

© Levente Buttydn

The “password” method cont'd

= changing the password
- SSH_MSG_USERAUTH_REQUEST

* user name
* service name
+ “password"”
- TRUE
+ old password (plaintext)
* new password (plaintext)

© Levente Buttydn

11

The “hostbased” method

©
O
o
-
(=]
1 3
a
<
&=
+-
(=]
&
-
<
Q
=
=
=)
<
[
(Y}
[d
)
I
)
(D]

SSH User Authentication Protocol

» authentication is based on the host where the user is coming
from

* this method is optional

* the client sends a signature that has been generated with the
private host key of the client

* the server verifies that

- the public key really belongs to the host specified in the
authentication request

- the signature is correct

© Levente Buttydn H_

The “hostbased” method cont'd

» SSH_MSG_USERAUTH_REQUEST
- user name
- service name
- "“hostbased”
- public key algorithm name
- public key and certificates for client host
- client host name
- user name on client host
- signature (computed over the session ID and the data in the
request)

© Levente Buttydn

12

Recommended readings

= Internet drafts available at
http://www.ietf.org/html.charters/secsh-charter.html
- SSH Protocol Architecture
- SSH Transport Layer Protocol
- SSH User Authentication Protocol
- SSH Connection Protocol

© Levente Buttydn

13

