

Mathematical framework

- based on the simulation paradigm
 - real-world model
 - describes the real operation of the protocol
 - ideal-world model
 - captures what the protocol wants to achieve in terms of security
 - definition of security in terms of indistinguishability of the two models from the point of view of honest participants

Mathematical framework (cont'd)

- communication model
 - multi-hop communication and the broadcast nature of radio channels are explicitly modeled
- adversary model
 - power of the adversary is limited
 - it has communication capabilities similar to regular nodes
 - it cannot fully control when some nodes send and receive messages
- model of computation
 - computation is not scheduled by the adversary
 - computation is performed in rounds (synchronous model), but ...
 - knowledge of the current round number is never exploited
- ideal-world model and ideal-world adversary
 - they are essentially the same as the real-world model and adversary
 - the ideal world is ideal in the following sense:
 - · route reply messages that contain incorrect routes are marked and filtered out
 - · incorrect routes are never returned in the ideal world

Security and Privacy in Upcoming Wireless Networks Provable security for ad hoc routing protocols 5/40 SWING'07, Bertinoro, Italy, 2007.

Plausible routes

- reduced configuration: (<u>G(V, E)</u>, <u>V</u>*, <u>L</u>)
 neighboring adversarial nodes are joined
- a route is *plausible* in a given configuration, if it doesn't contain repeating IDs and it can be partitioned in a way that each partition *P* can be associated with a node *v* in <u>*G*</u> such that

The rational behind plausible routes

- adversarial nodes can emulate the execution of the routing protocol (locally) using any subset of the compromised IDs in any order
- they can also pass information to each other in a proprietary way
- these are *tolerable imperfections*, which are embedded in the notion of plausible routes

Security and Privacy in Upcoming Wireless Networks SWING'07, Bertinoro, Italy, 2007.

Real-world model (1)

- $H, M_1, ..., M_n, A_1, ..., A_m, C$ are interacting, probabilistic Turing machines
 - M₁, ..., M_n represent honest nodes in <u>G</u>
 - $-A_1, \ldots, A_m$ represent adversarial nodes in <u>G</u>
 - *C* models the communication links (edges of <u>*G*</u>)
- each machine is initialized with some input data (e.g., crypto keys) and some random input
- each machine operates in a reactive manner (must be activated)
 - reads input tape
 - performs state transition and writes output tape
 - goes back to sleep
- machines are activated by a hypothetic scheduler in rounds in a fix order in each round: H, ..., C
- the computation ends when *H* reaches a final state

Security and Privacy in Upcoming Wireless Networks SWING'07, Bertinoro, Italy, 2007,

Provable security for ad hoc routing protocols

Real-world model (3)

NG'07, Bertinoro, Italy, 200

Real-world model (4)								
$H \xrightarrow{res_1} M_1 \xrightarrow{in_1} C$	 output of the real-world model sets of routes returned to <i>H</i> denoted by <i>real_out_{conf,A}(r)</i>, where <i>r</i> = (<i>r_P</i>, <i>r_M</i>, <i>r_C</i>) <i>r_I</i> - random input of cryptographic initialization (key generation) <i>r_M</i> - random input of <i>M_P</i>,, <i>M_n</i> <i>r_A</i> - random input of <i>A_I</i>,, <i>A_m</i> <i>r_C</i> - random input of <i>C</i> <i>real_out_{conf,A}</i> denotes the random variable describing the output when <i>r</i> is chosen uniformly at random 							
ecurity and Privacy in Upcoming Wireless Networks	Provable security for ad hoc routing protocols 12/40							

Ideal-world model (1)

difference between C and C':

.

- C' marks every route reply message that contains a non-plausible route as corrupted before placing it on the input tape in_i , of a non-corrupted protocol machine M_i
- otherwise C' works in the same way as C
- difference between M_i and M'_i :
 - when M_i' receives a route reply message that belongs to a route discovery process initiated by itself, it processes the message as follows:
 - it performs all the verifications required by the routing protocol
 - if the message passes all verifications, then it ٠ also checks the corruption flag attached to the message
 - · if the message is corrupted (contains a nonplausible route), then M'_i drops the message
- otherwise M_i' behaves as M_i

ecurity and Privacy in Upcoming Wireless Networks VING'07, Bertinoro, Italy, 200

Provable security for ad hoc routing protocols

Ideal-world model (2) output of the ideal-world model req_1 out sets of routes returned to H - denoted by *ideal_out*_{conf,A}(r'), where r' =res in M_n $(r'_{P}, r'_{M}, r'_{A}, r'_{C})$ *ideal_out_{conf,A}* denotes the random variable describing the output when r' is req. out С' Н inA₁ ext A chosen uniformly at random outA inA ext. outA Security and Privacy in Upcoming Wireless Networks Provable security for ad hoc routing protocols SWING'07, Bertinoro, Italy, 2007

14/40

Proof technique

- let $\mathcal{A}' = \mathcal{A}$
- if, for a given *r*, no message is dropped due to its corruption flag in the ideal-world model, then the ideal-world model perfectly simulates the real-world model:

 $real_out_{conf,A}(r) = ideal_out_{conf,A}(r)$

• if, for some *r*, there exist messages that are dropped due to their corruption flag in the ideal-world model, then there may be a *simulation failure*:

 $real_out_{conf,A}(r) \neq ideal_out_{conf,A}(r)$

- in proofs, we want to show that simulation failures occur with negligible probability
- if this is not the case, then
 - in theory, we haven't proven anything (there may be another $\mathcal{A}' \neq \mathcal{A}$, for which we have statistical indistinguishability)
 - in practice, there's a problem with the protocol

Security and	Privacy	in	Upc	oming	Wireless	Networ
	Portinoro	T I	taly	2007		

Provable security for ad hoc routing protocols

Analysis of endairA (1)

Theorem:

endairA is statistically secure if the signature scheme is secure against chosen message attacks.

sketch of the proof:

- it is enough to prove that, for any configuration *conf* and attacker *A*, a route reply message in the ideal-world system is dropped due to its corruption flag set to true with negligible probability
- let us suppose that the following message is dropped due to its corruption flag:

[RREP, S, D, $(N_1, N_2, ..., N_p)$, $(sig_D, sig_{Np}, ..., sig_{N_1})$]

- we know that
 - there are no repeating IDs in (S, N₁, N₂, ..., N_p, D)
 - N_1 is a neighbor of S
 - all signatures are valid
 - S and D are honest
 - (S, N₁, N₂, ..., N_p, D) is a non-plausible route in <u>G</u>
- we prove that \mathcal{A} must have forged a signature to achieve this

Provable security for ad hoc routing protocols

Summary

- attacks against secured ad hoc network routing protocols exist
- flaws are subtle and difficult to discover by informal analysis
- the simulation-based analysis approach used in cryptography can be adopted for reasoning about the security of ad hoc network routing protocols
 - we showed this for on-demand source routing protocols, but the same ideas work for other types of protocols too
- unfortunately, hand-written proofs are tedious and prone to errors
- open question: How to automate the case analysis in proofs?

Security and Privacy in Upcoming	Wireless	Network
SWING'07, Bertinoro, Italy, 2007,		

Provable security for ad hoc routing protocols

Wormholes are not unique to ad hoc networks

Classification of wormhole detection methods

centralized mechanisms

- data collected from the local neighborhood of every node are sent to a central entity
- based on the received data, a model of the entire network is constructed
- the central entity tries to detect inconsistencies (potential indicators of wormholes) in this model
- can be used in sensor networks, where the base station can play the role of the central entity

decentralized mechanisms

- each node constructs a model of its own neighborhood using locally collected data
- each node tries to detect inconsistencies on its own
- advantage: no need for a central entity (fits well some applications)
- disadvantage: nodes need to be more complex

Mutual Authentication with Distance-bounding (MAD)

Using position information of anchors

- anchors are special nodes that know their own positions (GPS)
- there are only a few anchors randomly distributed among regular nodes
- two nodes consider each other neighbors only if
 - they hear each other and
 - they hear more than T common anchors
- anchors put their location data in their messages
- transmission range of anchors (R) is larger than that of regular nodes (r)
- wormholes are detected based on the following two principles:
 - 1. a node should not hear two anchors that are 2R apart from each other
 - 2. a node should not receive the same message twice from the same anchor

Principle 1

Summary

- a wormhole is an out-of-band connection, controlled by the adversary, between two physical locations in the network
- a wormhole distorts the network topology and may have a profound effect on routing
- wormhole detection is a complicated problem
 - centralized and decentralized approaches
 - statistical wormhole detection
 - wormhole detection by multi-dimensional scaling and visualization
 - packet leashes
 - distance bounding techniques
 - anchor assisted wormhole detection
 - using directional antennas
 - many approaches are based on strong assumptions
 - tight clock synchronization
 - · GPS equipped nodes
 - directional antennas
 - ...
- wormhole detection is still an active research area

Security and Privacy in Upcoming Wireless Networks SWING'07, Bertinoro, Italy, 2007.

Wormhole detection