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Abstract. Account information from major online providers are get-
ting exposed regularly; this gives rise to PWND services, providing a
smart means to check whether a password or username/password tuple
has already been leaked, rendering them “pwned” and therefore risky to
use. However, state-of-the-art PWND mechanisms leak some informa-
tion themselves. In this paper, we investigate how this minimal leaked
information can speed up password cracking attacks of a powerful ad-
versary, when the PWND mechanism is implemented on-premise by a
service provider as an additional security measure during registration or
password change. We analyze the costs and practicality of these attacks,
and investigate simple mitigation techniques. We show that implement-
ing a PWND mechanism can be beneficial, especially for security-focused
service providers, but proper care needs to be taken. We also discuss be-
havioral factors to consider when deploying PWND services.

Keywords: pwned accounts, credential leakage, leaked password, dictionary at-
tack, data breach, security service provider

1 Introduction

Data breaches at major online service providers exposing account information
are increasingly prevalent. As a result of these breaches, many millions of user
accounts, including usernames and passwords, have been “pwned”. In fact, as
of June 2020, the number of pwned accounts is reported to be around 9.7
billion [6]; this number is based on already discovered incidents, therefore it
should be treated as a a conservative lower bound. Such data leaks and the chal-
lenges they have been posing have not gone unanswered by the security com-
munity. Privately and publicly curated databases containing records of pwned
accounts have emerged, providing a means to check if a given account (email
address or email address/password tuple) is affected. Prominent examples in-
clude haveibeenpwned.com [6], SpyCloud [18] and Google’s own database [20].
Services based on these repositories implement privacy-preserving mechanisms,
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which we term as PWND mechanisms, enabling their users (both end-users and
service providers) to check whether certain passwords or full login credentials
are already known to be leaked without revealing them to the service.

A security service provider’s perspective. Online service providers are able
to check whether a user registering to their service is re-using a pwned password;
this could improve account security and avoid potential reputation loss stemming
from account compromise such as with iCloud1. Similarly, providers could use
the same PWND mechanism for password change and logins of existing users to
protect against the usage of a leaked password. We emphasize that here the goal
of such checkup is not to alert users when their credentials become known to be
leaked, but rather to avoid the potential reuse of a leaked password, regardless
who used the password when it was leaked. Consequently, we focus on checking
passwords only, to make pwned password lists useless in dictionary attacks. (Of
course, incorporating the PWND mechanism is not enough; providers should
take extra care with how they present the results of such checks to the user [5]).
Providers of security services, such as end-to-end encrypted file storage or secure
collaboration, are under even more scrutiny regarding incidents involving user
accounts; hence, they have a strong incentive to implement PWND measures.
However, not all PWND integration options [10,20] are equal in their poten-
tial appeal to such a provider. We argue that an on-premise PWND solution,
built on downloadable public databases and run by the provider itself, might be
preferable. Such a solution i) does not require trusting an explicit third party ii)
works also with desktop and mobile apps, not just with browser-based service
access iii) gives the control to the service provider, and requires no user action.

Information leakage. Proper PWND services obviously never require the client
to send its cleartext password, moreso, they do not require the full (e.g., SHA-1)
hash either; that would provide too much information and allow an adversary
to reconstruct the original password. Instead, only the leading few 3 bytes of
the password hash is sent upstream that enables the server to send down a
filtered (therefore much smaller) version of the list of pwned password hashes.
Then, the client can check locally whether the hash of his own password is in the
received pwned password hash list. Such filtering greatly accelerates the checking
process, however, it also leaks some information [10]. Obviously, a few bytes of
the password hash is not enough to be used directly for reversing the original
password, but it can accelerate password cracking.

Strong adversary and expedited attacks. When considering security ser-
vices (e.g., secure storage), from the user’s perspective the service provider is
the strongest potential adversary who claims protection even from itself. In the
corresponding security model the adversary obtains every bit of leaked informa-
tion related to a specific user; such a model has not yet been analyzed in the
context of PWND services in related work [10,20]. Such an adversary can launch
a sped-up password cracking attack: given a targeted user he computes a sim-

1 https://mashable.com/2014/08/31/celebrity-nude-photo-hack/
3 e.g., 5 half-bytes for haveibeenpwned.com and 2 bytes for Google’s Password

Checkup
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ple SHA-1 hash of the password candidate; if the first few bytes do not match
with the leaked bytes, the adversary can skip to the next password. This can
accelerate the cracking process by a significant factor, in the order of thousands
or millions depending on the actual extent of information leakage. Variants of
this idea can be used both for dictionary and brute force attacks; furthermore, a
non-targeted brute force attack could also be carried out with increased speed.
Note that such an adversary is not slowed down by rate limiting API calls.
Our contribution. In this paper, focusing on PWND mechanisms using only
password hashes, we analyze expedited dictionary and brute force attacks by
a strong adversary against users of an online service provider utilizing an on-
premise PWND mechanism. We characterize attack costs for each attack and
password strength category, and take a look at simple potential countermeasures.
Our quantitative results indicate that i) public PWND databases can be used as
dictionaries for password cracking attacks, and ii) the proposed hash stretching
indeed renders brute force attacks on “medium-strength” passwords impractical.
Furthermore, we discuss how user behavior and the composition of a given service
provider’s user base affects the introduction of a PWND mechanism from a cost-
benefit standpoint. Finally, we discuss why a PWND solution based on Private
Set Membership (PSM) protocols is not (yet) practical.

The rest of the paper is organized as follows. Section 2 describes potential
PWND implementation alternatives for online service providers and the details
of the most popular PWND mechanisms. Section 3 introduces and analyzes the
potential attacks in detail and discusses simple mitigation techniques. Section 4
takes a look at the expected costs of the above attacks and the trade-off associ-
ated with deploying a PWND mechanism with regard to both service providers
and end-users. Section 5 discusses the limitations of a potential PWND mecha-
nism based on PSM protocols. Finally, Section 6 concludes the paper.

2 Background

Here we introduce the most important concepts regarding PWND services and
position our contributions with respect to related work.

2.1 PWND: architectural alternatives

From the service provider’s aspect, a PWND service can be realized in a variety
of ways. Fig. 1(a) and 1(b) represent solutions where checking is initiated by the
user (e.g., by using a specific browser (extension) [20] or password manager [7]
that alerts in case of a password becoming leaked). While these solutions have
their own merits, they also have inherent weaknesses. In these scenarios, the ser-
vice provider has no influence over whether the user has checked his candidate
password against a PWND database. The provider may display a recommen-
dation in its registration dialogue, and nudge the user towards checking, but
nothing more. Therefore, the service provider relies on the voluntary actions of
the user and either risks account compromise, or is forced to also implement
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Fig. 1. PWND architectural alternatives: initiated either by the user or by the service
provider

his own PWND mechanism. Furthermore, if the service requires a desktop or
mobile app for client access, browser extensions and non-system level password
managers will not work. Last, but not least, a major issue is trust: a provider
with mostly security-conscious users (whether end-users or enterprises) will find
it hard to justify opting for a PWND mechanism administered by a third party.

Contrarily, Fig. 1(c), 1(d) and 1(e) depict checking mechanisms triggered by
the service provider. In such cases, the control is with the service provider, so that
it can enforce PWND, requiring no action from the user. This can be especially
crucial for providers of security-related services, such as end-to-end encrypted
file storage, online virus checking, secure collaboration, etc. Also, requiring no
extra functionality at the client side, these solutions handle client heterogene-
ity inherently. The outsourced and “Bounce” [17] alternatives still suffer from
the third party trust issue mentioned above. In addition, the outsourced case
presents a sizable challenge in terms of API keys to the PWND service: since
PWND-related data do not flow through the service provider, the API is ei-
ther public and free (which is shown to be problematic4), or utilizes an API
key for authentication (and usually charges a fee for API usage). In the latter
case, the outsourced PWND architecture requires the sharing of the API key of
the service provider with all its users; although this is doable, it might result
in complex policies at the service provider’s side and does not fall under best

4 https://www.troyhunt.com/authentication-and-the-have-i-been-pwned-api/
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security practice. Furthermore, assuming an adversary who sees everything the
service provider sees, the “Bounce” architecture leaks just as much information
as the on-premise solution, but with adding the trust issue with a third party
PWND service. Based on the above, we argue that an on-premise PWND mech-
anism is a sensible choice for providers of security-related services and/or with
security-conscious users. In fact, GitHub implements the on-premise model [11].

2.2 K-Anonymity Preserving Method

We say that some data has K-anonymity property [15] if the information about
any entry, contained in the data cannot be distinguished from at least K − 1
other entries. [1] used this type of privacy guarantee to protect the process of
testing password leakage with the algorithm in Fig. 2.

We recall the most notable instantiations of the idea of [1]. The first one
is the haveibeenpwned.com5 website, which uses the SHA-1 hash function that
has an output of 40 hexadecimal digits (thus m = 160) out of which a 5 digit
long prefix (n = 20) is used for the partitioning of the database. In Google’s
Password Checkup Chrome extension, the same K-anonymity based method
guarantees the privacy of user credentials (see subsection 2.3 for differences). The
extension relies on the Argon2 hash function with m = 128 bit output length
and a configuration using a single thread, 256 MB of memory, and a time cost
of three [20]. This results in a computationally expensive calculation (modelled
by an inefficient oracle) that is unnoticeable for honest users performing a single
query but causes significant slowdown for brute force attackers (see details in
Section 3.3). The prefix length, sent by the client, is 2 bytes (n = 16).

Let H : {0, 1}∗ → {0, 1}m be a hash function and L a database of leaked passwords.
Input / Output:

Server: A list L of leaked passwords / -
Client: Password p∗ to be checked / {0,1}

Protocol:

Offline phase For all pi ∈ L, the server computes H(pi) = hi and organizes
the resulting hash values into 2n sets based on their length n prefixes i.e.,
Sprefj = {hi|hi

` = prefj` for ` = 0, . . . , n− 1}.
Online phase :

1. Client computes H(p∗) = h∗ and sends pref∗, its first n bits to the Server.
2. Based on pref∗, the Server sends Spref∗ to the Client.
3. The Client checks if h∗ ∈ Spref∗ . If yes, the password is a leaked one and

outputs 1, otherwise p∗ /∈ L and returns 0.

Fig. 2. K-anonymity preserving protocol for checking whether a password has already
been leaked (for K = 2m−n).

5 For details: https://haveibeenpwned.com/API/v2#PwnedPasswords

haveibeenpwned.com
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2.3 Related Work

In February 2019, Google has introduced a Chrome extension6, called Password
Checkup, with the goal of enabling users to check whether their credentials were
part of a former data breach. The extension checks possible data leakage in
a privacy-preserving manner, whenever the user registers or logs in to a third
party service. While Password Checkup offers a service similar to the one we are
considering in this paper, it is important to notice the essential differences in their
objectives. Password Checkup handles usernames and passwords together aiming
to alert the user only if she or he was involved in a data breach [20]. Contrarily,
we are not interested in detecting whether a specific user is affected by any of the
breaches. Our goal is to make users avoid the use of leaked passwords regardless
of where, when and who used the specific password. Our motivation for avoiding
leaked passwords, even for different usernames, roots in the considered scenario.
In case of security-focused services, like the end-to-end encrypted file sharing
service provided by Tresorit7 or the private-by-design collaboration platform
CryptPad8, the service provider often wants to prove that their users are not only
protected from outside attackers but also from inside attacks (i.e. from the service
provider itself). While in the former case dictionary and brute force attacks
can be easily prevented, e.g. by limiting the number of failed log in attempts,
this is not straightforward when the attacker is the service provider itself (or,
equivalently, bears the entire knowledge of the service provider). Assuming that
users are exposed in such a manner, it becomes important to protect against
attacks that make use of leaked data, e.g., by building a dictionary from it. In
this paper, we focus on this scenario by choosing to protect users who would
reuse already leaked passwords (even under different usernames) [19].

Furthermore, as we argued in Section 2.1, an on-premise PWND solution,
built on downloadable public databases and run by the provider itself, could
be the preferred implementation alternative to providers of security-focused ser-
vices. Such a scenario has not been analyzed before with respect to information
leakage [10] Another difference between our work and [20] is that we consider
the use of publicly available databases of leaked passwords; obtaining access to
a private database either costs significant money [18] or is just plain unlikely to
happen [20]). Google uses its own database, consequently, their attacker model
is stricter than ours as it also aims to protect the database besides the user’s
credentials during the checkup.

3 PWND: Security Issues and Mitigation Techniques

3.1 Scenario description and assumptions

Our investigation is motivated by the applicability of a PWND mechanism by
Tresorit, an end-to-end encrypted cloud data storage, syncing and sharing service

6 https://chrome.google.com/webstore/detail/password-checkup-extensio/
pncabnpcffmalkkjpajodfhijclecjno

7 https://tresorit.com
8 https://cryptpad.fr
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provider. In the Tresorit system [21], user passwords are stretched and used as
input for encrypting randomly generated private keys with which all user-related
data is encrypted in an end-to-end manner. Neither unencrypted user data, nor
user passwords, nor private keys leave the devices of users at any time. Given
that Tresorit sells a value-added storage service with a distinct focus on security,
in line with our argument is Section 2.1, we assume that the PWND service runs
directly at Tresorit following the on-premise model (see Fig. 1(e)). Tresorit’s own
PWND database can be built by obtaining the SHA-1 hashes of pwned passwords
from the haveibeenpwned.com service database and/or compiling their own from
various sources. Naturally, the PWND database is updated continuously.

We assume an incremental roll-out of the PWND mechanism: already regis-
tered users are only checked when their session expires and they have to log in
with their password again; before doing so, Tresorit does not have extra informa-
tion about their password hashes. Since Tresorit does not store password hashes,
offline checking of existing users, and selectively triggering password change for
pwned accounts is technically infeasible. Triggering session expiration for the
whole existing user base upon the introduction of PWND is not a realistic op-
tion, because Tresorit users expect their data to be continually synced with the
service. Of course, users can change their passwords voluntarily; in such a case,
the PWND mechanism could be triggered.

Note, that in case of finding a pwned password, the service provider forces the
user to choose another password. We also assume that weak passwords are re-
jected during registration via a combination of rule-based and client-side (small)
dictionary based filtering; in this case the use is prompted for another password
of adequate strength. Note that we assume no mandatory 2-factor authentication
for user login [13].

3.2 Potential attacks

Attacker model. Motivated by the service provider’s point of view, we assume
a powerful adversary. Such an adversary is assumed to break into the service
provider’s system gaining access to all the information stored at and communi-
cated by the provider. In this context, the adversary has the same capabilities as
the service provider. Even though the adversary has the same access to resources
as the service provider, neither can access user data due to the end-to-end en-
cryption (see Section 3.1). The adversary’s aim is to crack user passwords in
order to get access to user accounts and the data stored there. It is worth not-
ing that any mitigation technique proposed for the attacks below should make
user passwords and data more secure against both the adversary and the service
provider. We also assume that the attacker does have access to public PWND
databases (even if the service provider does not implement any PWND mech-
anism). Note that traditional API security measures, such as account locking
and rate limiting, do not protect against such an adversary, as the attacker is
equivalent to an insider.

There are three types of password cracking attacks which can benefit directly
from the extra information revealed by the PWND mechanism. The first two

haveibeenpwned.com
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attacks are sped up by filtering out potential password candidates quickly, while
the third attack is accelerated by shrinking the set of users who can potentially
own a given candidate password. Note that only users who registered or changed
their passwords after the roll-out of the PWND service are affected.

Dictionary attack. The objective of this attack is to crack the password of
a given individual user and gain access to the data stored at her account. The
dictionary attack uses an existing list of popular passwords which the adversary
tries systematically; e.g., the PWND database itself or the list of the 10 million
most popular passwords9. In our case, the adversary observes the top-n bits of
the hash. Based on these the adversary filters out candidate passwords (starting
with the top-n bits) from its dictionary. It then tests the candidate passwords
by stretching them and trying to decrypt the encrypted private key of the user
according to Tresorit’s process [21]. Once done, the adversary tries to decrypt
the given user’s data stored at Tresorit with the derived candidate private key.
If this attempt is successful, i.e., it yields meaningful data, then the password
is valid10. The extra information from the PWND mechanism accelerates this
attack. The acceleration factor depends on the composition of the dictionary;
assuming uniformity across the top-n bits, the speedup is by a factor of 2n.
Note that only users, whose password appeared in the list of pwned passwords
after they had registered (following an update of the PWND database), are
affected. (Obviously, their password would have been rejected during registration
otherwise.)

Brute force attack A. This attack is similar to the dictionary attack both
in its objective and speedup factor. The only difference is that there is no pre-
computed database of candidate passwords: the adversary generates the candi-
date password on-the-fly using a structured approach (aided by tools such as
John the Ripper11). This attack can also be accelerated by discarding potential
candidate passwords quickly by hashing the password and calculating its top-n
bits and comparing it to the leaked bit of the particular user. If the top-n bits
match, the attacker can test the password which is more expensive. Ignoring the
small cost of the top-n bit test leads to an acceleration factor of 2n.

Brute force attack B. This attack is not targeted: the objective here is to crack
the password of an arbitrary user or group of users. The adversary partitions
the users into 2n groups based on the leaked top-n bits. When trying a password
candidate the adversary looks up the top-n bits and tries the candidate only for
users in the given group. The extra information from the PWND mechanism
accelerates this attack to the realm of being practical for non-pwned passwords
which are neither particularly weak nor particularly strong12. The acceleration
factor depends on the distribution of actual end-users across the top-n bits;
assuming uniformity of users across top-n bit induced groups and at least 2n

affected users, this method accelerates password cracking by a factor of 2n.

9 https://github.com/danielmiessler/SecLists/tree/master/Passwords
10 all three attacks follow this logic for checking if a password candidate is valid
11 https://www.openwall.com/john/
12 e.g., 8-character extended alphanumeric passwords
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Note, that rainbow table based attacks [12] are not accelerated in this context.
Rainbow tables are based on pre-computed chains of available password candi-
dates and hashes, however, the PWND service eliminates those. If the user’s
registration password is pwned, i.e., the service provider’s PWND database con-
tains it, the service provider forces the user to choose another password. If the
password is not pwned, there is no complete leaked hash value to build the
rainbow table on. The top-n bits of the password hash, leaked by the PWND
mechanism, do not help enough in the creation of the rainbow table, as the
non-leaked part is still dominant.

3.3 Mitigation

Stretching. A simple way to prevent the acceleration of potential attacks is
to use basic key stretching [8]. The user computes a stretched hash, iterating
over a hash several thousand times, i.e., taking the output hash and feeding it
back into the algorithm as an input. Such a stretched hash takes a set amount
of time to complete, which will be several thousand times larger than for single
iteration. Afterwards, the user sends the top-n bit of the stretched hash to the on-
premise PWND service, and the rest of the PWND protocol continues according
to Fig. 2. As such, the privacy-preserving manner of the password checking
process is conserved.

On the one hand, this slowdown is easily tolerable for both end-users and ser-
vice provider, as it is done in a one-off manner when registering for the service
or changing passwords; also, calculating such a stretched hash takes typically
from a few hundred milliseconds to a few seconds. On the other hand, the at-
tacker suffers as he has to compute the same stretched hash for every step of the
dictionary and brute force attacks. In fact, stretching gives the service provider
a flexible “pacing” tool that can be adjusted as its system (number of users,
PWND mechanism, etc.) evolves. Note that since rainbow table attacks are not
accelerated in our application scenario, salting is not needed.
Increasing anonymity set size. Recall that the reason of leaking informa-
tion during the checkup is to keep the overhead of the protocol unnoticeable for
the user. Consequently, the choice of protocol parameters is a trade-off between
password privacy and user experience. In order to minimize the number of false
positives, the probability of hash collisions should be kept minimal (when mod-
eling the hash function with a random oracle, it means that its output length
should be long enough), so that different passwords can be represented with
different hash values. The prefix length determines the size of the anonymity
set that belongs to a given password and also the number of hash values the
server has to transmit to the user to detect password leakage (the shorter the
prefix is, the bigger the anonymity set and the communication cost). One could
increase the anonymity set size either by increasing false positive probability
(applying shorter hash values) or by increasing the protocol overhead. As the
latter one is undesirable, we investigate the other opportunity. Shortening the
leaked hash prefix with n′ bits reduces the attackers advantage with a factor
of 2n

′
by increasing the anonymity set size with the same factor. To preserve
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the original communication costs the server can either use a hash function with
shorter output length or does not change the hash itself, but returns only a part
of the hash values that match with the prefix of the user.

Note that we include stretching in our cost analysis, but leave the numerical
investigation of manipulating anonymity sets to future work.

4 Cost-benefit analysis

4.1 Attack cost estimation

Here we estimate the cost of attacks defined in Section 3.2 in case of different
versions of the on-premise PWND mechanism in terms of effort and monetary
cost needed by the attacker to crack a single password. The basis of our simple
calculations are the following: the size of the pwned password database, cate-
gories of password strengths and the number of potential password candidates
in each category, hash computation times and the cost of CPU time.
Parameters. At the time of writing this article, the popular site haveibeenpwned.
com claims to know about more than 8 billion pwned accounts. Accounting
for the significant overlap among actual passwords, we estimate the number of
pwned passwords at 600 million. We assume that PWND mechanisms use a
16-bit prefix, i.e., this characterizes the information leakage. We also assume
that a PWND database update brings with itself 10% new password hashes,
i.e., 60 million new hashes in our case. In our scenario, it is sensible to take
into account four different password strength categories: pwned passwords, pass-
words that were not pwned at the time of registration but have become pwned
since then (we refer to those as ∆pwned), “medium” strength passwords (de-
fined as 8-character-long alphanumeric passwords with basic special characters)
and “good” passwords (conservatively defined as having 64 bits of entropy, cor-
responding to 10-11 character long extended alphanumeric passwords). Note
that weak passwords are excluded in line with our assumption on the service
provider’s policy. As the computation time of an SHA-1 hash is in the order of a
few milliseconds we take it as zero, while we parametrize our stretched hashing
in a way that it takes exactly 1 second to perform (inclusive of the decryption
attempt of the user’s data, see Section 3.1). To estimate the cost of CPU time,
we turn to the price list of publicly available cloud computation instances, where
a 16-core processor can be rented for $4 per hour, which equals to $2, 190 for a
single core per year. Note that here we omit attack preparation costs, such as
acquiring/compiling a dictionary (anyway, the public PWND database is readily
available to the attacker).

We consider 4 different PWND versions: i) a baseline with no PWND imple-
mented, ii) an ideal, no-leak PWND (not practical owing to the large amount
of data transfer that interferes with user experience), iii) the original PWND
detailed in Fig. 2, and iv) a version with stretched hashing. Fig. 3 shows the ex-
pected required resources for a successful attack on a single user in CPU years.
Note that both plots use the same log y-axis for the sake of comparison. Also

haveibeenpwned.com
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Fig. 3. Expected attack times in CPU years

note that attack times and costs for the two different brute force attacks are the
same, albeit the two attacks are different (targeted vs. non-targeted) and also
accelerated differently (see Section 3.2).

Fig. 3(a) shows that not implementing any PWND mechanism allows a dic-
tionary attack using the public PWND database as a dictionary of hashes to be
completed in less than 10 CPU years ($21,900) on average; this works only for
pwned passwords, of course. Any PWND mechanism would mitigate this special
case. On the other hand, for passwords that have become pwned after they were
used for registration (∆pwned), quick attacks can be mounted. This follows from
the fact that the adversary can construct the ∆ between the two versions of the
database, and use this shorter list as its attack dictionary. Specifically, if the
provider implements the regular PWND mechanism detailed in Fig. 2, the at-
tack requires roughly 8 minutes to succeed on a single CPU core, for this special
case. Stretched hashing increases the attack cost, but does not make the attack
impractical (≈ 1 CPU year or $2,190).

Clearly, implementing a PWND mechanism is advisable, especially for en-
crypted cloud storage, where the sensitive content is likely to be stored. Fur-
thermore, additional safeguards for database updates are needed; note that the
adversary learns about the updates of public databases at the same time as the
provider. Designing such safeguards constitute important future work.

Regarding brute force attacks, a “good” password can be considered safe
against a brute force attack as it would take ≈ 4.5 · 106 CPU years even with
the original, top-n bit leaking PWND mechanism to crack such a password.
Clearly, the most interesting case concerns “medium-strength”, 8-character-long
extended alphanumeric passwords. In this case, when using the state-of-the-art
PWND mechanism, it would take ≈ 175 CPU years on average to crack one
password; this amounts to ≈ $382,500. Such monetary cost can be considered
borderline practical; more so with the declining cost of computation resources.
We observe that stretching the hash mitigates the information leakage issue
successfully in this case, increasing the cost of a successful attack to 1.15 · 107

CPU years and more than $25 billion. We can conclude that utilizing an on-
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premise PWND mechanism with stretching allows for a milder password strength
policy that users may like.

4.2 User behavior

User behavior when facing forced password change and stricter security policies
is shown to be mixed [16]. Users of a service provider can be partitioned into
multiple categories with respect to their password habits and willingness to com-
ply with an additional security mechanism such as compulsory password change.
As such, some users get increased security from a deployed PWND mechanism,
while some could actually suffer a decrease in security (users with “medium-
strength” passwords, if the provider utilizes the regular PWND mechanism).
In addition, even with benefiting from better security, users forced to change
passwords may just leave the service altogether because of the bother13.

Obviously, a service provider can suffer the costs of users leaving (either
because of bother or decreased security), but may pay a larger reputation cost if
an attacker can access a user account with a pwned password. In fact, providers
selling a security-related service are probably better off deploying an enhanced
PWND mechanism. Ultimately, the actual benefit of a proper PWND mechanism
depends on the composition of the service provider’s user base with regard to
password habits.

5 Discussion

The cost of checking whether a password is known to be pwned can also be com-
putational and/or communication overhead besides the investigated security loss,
caused by the k-anonymity approach. However, the efficiency of cryptographic
protocols, called Private Set Intersection or more specifically Private Set Mem-
bership (PSM), that could eliminate the information leakage entirely, seem to
be prohibitive in case of the considered application.

The goal of PSM protocols is to enable two parties (typically a server and a
user) to securely decide whether a value, determined by one of them (user), is an
element of a set belonging to the other (server). The security guarantee of PSM
informally says that from their interaction, neither the user nor the server should
learn anything about the other’s input beyond the result14 of the membership
test. Authors of [3] studied PSM first, and showed its connection to Oblivious
Transfer (OT), a fundamental cryptographic protocol.

When trying to apply PSM protocols for password verification, the main
source of inefficiency is that both communication and computational costs de-
pend on the set size, the order of magnitude of which is upwards of 108. Accord-
ing to the measurements of [14, Table 5-6] on desktop PCs, for passwords of 8

13 This seems to be an existing threat: the online payment website of a major Hungarian
mobile provider offers the alternative to the user to keep their old password even
after prompting them to change it due to expiration!

14 Different variants exist based on who receives the output: only the user [14], only
the server [9] or both of them in a secret shared form [2].
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characters it would take 13.8 sec and a communication cost of 78.3 MB to check
membership in a set of only 218 elements; far less than the PWND database. We
consider such a delay already impractical [4].

6 Conclusion

In this paper, we investigated the effect of information leakage when using state-
of-the-art PWND mechanisms implemented at the service provider itself. We
also presented simple techniques based on hash stretching and anonymity set
design that could negate the acceleration of password cracking attacks owing to
the usage of PWND. Our attack cost calculation showed that i) public PWND
databases can be used as dictionaries for password cracking attacks ii) stretching-
based mitigation is effective concerning the potentially vulnerable users using
“medium strength” passwords. We also discussed how cryptographic solutions
leaking no information are not yet practical in the PWND context. We have
barely scratched the surface: as future work, we plan to analyze PWND mecha-
nisms based on full account information, improve existing schemes by anonymity
set engineering and handling PWND database updates, conduct a survey on
PWND usage among users and service providers, and devise a formal, in-depth
cost-benefit analysis.

References

1. J. Ali. Validating leaked passwords with k-anonymity, Feb. 2018. https://blog.
cloudflare.com/validating-leaked-passwords-with-k-anonymity/, Accessed: 15-06-
2020.

2. M. Ciampi and C. Orlandi. Combining private set-intersection with secure two-
party computation. In SCN, volume 11035 of Lecture Notes in Computer Science,
pages 464–482. Springer, 2018.

3. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivi-
ous pseudorandom functions. In TCC, volume 3378 of Lecture Notes in Computer
Science, pages 303–324. Springer, 2005.

4. D. F. Galletta, R. Henry, S. McCoy, and P. Polak. Web site delays: How tolerant
are users? Journal of the Association for Information Systems, 5(1):1, 2004.

5. H. Habib, J. Colnago, W. Melicher, B. Ur, S. Segreti, L. Bauer, N. Christin, and
L. Cranor. Password creation in the presence of blacklists. In Proceedings of
USEC’17, page 50, 2017.

6. Have I Been Pwned. Website. https://haveibeenpwned.com. Accessed: 15-06-2020.
7. T. Hunt. Have I Been Pwned is Now Partnering With 1Password. https://www.

troyhunt.com/have-i-been-pwned-is-now-partnering-with-1password/, 2018. Ac-
cessed: 15-06-2020.

8. J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure applications of low-entropy
keys. In International Workshop on Information Security, pages 121–134. Springer,
1997.

9. V. Kolesnikov, M. Rosulek, N. Trieu, and X. Wang. Scalable private set union
from symmetric-key techniques, 2019.

https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://haveibeenpwned.com
https://www.troyhunt.com/have-i-been-pwned-is-now-partnering-with-1password/
https://www.troyhunt.com/have-i-been-pwned-is-now-partnering-with-1password/


14 G. Biczók et al.

10. L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ristenpart. Protocols for
checking compromised credentials. In Proceedings of ACM CCS, 2019.

11. N. Matatall. New improvements and best practices for account security and recov-
erability. https://bit.ly/3ftvCcA, 2018. Accessed: 15-06-2020.

12. P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO,
volume 2729 of Lecture Notes in Computer Science, pages 617–630. Springer, 2003.

13. T. Petsas, G. Tsirantonakis, E. Athanasopoulos, and S. Ioannidis. Two-factor
authentication: is the world ready?: quantifying 2fa adoption. In Proceedings of
the eighth European workshop on system security, page 4. ACM, 2015.

14. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT
extension. In USENIX Security Symposium, pages 797–812. USENIX Association,
2014.

15. P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, technical report, SRI International, 1998.

16. R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer,
N. Christin, and L. F. Cranor. Encountering stronger password requirements:
user attitudes and behaviors. In Proceedings of the Sixth Symposium on Usable
Privacy and Security, page 2. ACM, 2010.

17. J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar.
Making middleboxes someone else’s problem: network processing as a cloud service.
ACM SIGCOMM Computer Communication Review, 42(4):13–24, 2012.

18. SpyCloud. Website. https://spycloud.com/. Accessed: 15-06-2020.
19. E. Stobert and R. Biddle. The password life cycle: user behaviour in managing

passwords. In 10th Symposium On Usable Privacy and Security (SOUPS-2014),
pages 243–255, 2014.

20. K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi,
B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein. Protecting ac-
counts from credential stuffing with password breach alerting. In Proceedings of
the USENIX Security Symposium, 2019.

21. Tresorit. White Paper. https://tresorit.com/files/tresoritwhitepaper.pdf. Ac-
cessed: 15-06-2020.

https://bit.ly/3ftvCcA
https://spycloud.com/
https://tresorit.com/files/tresoritwhitepaper.pdf

	The cost of having been pwned: a security service provider's perspective

