
XCS based hidden firmware modification on embedded devices

Boldizsár Bencsáth Levente Buttyán Tamás Paulik
Laboratory of Cryptography and Systems Security (CrySyS)

Department of Telecommunications
Budapest University of Technology and Economics

Email: {bencsath, buttyan, paulik}@crysys.hu

Abstract—Most contemporary embedded devices, such as wire-
less routers, digital cameras, and digital photo frames, have
Web based management interfaces that allow an administrator
to perform management tasks on the device from a Web browser
connecting to the device’s Web server. It has been shown earlier
that many of these devices are vulnerable to Cross Site Scripting
type attacks whereby some malicious JavaScript code can be
injected in the Web pages stored on the device. When such
infected pages are opened by the administrator, the malicious
script is executed with admin privileges, and it can potentially fully
compromise the embedded device. In this paper, we demonstrate
that such full compromise of embedded devices is indeed possible
in practice by showing how the injected malicious script can install
an arbitrarily modified firmware on the device. We present the
general framework of this kind of hidden firmware modification
attacks, and report on our proof-of-concept implementation that
targets Planex MZK-W04NU wireless routers. In addition, we also
show how this vulnerability can be exploited to install botnet
clients on embedded devices, and by doing so, to create embedded
botnets. Our work proves that the risk of this type of attacks on
embedded systems is considerable, and it will further increase in
the future.

Keywords-Embedded systems; security; Cross Site Scripting;
Cross Channel Scripting; hidden firmware modification; malicious
code; malware; botnets.

I. INTRODUCTION

In their recent paper [1], Bojinov, Bursztein, and Boneh
showed that many commercially available embedded devices
with networking capabilities (e.g., wireless routers, printers,
network-attached storage devices, but also modern cameras
and digital photo frames) are vulnerable to a special form of
Cross Site Scripting attack [2]. They called this special type
of attack Cross Channel Scripting (or XCS for short). The
threat comes from the fact that these embedded devices have a
Web based management interface that allows an administrator
to perform management tasks remotely on the device from a
browser connecting to the device’s Web server. This can be
exploited by injecting malicious JavaScript code in the device,
which is executed by the browser of the administrator when
he performs management tasks on the device and opens the
page that contains the injected code. Such malicious code

can be injected in the device via any of its non-Web based
interfaces, such as NFS or SNMP, hence the name Cross
Channel Scripting. Unfortunately, the injected malicious code
runs with the administrator’s privileges, and it can potentially
fully compromise the embedded device.

In this paper, we demonstrate that such full compromise of
embedded devices is indeed possible in practice by showing
how the firmware of the device can be updated with an XCS
based attack. In our attack, the new firmware installed on
the device is downloaded by the injected malicious script via
the network from the attacker’s site. Thus, the new firmware
can contain arbitrary malicious code. We describe the general
framework of such an XCS based firmware update attack on
network enabled embedded devices, and then introduce our
proof-of-concept implementation on a Planex MZK-W04NU
wireless router. This device runs a BitTorrent client, and we
exploit this by injecting our malicious script that initiates the
firmware modification in a torrent file name. The BitTorrent
client is managed through a Web based interface that allows
the owner of the device to access the list of the current torrent
files with his browser. When this happens, our injected code is
executed, and it downloads and installs the malicious firmware.

It must be clear that such a firmware update attack on em-
bedded devices is a serious threat, which may have devastating
consequences (see [3] for an early alert on this possibility,
and [4] for more information on possible consequences of
subversion of wireless routers). For instance, a compromised
wireless router (see [5] for some attack possibilities) may send a
copy of its traffic (perhaps in a selective manner) to the attacker,
and by doing so, leak private information on a company or on
an individual. Similarly, a compromised printer can send silent
copies of everything it prints to the attacker. In addition, such
embedded devices are usually considered as trusted elements of
a network infrastructure; by compromising them, the attacker
can use them as ideal stepping stones for further attacks on
the infrastructure. Alternatively, the attacker may not target
the internal infrastructure in which the compromised devices
are operated, but he can use those compromised devices as
resources for large scale attacks on remote targets; a typical

example would be to build a botnet of embedded devices. In this
paper, we demonstrate how this could be done by showing how
the firmware can be modified on the device in order to allow for
the download and installation of a botnet client from a remote
server controlled by the attacker. By demonstrating the practical
feasibility of these attacks, our work proves that their risk is
considerable, and it will further increase in the future with the
rapid spread of embedded devices with networking capabilities
and enhanced functionality (such as running a BitTorrent client
on a wireless router, a Facebook client on a digital photo frame,
and so on).

ServerDeviceStage 3Stage 2Stage 1

Start

Start

Get Firmware

fw

Upload(fw)

Remove

Remove

Remove

Load Stage 2 code

Load Stage 3 code

Message1

Figure 1. General framework of XCS based firmware modification attacks

II. GENERAL FRAMEWORK

In this section, we present the general framework of hidden
firmware modification attacks on embedded devices with XCS
vulnerability. The framework provides a flexible structure for
creating an almost universal environment enabling the infection
of various types of devices by handling the differences among
platforms (e.g., the different firmware versions and device
types) in an extendable part of the framework. This extendable
part can be modified at will without the need of conceptually
re-designing the attack. The framework contains three different
stages that are introduced below (see also Figure 1).

A. Stage 1

The first step of our attack framework is the exploitation
of some XCS vulnerability of the embedded device, which
allows the attacker to inject some malicious JavaScript code
in the device. The malicious script is typically injected in some
admin pages of the Web-based device management interface of

the device. Therefore, when the page is opened by the device
administrator during some management activities, the injected
script will run with admin privileges within the browser of
the administrator. The malicious script injection can happen
in many ways (see [2] for a handful of examples), and it is
out of the scope of this paper. The important thing for us is
that the injected script is able to load other scripts from remote
locations and run them. These other scripts will implement the
upcoming stages of our attack framework. Such code loading
and execution is typically supported by contemporary browsers.

B. Stage 2

Stage 2 is concerned with the identification of the platform
(i.e., the type of the embedded device and the firmware version
it is running). For this purpose, the code injected in Stage 1
downloads and executes another script that performs the plat-
form identification task. This second stage code is stored on a
remote site that is fully controlled by the attacker. In addition,
Stage 2 is also responsible for controlling the user interactions
while the platform identification code is executing, as well as
for invoking the third stage of the attack based on the result of
the platform identification.

The script performing the platform identification can inspect
the header of the the HTML pages of the device management
interface, and look for special identifying information referring
to the device manufacturer and/or the firmware version. Such
information is often present in those management pages. As an
example, Figure 2 shows the management page of the Planex
MZK-W04NU wireless router (the device that we used in our
proof-of-concept implementation): one can clearly identify the
text MZK-W04NU in the upper left corner. While actually this
is included as an image in the page, its source file is named
UI_MZK-W04NU_587-40.gif, and thus, the platform iden-
tification script can easily recognize it.

When the script has identified the platform, it downloads a
platform specific, maliciously modified firmware from a remote
site that is fully controlled by the attacker, and invokes the next
stage of the attack. 1

As the download of a firmware may take some time, the
script of Stage 2 is also responsible for preventing the user
from navigating away from the current management page or
otherwise aborting the hidden firmware download operation.
This can be easily achieved by various deception techniques,
such as popping up a window with a warning that tells the user
that important operations are in progress and he is strongly

1We should note that perfect identification of the platform is a real challenge
– often the same device is built in multiple hardware revisions, and no software
tool is used (nor released) by the vendor to identify the particular hardware
revision. At the same time, the possible firmware update may depend on the
exact hardware revision in place.

encouraged to wait until the end of the whole procedure, oth-
erwise the device may suffer irreversible damage. An example
for such a pop-up window is shown in Figure 3.

C. Stage 3
The next step is to perform a firmware update on the

device whereby the currently used firmware is replaced by
the downloaded malicious firmware. As most embedded de-
vices allow the update of their firmware through their Web-
based management interface, this stage of the attack can be
accomplished by simulating a valid user interaction through the
management interface of the device.

A specific problem that the attacker has to overcome at this
stage is the same origin policy, which is a security concept
related to the control of the information flow between sites and
domains. The same origin policy prevents a script from calling
functions outside of the domain of the script’s originating page.
Fortunately for the attacker, there are various techniques to
bypass the same origin policy. For instance, the attacker can use
server side relay programs that run inside the original domain
and relay requests to servers outside of that domain. Another
solution can be based on embedding the malicious firmware in
a Stage 3 script as a parameter and letting the Stage 2 script
download and execute that Stage 3 script.

For practical reasons the firmware can be embedded in the
Stage 3 script as a Base64 encoded value of a variable. When
executed, the Stage 3 script decodes the variable and uploads
the firmware, which is now available in binary format, on the
device. The decoding of the Base64 encoded firmware may take
some time, but compared to the time of downloading the Stage 3
script with the malicious firmware embedded, the decoding time
is negligible, and therefore it does not hinder the attack.

The flexibility of the framework stems from separating the
above three stages from each other, and in particular, from
making the XCS based infection (Stage 1) independent of
the platform identification and the firmware update functions
(Stages 2 and 3, respectively). As mentioned above, the Stage 2
and Stage 3 scripts are stored on remote sites where the attacker
can update and extend them at will, e.g., when he adds support
for new platforms or optimizes some parts of the code.

III. PROOF-OF-CONCEPT IMPLEMENTATION

As a proof-of-concept, we implemented a hidden firmware
modification attack on a wireless router based on the framework
described in the previous section. Our target device was the
Planex MZK-W04NU wireless router, which runs an embedded
BitTorrent client. With this extension, the router can download
on-line shared content from the Internet using the BitTorrent
protocol, and store the downloaded files on various storage
devices to which it is connected. Note that this kind of Bit-
Torrent support is becoming quite common in contemporary

wireless routers. The management of the BitTorrent client in the
Planex MZK-W04NU is integrated in the general management
interface of the device, which uses HTTP channels, and thus,
it is vulnerable to XCS attacks. In the proof-of-concept imple-
mentation, our specific goal was to exploit this vulnerability Our
goal is to show that the installation of any arbitrarily modified
firmware should also be possible with the same method.

A. Stage 1

As the BitTorrent client of the Planex MZK-W04NU lists
the names of the imported torrent files, we injected our Stage 1
JavaScript code in the name of a torrent file. Once this file is
uploaded on the device, its name containing our script appears
in the list of current torrent files. When this list is displayed by
the administrator’s browser, our script is executed.

More specifically, we used the following torrent file name:

<div id=’rf’>
<iframe id=’hf’ onload=’JavaScript:
var a=document.
createElement("script");
a.setAttribute("src",
"http://crysys.hu/
loader.js");
document.getElementById("rf")
.insertBefore(a,null);’>.torrent

The malicious part is carried in the onload event of
an <iframe> tag, and it loads the Stage 2 script called
loader.js from the crysys.hu. In a real scenario,
crysys.hu should be replaced with the URL of the attacker’s
server. When received by the administrator’s browser, the whole
code appears within a <div> element with the ID ‘rf’ as
reference point. This <div> is also used for element injection
later in Stage 2.

Figure 2. The management page of the Planex MZK-W04NU wireless router
contains an image in the upper left corner with a unique file name identifying
the device.

B. Stage 2

Our Stage 2 script downloads our Stage 3 script that contains
an old version of the firmware, and it ensures that the user most
likely will not interrupt the download operation. We actually
did not implement the platform identification function in our
Stage 2 script, because we targeted a specific type of device
and we knew which version of the firmware this device runs. In
a real scenario, platform identification should be implemented.

As we said before, it can be based on inspecting the HTML
header of the pages used for device management, which often
contain information related to the device manufacturer and to
the version number of the currently used firmware.

The user is discouraged to abort the execution of our
script in the following way: First, our Stage 2 script creates
a <div> element that covers the entire page preventing the
user from clicking on links, and it gives a semi-transparent
gray background to the page in order to achieve the usual
“modal” feeling. Then, it disables the scroll bars, and it creates
a warning window (see Figure 3) that informs the user that
important security scans are running and aborting them could
cause serious damage to the device. This gives time to the
Stage 2 script to load the Stage 3 code.

Figure 3. Example warning window used to discourage the user to interrupt
the execution of our Stage 2 script

C. Stage 3

As explained in the previous section, the Stage 3 code
contains the firmware to be uploaded on the device as a Base64
encoded variable in the script. The Stage 3 code has two main
functions: first, it has to bypass the security countermeasures of
the device, and then, it must create an appropriate HTTP request
using AJAX functions that uploads the malicious firmware in
binary format on the device using the HTTP POST method.

Our target device, the Planex MZK-W04NU router, uses
only one protection mechanism to control the integrity of
the firmware upload. When the uploading page is loaded, it
generates a random session ID, called uuid, places this in its
firmware upload form, and only accepts a POST with the most
recent session ID in it. This session ID is generated upon the
call of a CGI routine located on the device, which returns
a JavaScript code that inserts uuid into the uploading form.
Hence, our Stage 3 script calls that routine, extracts the most
recent session ID, and crafts the POST body using this session
ID. The code that we used for gathering and extraction of the
most recent session ID is shown below:

var uuid;
http_request = new XMLHttpRequest();

//creating the XMLHttpRequest

//object to handle requests
http_request.onreadystatechange

= requestdone;
//requestdone is the function
//called on response

http_request.open(’get’,
"get_config.cgi?mgmtfirmform",
true);

//opening the connection, to
//the ID generator

http_request.send();
//sending the request

function requestdone()
{
if (http_request.readyState == 4) {

if (http_request.status == 200) {
result = http_request.responseText;
var first=result.indexOf("’",0);
var second=result.indexOf("’",first+1);
uuid=result.substring(first+1,second);
//in the response, the uuid is
// located between the first
//two ’ symbols

}
}}

Our largest implementation problem was the inser-
tion of the binary firmware into the POST body. The
JavaScript object used to handle and perform AJAX re-
quests is the XMLHTTPRequest object (its Microsoft
equivalent is the Msxml2.XMLHTTP object). However, the
send(bodyString) method of these AJAX handling ob-
jects expects a string as the input parameter, and hence, it
truncates the input at the first NULL byte in it. This makes
it impossible to use the send(bodyString) method for
directly uploading binary content on the device, because binary
files usually contain NULL bytes. The solution that we found
was the use of the sendAsBinary(bodyData) method of
the XMLHTTPRequest object, which accepts any binary input.
This method at the time of the publications is supported only
by the Firefox browser. As, so far, we could not find any other
way to upload binary data on the device from our Stage 3 script,
our current implementation of the attack works only in the case
when the administrator uses Firefox. We are currently looking
for methods to handle this problem in case of MS Internet
Explorer and other browsers.

The Stage 3 script is also located on the attacker’s web server
together with the Stage 2 script. In our implementation, this
server runs on crysys.hu, but in a real implementation this
can be replaced with any remote server.

We tested our implementation with the Mozilla Firefox
browser, and it works properly. It takes approximately 80
seconds for it to perform the attack excluding Stage 1. The
Stage 2 code runs in a few seconds, while the rest of the

80 seconds is used by the download and the execution of the
Stage 3 code, including the upload of the new firmware on the
device. We believe that this time is short enough to render the
attack practically feasible.

IV. EXPLOITATION

In order to show how the XCS based hidden firmware update
on an embedded device can be further exploited by the attacker,
we describe here our on-going work on installing a botnet client
on compromised embedded devices.

A usual firmware consist of three main parts, a header, a
kernel and a file system part. The header is used to define the
system parameters, such as target device name, firmware ver-
sion, checksums for error correction, and usually the positions
of the other two parts in the binary. The kernel is responsible for
the startup of the system, which is located in the file system
part. The file system part is the most important part of the
firmware, as it contains the operating code of the device, such
as programs and scripts.

The current version of our tool is capable of extracting and
rebuilding the firmware of the Linksys WRT54GL and D-Link
Dir615revC wireless routers.

Our prototype of the botnet client is based on the free source
Eiwic IRC client, which is written in C, therefore it is easy
to compile it for various architectures. It also has a modular
construction making us able to concentrate on the functionality.
Eiwic looks for user specified strings in the IRC channel, and
if it identifies a command word, it triggers the corresponding
module that handles the command messages.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that hidden firmware mod-
ification attacks on embedded devices vulnerable to Cross
Channel Scripting (XCS) are practically feasible. We introduced
a general framework of this kind of attacks, and reported on our
proof-of-concept implementation on the Planex MZK-W04NU
wireless router. The main message of this work is that the
risk of this type of attacks on embedded systems is indeed
considerable, and we believe that it will further increase in
the future with the rapid spread of embedded devices with
networking capability and extended features and services.

More specifically, our experiment with implementing a hid-
den firmware modification attack on a specific platform shows
that XCS vulnerabilities indeed exist in commercially available
devices, they can be easily exploited to inject malicious code in
the device, which can then be fully compromised by replacing
its firmware with a malicious firmware. While downloading
the firmware takes some time, the time required by the entire
attack is still reasonable, and there are deception techniques that
can prevent the user from interrupting the attack. Our specific

implementation has some limitations regarding the browser
platform (currently it does not work with MS Internet Explorer),
but we are confident that these problems can be solved; in
addition, this concerns only our specific implementation, while
it does not affect the general attack framework.

In addition, we also showed the feasibility of installing
botnet clients on network enabled embedded devices that are
compromised by the XCS based hidden firmware update attack
that we described. This, in turn, makes it possible to deploy
botnets on embedded devices, and opens new horizons for
attackers and a new era in the field of cyber security.

Our future plan is to investigate the possibility of creating an
automated environment for performing hidden firmware modi-
fication attacks on embedded systems, including the automated
generation of modified firmwares, the selection of the method
for code injection (e.g., XCS or classical penetration techniques
based on non-changed default passwords, known exploits, etc.),
and the setup of botnets from compromised embedded devices.
Another plan of ours is to develop a firmware modification
that automatically spreads infection in the internal network
that hosts the compromised device. This could be done in
various ways, e.g., by providing for a malicious server an open
tunnel to a host inside the network, and letting the server break
through the network perimter defenses while the host thinks it
is communicating with a trusted network element. Our ultimate
objective is of course not to misuse such an automated tool set,
but to understand what level of automation is possible in this
field, which very much determines the risk associated to this
types of attacks.

REFERENCES

[1] H. Bojinov, E. Bursztein, and D. Boneh. XCS: cross channel
scripting and its impact on web applications. Conference on Com-
puter and Communications Security, Proceedings of the 16th ACM
conference on Computer and communications security, pages 420-
431. Chicago, USA, 2009.

[2] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. Petkov. XSS
Exploits: Cross Site Scripting Attacks and Defense. Syngress,
ISBN 1597491543, 2007.

[3] F. Adelstein, M. Stillerman, and D. Kozen. Malicious code
detection for open firmware. 18th Annual Computer Security
Applications Conference (ACSAC ’02), IEEE, 2002.

[4] A. Tsow, M. Jakobsson, L. Yang, and S. Wetzel. Warkitting: the
drive-by subversion of wireless home routers. Journal of Digital
Forensic Practice, vol. 1, no. 3, pp. 179-192, Taylor&Francis,
2006.

[5] C. Heffner and D. Yap. Hacking the Routers: SOHO Router
Security. SourceSec Security Research.
http://www.sourcesec.com/Lab/
soho_router_report.pdf

