
Mitigating the Untrusted Terminal Problem
Using Conditional Signatures

István Zsolt BERTA Levente BUTTYÁN István VAJDA

Laboratory of Cryptography and Systems Security,
Department of Telecommunications, Budapest University of Technology and Economics

{istvan.berta, levente.buttyan, istvan.vajda}@crysys.hit.bme.hu

Abstract

We study the problem of how a user at an untrusted ter-
minal can generate digital signatures with the help of a
smart card. This problem may arise in many practical ap-
plications; an example would be a user generating an elec-
tronic check at a merchant’s terminal in a shop. The danger
is that the terminal can obtain a signature from the card
on an arbitrarily chosen document, that is different from
the one displayed on the screen and confirmed by the user.
We propose a solution to this problem which is based on a
new concept called conditional signature. This leads to a
new paradigm where digital signatures are not considered
as non-repudiable proofs, at least until a short deadline.
Keywords: untrusted terminal, conditional signature,
message authentication, electronic signature, smart card

1 Introduction
We consider electronic commerce applications, where a

user – a sole human being – wishes to make business with a
remote partner. If sensitive data travels through an insecure
network, it should be protected e.g. by cryptographic algo-
rithms. When a protocol participant is supposed to be a hu-
man, it is implicitly assumed that she uses a terminal (e.g.,
a PC), which stores cryptographic keys, performs crypto-
graphic computations, and handles network connections on
behalf of her. It is also implicitly assumed that the terminal
is trusted by the user for behaving as expected, and in par-
ticular for not compromising the security of the user (e.g.,
by leaking her keys).

Unfortunately, most terminals cannot be called ’trusted’.
Either because the party operating the terminal is not trusted
by the user, or the user cannot be convinced that the terminal
does not have hidden features. Moreover, it is often very
hard to check if the hardware or software of the machine
has been tampered with.

To prevent attacks from the terminal smart cards are used
as security measures. However, cards lack user interface,

which enables new attacks, that are impossible in case of
traditional computers. [13] While smart cards can produce
strong digital signatures, they cannot verify that the mes-
sage they sign was not altered by a malicious terminal.

We propose a solution to this problem which is based on
a new concept called conditional signature. This leads to a
new paradigm where digital signatures are not considered
as non-repudiable proofs, at least until a short deadline.

A more detailed version of this paper is available in [3].

2 Related work
Terminal identification is perhaps the most basic prob-

lem addressed in the literature. In this most simple model,
terminals are categorized into two main groups: terminals
trusted by the user and untrusted terminals. In order to help
users to distinguish between trusted and untrusted termi-
nals, terminals are required to authenticate themselves be-
fore they are used. It is assumed that only trusted terminals
are able to authenticate themselves correctly. Thus, trusted
terminals have to be tamper resistant, otherwise tampered
terminals could serve an attacker while still being able to
authenticate themselves.

Asokan et al. [2] and Rank and Effing [10] show a simple
protocol, that – using smart cards and one-time passwords
– enables the identification of fake terminals. Asokan et al.
propose the use of distance bounding protocols to prevent
the attacks of tampered terminals.

This paper relies on the work of Asokan et al. by assum-
ing, that there is a group of trusted terminals that the user
is able to identify. However, our solution also enables the
user to use untrusted terminals and make certain sensitive
operations (like digital signatures) on them.

The problem of man-in-the-middle attacks of untrusted
terminals was addressed by Abadi et al. [1] first, by analyz-
ing the dangers of delegation of rights to a terminal. They
show that this problem could be solved with a smart card
that has peripherials to communicate directly with the user,
and also show secure protocols for such a device. Unfortu-
nately, after more than 10 years of technical development,

1



such a smart card is still not a feasible assumption.
The solution of Clarke et al. [5] uses a super-smart card,

a device equipped with a digital camera, which is connected
to the network while continuously monitoring the screen of
the terminal. Although this device is currently technically
infeasible, this solution would enable authentic communi-
cation without requiring the user to perform any calcula-
tions. However, it is hard to make such a complex device
tamper resistant.

According to Rivest [11] there is a fundamental conflict
between having a secure device and having a ’reasonable
customizable user interface’ that supports downloading of
applications. He suggests, that digital signature should not
be considered non-repudiable proof, but simply plausible
evidence. Thus users should be given well-defined possibil-
ities for repudiating such signatures.

In contrast to solutions based on super-smart cards, the
one presented in paper does not require the card to have a
user interface or any special peripherial, but can be imple-
mented using smart cards that exist today.

Stabell-Kulo et al. [14] proposed a protocol for sending
authentic messages from untrusted terminals. Their solution
gains authenticity by encryption using a one-time-pad to-
gether with a monoalphabetic substitution table. In contrast
to the work of Stabell-Kulo et al., the solution presented
in this paper does not require the user to perform crypto-
graphic operations or to memorize cryptographic keys.

Another approach takes advantage of the fact, that the
smart card is physically close to the user. Berta and Vajda
[4] propose a solution, where the user can send authentic
biometric (audio or video) messages from untrusted termi-
nals. Although the solution of Berta and Vajda are feasible
with today’s smart cards, it relies on the fuzziness of biom-
etry by assuming that it takes more time for the attacker
to counterfeit biometric messages, unlike the solution pre-
sented in this paper, which is a purely cryptographic one.

Since smart cards did not solve the problem of untrusted
terminals, another idea emerged. Pencil-and-paper cryptog-
raphy (or human-computer cryptography) tries to give the
user methods to protect the secrecy or authenticity of the
message without the help of a smart card. Among histor-
ical methods (like the book cipher) the one-time-pad can
be considered quick and easy enough for the limited com-
putational power of the human. However, in case of long
messages the user would need secure storage space for long
one-time keys. The solitaire algorithm of Schneier [12] pro-
vides strong encryption, and uses a deck of card for keying.
Although it is optimized for use by humans, in case of long
messages, encryption requires a significant amount of time,
so this algorithm is more suitable for secret agents than
every-day people. Methods proposed by Naor and Pinkas
[8] rely on visual cryptography ([9]), which uses trans-
parencies placed on the computer’s screen. Their algorithm

relies on a one-time-pad, where the xor operation is acceler-
ated by the fast visual processing of the human being. Mat-
sumoto [7] developed a human identification scheme, that
enables challenge and response identification of humans at
untrusted terminals. Unfortunately, this scheme can be un-
dermined if the attacker can use human interaction too.

In contrast to solutions based on human-computer cryp-
tography, the one presented in this paper does not require
the user to perform any cryptographic operations. It relies
on a trusted smart card and assumes that a user has the op-
portunity to regularly access trusted terminals.

3 Model
A user wants to generate digital signatures at untrusted

terminals. User U has limited memory and computational
power. While U is able to memorize some passwords or
PIN codes, she cannot memorize cryptographic keys, nei-
ther can she perform cryptographic computations. The pri-
vate key of U is stored and the signatures are generated by
a smart card C in possession of user U .

Card C is a trusted personal microcomputer without di-
rect interfaces towards U . C is connected to the terminal
so messages between C and U , must pass through the un-
trusted terminal. C is manufactured by a trusted manufac-
turer and and hence, it is assumed to function correctly, so
C does not try to leak the private key of U or to use the
private key without authorization.

We denote by M the intended recipient of the digital sig-
nature generated by C. M could be a service provider, a
merchant, another user, etc.

Figure 1. Physical connections

In certain protocols we are going to assume that there is
a trusted third party TTP in the system that both U and
M trust. Depending on the exact procotol used, TTP may
have different functions. (e.g. see Section 5.1) The physical
connections defined so far are illustrated in Figure 1.



We assume that the untrusted terminal T in front of U is
fully under the control of an attacker. This means that the
attacker is able to steal and abuse any PIN code1 typed in by
U on the keyboard of the terminal, to send fake messages to
U through the display of the terminal, and to modify mes-
sages that U sends to C for signing before passing them on
to C. Thus, the attacker can obtain signature from the smart
card for an arbitrary message.

However, we assume, that from time to time, U has ac-
cess to C from trusted terminals too. A trusted terminal
could be the home PC of U , or a terminal operated by
a trusted organization and believed to be tamper resistant
(e.g., an ATM machine). Of course, in order to use a termi-
nal for this purpose, it must be properly authenticated first.

Thus, two different scenarios exist for U : one where the
terminal is untrusted, and another one where the terminal is
trusted. In the first case, all logical channels between U and
the other actors C, M , and TTP are insecure, as they pass
through the untrusted terminal, and thus they are controlled
by the attacker. In the second case, secure logical channels
between U and the other actors C, M , and TTP can be es-
tablished, since U and the trusted terminal together can be
viewed as a computer that can set up cryptographically se-
cured connections with C, M , and TTP . Since C, M , and
TTP are able to perform cryptographic computations, they
can establish encrypted and authenticated channels between
each other, regardless of the terminal in front of U .

4 Generic protocol
In order to detect attacks mounted by the attacker, we

propose a framework that allows users to sign messages on
untrusted terminals with the help of their smart cards, re-
view the signatures later in a trusted environment, and re-
voke the fake ones (or authorize only the valid ones). This
is made possible by using conditional signatures. In this
section, we first introduce the concept of conditional signa-
tures, and then propose a generic protocol that uses condi-
tional signatures.

4.1 Conditional signatures

Conditional signatures were introduced in [6], where this
concept was used for solving fair exchange problems with-
out expensive cryptographic primitives like verifiable es-
crow. A conditional signature of U on a message m is U ’s
ordinary signature sigU (m, c) on m and a description of
a condition c. If sigU (m, c) is correct and condition c is
true, then sigU (m, c) is considered to be equivalent with
sigU (m), U ’s ordinary digital signature on m. However, if
c is false, then U is not responsible for m. Intuitively, U ’s
conditional signature is U ’s commitment: ’I signed m, but
if c is not true, then my signature on m is not valid.’

1Although PIN codes are useful against e.g. card theft, they provide
little protection against the threat of untrusted terminals, so their use is not
discussed in this paper.

4.2 Core protocol

It is impossible to prevent the terminal from obtaining
signature from the card on an aribitrarily choosen docu-
ment. Therefore, instead of generating an ordinary signa-
ture, we propose that C generates a conditional signature
such that it is guaranteed that the condition cannot become
true before a certain amount of time has passed. This should
leave time for the user to move to a trusted terminal for
checking the signatures generated by the card, and to en-
force that the conditions of the fake signatures can never
become true.

Although most smart cards have no internal clock, they
may acquire the current time from secure time servers (e.g.
Berta and Vajda [4] show a protocol for this problem). Thus,
we assume, that C knows the current time. (Note, that we
do not need very precise time synchronisation.)

These thoughts lead to the following generic protocol:
(Note, that while steps 1-4 happen at an untrusted terminal,
steps 5 and 6 are performed using a secure terminal and via
secure channels.)

Step 1: U → T : m

When U wants to sign message m at an untrusted terminal,
she first provides the terminal with m, then she inserts her
card C into the terminal’s smart card reader.
Step 2: T → C: m

Step 3: C → T : c, sigU (m, c)
The card logs m and computes the conditional signature
sigU (m, c) of U on m, where c is a condition that includes
(among other things) the deadline t. The conditional signa-
ture will not be valid before t, and will become valid after t

if and only if the other conditions in c hold.
Step 4: T → M : (m, c, sigU (m, c))
Step 5: C → U : M, m, c

Later, but before the deadline t, U reviews the list of mes-
sages logged by C at a trusted terminal. This can be done,
for instance, on her home PC. Before outputting its log, C

authenticates the terminal to be sure that it is a trusted one.
Step 6: For each message m that U intended to sign, U en-
sures that the condition c becomes true; for the rest of the
messages, U ensures that the condition becomes false. This
might involve additional steps and further communication
with M or TTP . See Section 5 for details.

A third party needs to check if the digital signature
sigU (m, c) of the card is correct and condition c is true in
order to verify a conditional signature.

4.3 External logging

There are two problems with the above core protocol:
First, C is required to log every message that it signed.
However, C is a smart card with limited storage capac-
ity. In some applications (where large messages have to
be signed), it may be infeasible for C to store every mes-
sage. Second, C is required to input the whole message to



be signed. Again, if messages are large, then this may be
impossible or impractically slow. The first problem can be
solved by outsourcing the logging function to an external
log server. This log server needs to be trusted by U only, so
it may even be the user’s home PC if it is online. The sec-
ond problem can be solved, by letting the terminal compute
a hash of the message to be signed; only this hash is passed
to the smart card, and the conditional signature is generated
on this hash.

In order to include these extentions in the generic proto-
col only steps 2, 3 and 5 need to be changed. In the descrip-
tion below, LS denotes the log server and it is assumed that
C and LS shares a symmetric key KC,LS.

Step 1: U → T : m (Same as before.)
Step 2: T → C: h(m) (where h is a hash function)
Step 3.1: C → T : LS, C, {C, n, h(m)}KC,LS

(where n is
a sequence number maintained by C)
Step 3.2: T → LS: (C, m, {C, n, h(m)}KC,LS

) to LS.
Step 3.3: LS decrypts {C, n, h(m)}KC,LS

and verifies if
the decryption was successful by checking that the first field
of the decrypted message is C, and by verifying that n has
not been used so far by C. LS also computes the hash of
m and compares the result with h(m) received in the en-
crypted part of the message. If any of the verifications above
is unsuccessful, then LS aborts the protocol. Otherwise, LS

logs (C, n, m), and sends an acknowledgement:
LS → T : macKC,LS

(LS, C, n, h(m))
Step 3.4: T → C: macKC,LS

(LS, C, n, h(m))
Step 3.5: C verifies the acknowledgement, and if it is cor-
rect, then it continues the core protocol.
C → T : (c, sigU (h(m), c))
Step 4: T → M : (m, c, sigU (h(m), c))
Step 5: Later, but before t, U downloads the logged mes-
sages from LS and reviews them at a trusted terminal. Be-
fore this operation takes place, the terminal is authenticated
in order to be sure that it is a trusted one.
Step 6: Same as before: U ensures that only those con-
ditions become true where she intended to sign the corre-
sponding messages.

5 Finalizing signatures

As we have seen in the previous section, it is always re-
quired that condition c is not true before a given deadline t.
This is an inherent requirement in our scheme, which gives
the user some time to move to a trusted terminal and review
the signatures generated so far by her smart card. However,
various approaches are possible to define what happens af-
ter t, or more precisely, how the user can enforce the truth
value of c after t. In this section, we discuss some of these
approaches.

First of all, we note that in most of the applications, it is
desirable that the status of a digital signature does not vary
in time. In our scheme, this is not fully supported, since

every signature is invalid until t, and then it may become
valid. There is a good reason to allow this, namely to mit-
igate the untrusted terminal problem. We note, however,
that the schemes that we propose below guarantee that after
t, the status of the signature becomes stable. In particular,
once the user reviewed and accepted a signature, it cannot
be revoked.

It seems to be a good idea to define a default truth value
for c after t that cannot be changed later, because this en-
sures that the status of each signature will indeed become
stable after t independently of the negligence of the in-
volved parties. In other words, if the user does not take any
steps until t to confirm or to revoke a signature, then the sta-
tus of the signature will take the default value at t, and the
user can no longer do anything about it. Depending on the
default truth value, we can distinguish between two classes
of protocols. Protocols in the first class support the default
accept approach, where a signature automatically becomes
valid after t (and remains valid forever) unless it is explic-
itly revoked by the user before t. Unfortunately, all of these
protocols require a TTP. Protocols in the second class sup-
port the default deny approach, where a signature remains
invalid after t (and forever), unless it is explicitly confirmed
by the user before t. Protocols of this class might not be
suitable in certain applications, because users may tend to
forget to confirm conditional signatures, which means that
they revoke them.

In the following two subsections, we present two proto-
cols and corresponding conditions in order to illustrate the
finalization of the status of signatures. Naturally, these pro-
tocols could be easily extended to work with external log-
ging as it is described in Section 4.3.

5.1 ’Simple deadline’ condition

In this scheme, condition c is true, if deadline t has
passed and TTP countersigned the conditional signature.
This scheme follows the default accept approach, but a simi-
lar scheme can be constructed for the default deny approach
too.

U signs message m at an untrusted terminal:
Step 1: U → T : m

Step 2: T → C: m

Step 3: C → T : t, TTP, sigU (m, t, TTP )

Step 4: T → M : t, TTP, sigU (m, t, TTP )

U reviews signed messages from a trusted terminal:
Step 5: C → U : M, m, t, TTP

Step 6: If U did not intend to sign message m:
U → TTP : ’I revoke my signature sigU (m, t, TTP )’.
Otherwise, U does not need to act.
Step 7: M → TTP : t, TTP, sigU (m, t, TTP )

Step 8: If U did not revoke the signature before t, then:
TTP → M : sigTTP (sigU (m, t, TTP ))



A third party needs to check if the digital signatures
sigU (m, t, TTP ) and sigTTP (sigU (m, t, TTP )) are cor-
rect in order to verify the conditional signature.

5.2 ’Trapdoor function’ condition

Our previous protocol had two very expensive opera-
tions: It required TTP to compute a digital signature for
every signature of every user, and two signatures needed to
be verified in order to verify the conditional signature. Our
next protocol follows the default deny approach. Here, con-
dition c contains h(r), the hash of nonce value r. Condition
c is true if r is also presented.

U signs message m at an untrusted terminal:
Step 1: U → T : m

Step 2: T → C: m

Step 3: C → T : h(r), sigU (m, h(r))

Step 4: T → M : h(r), sigU (m, h(r))

U reviews signed messages from a trusted terminal:
Step 5: C → U : M, m, h(r), r

Step 6: If U intended to sign message m then:
U → M : r (Otherwise, U does not need to act.)

A third party needs to check if the digital signature
sigU (m, h(r)) is correct and r is presented in order to ver-
ify the conditional signature.

This protocol is efficient, it does not require any help
from TTP . However, it does not fully support the require-
ment, that the value of condition c cannot be changed after
a certain deadline. Although U is able to change the value
of c from false to true any time, she cannot do it vice versa.
Help from TTP is required if we would like to freeze the
value of c after a deadline. Help from TTP is also needed
if we would like to construct a similar scheme that follows
the default accept approach. In this case TTP needs to be
involved, in order to send r to M , unless U revokes the sig-
nature before a certain deadline.

6 Conclusion and future work
We studied the problem of how a user at an untrusted

terminal can generate digital signatures using her smart card
without allowing the terminal to obtain the signature of the
user on an arbitrarily chosen message. Our solution is based
on a new concept called conditional signature, leading to a
new paradigm where digital signatures are not considered
as non-repudiable proofs, at least until a short deadline.

One common principle can be identified in all works on
the untrusted terminal problem: a system is not suitable for
providing security services (like encryption or digital signa-
ture) without a trusted hardware component having a secure
channel towards the user of the system. In our solution, the
trusted hardware component is the smart card of the user,
and the secure channel is provided in an off-line manner
through a trusted terminal such as the home PC of the user.

In our future work, we intend to further analyze and opti-
mize the protocols presented in this paper. We also want to
address privacy problems that arise in our proposal. In par-
ticular, in our current schemes, the TTP can link the issuer
of a signature with its intended recipient, which may not be
desirable in some applications. We also plan to examine if
a user is able to identify the terminals that mount attacks on
her, and if she is able to prove the attack to a third party.

References
[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Au-

thentication and Delegation with Smart-cards. Theoretical
Aspects of Computer Software: Proc. of the International
Conference TACS’91, Springer, Berlin, Heidelberg, 1992.

[2] N. Asokan, H. Debar, M. Steiner, and M. Waidner. Authen-
ticating Public Terminals. Computer Networks, 1999, 1999.

[3] I. Z. Berta, L. Buttyán, and I. Vajda. Mitigating the untrusted
terminal problem using conditional signatures. CrySyS Lab
Technical Report, http://www.crysys.hu/publications/files/
BertaBV2004condsig.pdf, 2003.

[4] I. Z. Berta and I. Vajda. Documents from Malicious Ter-
minals. SPIE Microtechnologies for the New Millenium
2003, Bioengineered and Bioinspired Systems, Maspalo-
mas, Spain, 2003.

[5] D. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. v. Dijk,
S. Devadas, and R. Rivest. The Untrusted Computer Prob-
lem and Camera-Based Authentication, 2002.

[6] B. Lee and K. Kim. Fair Exchange of Digital Signatures
using Conditional Signature. SCIS 2002, Symposium on
Cryptography and Information Security, 2002.

[7] T. Matsumoto. Human-Computer cryptography: An at-
tempt. In ACM Conference on Computer and Communi-
cations Security, pp 68-75, 1996.

[8] M. Naor and B. Pinkas. Visual Authentication and Identifi-
cation. Lecture Notes in Computer Science, volume 1294,
1997.

[9] M. Naor and A. Shamir. Visual Cryptography. Lec-
ture Notes in Computer Science, vol 950, pp 1–12, 1995,
http://citeseer.nj.nec.com/naor95visual.html, 1995.

[10] W. Rankl and W. Effing. Smart Card Handbook. John Wiley
& Sons, 2nd edition, ISBN: 0471988758, 1997.

[11] R. Rivest. Issues in Cryptography. Com-
puters, Freedom, Privacy 2001 Confer-
ence http://theory.lcs.mit.edu/˜rivest/Rivest-
IssuesInCryptography.pdf, 2001.

[12] B. Schneier. The Solitaire Encryption Algorithm.
http://www.counterpane.com/solitaire.htm, 1999.

[13] B. Schneier and A. Shostack. Breaking up is Hard to do:
Modelling security threats for smart cards. USENIX Work-
shop on Smart Card Technology, Chicago, Illinois, USA,
http://www.counterpane.com/smart-card-threats.html, 1999.

[14] T. Stabell-Kulo, R. Arild, and P. Myrvang. Providing Au-
thentication to Messages Signed with a Smart Card in Hos-
tile Environments. Usenix Workshop on Smart Card Tech-
nology, Chicago, Illinois, USA, May 10-11, 1999., 1999.


