
BUILDING BLOCKS FOR SECURE SERVICES:

AUTHENTICATED KEY TRANSPORT AND

RATIONAL EXCHANGE PROTOCOLS

TH�ESE N� 2511 (2001)

PR�ESENT�EE AU D�EPARTEMENT DE SYST�EMES DE COMMUNICATION

�ECOLE POLYTECHNIQUE F�ED�ERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR �ES SCIENCES

PAR

Levente BUTTY�AN

Ing�enieur informaticien diplôm�e, Universit�e Technique de Budapest, Hongrie

de nationalit�e hongroise

accept�ee sur proposition du jury:

Prof. J.-P. Hubaux, directeur de th�ese

Dr. N. Asokan, corapporteur

Prof. R. Molva, corapporteur

Prof. M. Reiter, corapporteur

Lausanne, EPFL

2001

ii

Abstract

This thesis is concerned with two security mechanisms: authenticated key transport and ra-
tional exchange protocols. These mechanisms are potential building blocks in the security
architecture of a range of di�erent services. Authenticated key transport protocols are used
to build secure channels between entities, which protect their communications against eaves-
dropping and alteration by an outside attacker. In contrast, rational exchange protocols can
be used to protect the entities involved in an exchange transaction from each other. This is
important, because often the entities do not trust each other, and both fear that the other
will gain an advantage by misbehaving. Rational exchange protocols alleviate this problem by
ensuring that a misbehaving party cannot gain any advantages. This means that misbehavior
becomes uninteresting and it should happen only rarely.

The thesis is focused on the construction of formal models for authenticated key transport
and rational exchange protocols. In the �rst part of the thesis, we propose a formal model
for key transport protocols, which is based on a logic of belief. Building on this model, we
also propose an original systematic protocol construction approach. The main idea is that we
reverse some implications that can be derived from the axioms of the logic, and turn them into
synthesis rules. The synthesis rules can be used to construct a protocol and to derive a set of
assumptions starting from a set of goals. The main advantage is that the resulting protocol
is guaranteed to be correct in the sense that all the speci�ed goals can be derived from the
protocol and the assumptions using the underlying logic. Another important advantage is that
all the assumptions upon which the correctness of the protocol depends are made explicit. The
protocol obtained in the synthesis process is an abstract protocol, in which idealized messages
that contain logical formulae are sent on channels with various access properties. The abstract
protocol can then be implemented in several ways by replacing the idealized messages and
the channels with appropriate bit strings and cryptographic primitives, respectively.

We illustrate the usage of the logic and the synthesis rules through an example: We
analyze an authenticated key transport protocol proposed in the literature, identify several
weaknesses, show how these can be exploited by various attacks, and �nally, we redesign the
protocol using the proposed systematic approach. We obtain a protocol that resists against
the presented attacks, and in addition, it is simpler than the original one.

In the second part of the thesis, we propose an original formal model for exchange proto-
cols, which is based on game theory. In this model, an exchange protocol is represented as a
set of strategies in a game played by the protocol parties and the network that they use to
communicate with each other. We give formal de�nitions for various properties of exchange
protocols in this model, including rationality and fairness. Most importantly, rationality is
de�ned in terms of a Nash equilibrium in the protocol game. The model and the formal
de�nitions allow us to rigorously study the relationship between rational exchange and fair
exchange, and to prove that fairness implies rationality (given that the protocol satis�es some

iii

further usual properties), but the reverse is not true in general.
We illustrate how the formal model can be used for rigorous veri�cation of existing proto-

cols by analyzing two exchange protocols, and formally proving that they satisfy the de�nition
of rational exchange. We also present an original application of rational exchange: We show
how the concept of rationality can be used to improve a family of micropayment schemes with
respect to fairness without substantial loss in e�ciency.

Finally, in the third part of the thesis, we extend the concept of rational exchange, and
describe how similar ideas can be used to stimulate the nodes of a self-organizing ad hoc net-
work for cooperation. More precisely, we propose an original approach to stimulate the nodes
for packet forwarding. Like in rational exchange protocols, our design does not guarantee
that a node cannot deny packet forwarding, but it ensures that it cannot gain any advantages
by doing so. We analyze the proposed solution analytically and by means of simulation.

iv

R�esum�e

Cette th�ese de doctorat porte sur l'�etude de deux m�ecanismes de s�ecurit�e: le transport authen-
ti��e de cl�es cryptographiques et les protocoles d'�echange rationnel. Ces m�ecanismes pourraient
être utilis�es comme blocs servant �a construire des architectures s�ecuritaires pour di��erents
types de services. Ainsi, les protocoles de transport authenti��e de cl�es cryptographiques sont-
ils employ�es pour construire des canaux s�ecuris�es entre les entit�es, prot�egeant leurs trans-
missions des attaques ext�erieures aussi bien passives qu'actives. Les protocoles d'�echange
rationnel quant �a eux peuvent être employ�es pour prot�eger les entit�es impliqu�ees dans une
transaction les uns des autres. Ce dernier point est important car, souvent, les di��erentes par-
ties ne se font pas con�ance, chacun craignant que l'autre triche pour augmenter ses gains.
Les protocoles d'�echange rationnel all�egent ce probl�eme en garantissant qu'un tricheur ne
gagne rien �a se comporter de la sorte. Ceci signi�e que mal agir devient inint�eressant et qu'il
ne devrait donc se produire que rarement.

Dans la pr�esente th�ese, on va mettre l'accent sur la construction des mod�eles formels pour
le transport authenti��e de cl�es cryptographiques et les protocoles d'�echange rationnel. Dans
la premi�ere partie de cette th�ese, nous proposons un mod�ele formel pour les protocoles de
transport authenti��e, bas�e sur une logique de croyance. En s'appuyant sur ce mod�ele, nous
proposons �egalement une approche originale pour la construction syst�ematique de protocoles.
L'id�ee principale consiste �a inverser des implications qui peuvent être d�eriv�ees des axiomes
de la logique et les transformer en r�egles de synth�ese. Ces r�egles de synth�ese peuvent être
employ�ees pour construire un protocole et pour obtenir des hypoth�eses �a partir d'un ensemble
de buts qu'on d�esire atteindre. L'avantage principal d'une telle m�ethode est l'assurance que le
protocole r�esultant est correct dans le sens o�u tous les buts indiqu�es peuvent être d�eduits du
protocole et des hypoth�eses en utilisant la logique que nous avions d�e�nie. Un autre avantage
important r�eside dans le fait que les hypoth�eses permettant d'atteindre les buts recherch�es
sont explicites. Le protocole r�esultant est un protocole abstrait, dans lequel les messages
id�ealis�es qui contiennent des formules logiques sont envoy�es via des canaux ayant diverses
propri�et�es d'acc�es. Le protocole abstrait peut alors être impl�ement�e de plusieurs mani�eres,
en rempla�cant les messages id�ealis�es et les canaux, respectivement, par les châ�nes binaires et
les primitives cryptographiques appropri�ees.

Nous illustrons l'utilisation de la logique et des r�egles de synth�ese par un exemple: Nous
analysons un protocole de transport de cl�es authenti��e propos�e dans la litt�erature, y iden-
ti�ons des faiblesses, montrons comment celles-ci peuvent être exploit�ees dans diverses at-
taques, et �nalement remodelons le protocole en utilisant notre approche syst�ematique. Nous
obtenons un protocole qui r�esiste aux attaques pr�ec�edemment identi��ees, et qui plus est,
repr�esente un niveau de complexit�e inf�erieur au protocole initial.

Dans la deuxi�eme partie de la th�ese, nous proposons un mod�ele formel original pour les
protocoles d'�echange, bas�e sur la th�eorie des jeux. Dans ce mod�ele, un protocole d'�echange

v

est repr�esent�e comme un ensemble de strat�egies dans un jeu auquel participent les di��erentes
parties impliqu�ees dans le protocole ainsi que le r�eseau qu'ils utilisent pour communiquer
entre eux. Nous donnons dans ce mod�ele des d�e�nitions formelles des di��erentes propri�et�es
des protocoles d'�echange telles que la rationalit�e et l'�equit�e. La rationalit�e est d�e�nie en
termes d'�equilibre de Nash. Le mod�ele et les d�e�nitions formelles nous permettent d'�etudier
rigoureusement le rapport entre l'�echange rationnel et l'�echange �equitable, et de montrer
qu'�equit�e implique rationalit�e (�a condition que le protocole satisfasse certaines autres pro-
pri�et�es usuelles), mais que l'inverse n'est pas vrai en g�en�eral.

Nous montrons comment le mod�ele formel peut être utilis�e pour la v�eri�cation rigoureuse
des protocoles existants en analysant deux protocoles d'�echange, et en montrant formellement
qu'ils satisfont la d�e�nition de l'�echange rationnel. Nous pr�esentons �egalement une application
originale d'�echange rationnel: Nous montrons comment le concept de la rationalit�e peut être
employ�e �a am�eliorer une classe de sch�emas de micro-paiements, en termes l'�equit�e, sans perte
substantielle d'e�cacit�e.

Finalement, dans la derni�ere partie de cette th�ese, nous �etendons le concept de l'�echange
rationnel et d�ecrivons comment des id�ees similaires peuvent être employ�ees pour stimuler la
coop�eration dans les r�eseaux ad hoc auto-organisateurs. Plus pr�ecis�ement, nous proposons
une approche originale pour inciter les n�uds �a relayer les paquets dans les r�eseaux ad hoc.
Comme pour les protocoles d'�echange rationnel, notre conception ne garantit pas qu'un n�ud
accepte toujours de relayer les paquets pour les autres, mais il nous assure au moins que ce
n�ud ne gagne rien en agissant de la sorte. Nous �etudions la solution propos�ee analytiquement
et au moyen de simulations.

vi

To Zita,
for her patience and love

viii

Acknowledgements

I am grateful to Professor Jean-Pierre Hubaux, my academic supervisor, for giving me the
possibility to come to EPFL and to conduct research in his laboratory. Jean-Pierre has been
an excellent \boss" who always defended my interest in various situations. I also want to
thank him for giving me a wide range of freedom in my research, and for maintaining the
level of my self-esteem.

I am thankful to the members of my thesis committee, Dr. Asokan, Professor Re�k Molva,
and Professor Michael Reiter, as well as to the president of the committee, Professor Andr�e
Schiper for the time and e�ort that they have invested in judging the contents of my thesis.
Many thanks to Jean-Pierre Hubaux, Srdjan �Capkun, Naouel Ben Salem, and Uwe Wilhelm,
who have spent a considerable amount of their precious time reading this text at various
stages and suggesting improvements.

I am grateful to all the people with whom I worked together on papers and projects, in
particular, Uwe Wilhelm, Sebastian Staamann, Jean-Pierre Hubaux, Srdjan �Capkun, Istv�an
Vajda, Edwin Wiedmer, and Sean Boran, for all the interesting discussions that we had
together. A special thanks goes to Uwe Wilhelm, who taught me the rigor of technical writing,
and many other things. I am also thankful to the anonymous reviewers of my papers, who
provided me with useful comments and helped to improve the quality of my papers, and so,
indirectly, the quality of this thesis.

I want to thank all my past and present colleagues in the lab for making work a pleasure,
especially Shawn Koppenh�ofer, Constant Gbaguidi, and Srdjan �Capkun, with whom I shared
my o�ce. Special thanks to Shawn Koppenh�ofer, from whom I learned many things about
preparing a presentation, and to Olivier Verscheure and Srdjan �Capkun, whose enthusiasm
has created a nice atmosphere in the lab. I am grateful to Bruno Dufresne, Jean-Pierre
Dupertuis, and Marc-Andr�e L�uthi for keeping the computing infrastructure up and running,
and to Danielle Alvarez, Angela Devenoge, and Holly Cogliati for taking care of all the
administrative problems. I also want to thank to Naouel Ben Salem for translating the
abstract of this thesis into French, to Danielle Alvarez for her help in organizing my thesis
exam, and to Holly Cogliati for improving my English.

Most of all, I want to thank Zita for her love and patience. She made my private life
joyful, which provided a solid background in my work. I am grateful to her for the con�dence
that she has put in me, for her encouragement, and for countless other things.

ix

x

Contents

Introduction 1

Scope of research . 1
Outline of the thesis . 2

I Authenticated key transport protocols 5

1 A logic of channels 7

1.1 Introduction . 7
1.2 The logic . 10

1.2.1 Channels . 10
1.2.2 Language . 12
1.2.3 Axioms . 15
1.2.4 Inference rules . 16
1.2.5 Using the logic . 18
1.2.6 Limitations of the logic . 18

1.3 Examples for channels . 19
1.4 Synthesis rules . 21

1.4.1 Using the synthesis rules . 22
1.5 Related work on formal models for key transport protocols 23

1.5.1 Speci�cation . 23
1.5.2 Construction . 24
1.5.3 Veri�cation . 25

1.6 Summary . 31

2 Protocol construction with the logic of channels 33
2.1 Introduction . 33

2.1.1 The Suzuki-Nakada protocol . 33
2.2 Analysis . 35
2.3 Attacks . 37

2.3.1 Attack 1 . 37
2.3.2 Attack 2 . 39
2.3.3 Attack 3 . 40

2.4 Correction . 41
2.4.1 Re-construction of the second sub-protocol 41
2.4.2 Re-construction of the �rst sub-protocol 44

xi

2.4.3 Re-construction of the third sub-protocol 45
2.4.4 Implementation of the abstract protocol 46

2.5 Summary . 48

II Rational exchange protocols 49

3 An informal overview of the concept of rational exchange 51

3.1 Introduction . 51
3.2 An example: a rational payment protocol . 53
3.3 An application: Removing the �nancial incentive to cheat in micropayment

schemes . 54
3.3.1 Original micropayment scheme . 55
3.3.2 Improved micropayment scheme . 56
3.3.3 Brief analysis . 57

3.4 Summary . 58

4 Protocol games and a formal de�nition of rational exchange 59

4.1 Introduction . 59
4.2 Preliminaries . 61

4.2.1 Extensive games . 61
4.2.2 Strategy . 63
4.2.3 Nash equilibrium . 64
4.2.4 Restricted games . 64

4.3 Protocol games . 65
4.3.1 System model . 66
4.3.2 Limitations on misbehavior . 66
4.3.3 Players . 67
4.3.4 Information sets . 68
4.3.5 Available actions . 69
4.3.6 Action sequences and player function 71
4.3.7 Payo�s . 71

4.4 Formal de�nition of rational exchange and some related properties 72
4.5 The relationship between rational exchange and fair exchange 74
4.6 Towards an asynchronous model . 76
4.7 Related work . 79
4.8 Summary . 80

5 Proving protocols to be rational 81

5.1 Introduction . 81
5.2 Proof of the example rational payment protocol 81

5.2.1 The set of compatible messages . 82
5.2.2 The protocol game . 84
5.2.3 Strategies . 87
5.2.4 Payo�s . 89
5.2.5 The proof . 90

5.3 Some limitations of the model . 92

xii

5.4 Proof of Syverson's rational exchange protocol 93
5.4.1 Temporarily secret (bit) commitment 93
5.4.2 Detailed protocol description . 94
5.4.3 Brief informal analysis . 94
5.4.4 The set of compatible messages . 95
5.4.5 The protocol game . 96
5.4.6 Strategies . 98
5.4.7 Payo�s . 99
5.4.8 The proof . 101

5.5 Replacing the reliable network with an unreliable one 103

III Incentives to cooperate in ad hoc networks 105

6 Stimulation for packet forwarding in ad hoc networks 107

6.1 Introduction . 107
6.2 Stimulation mechanism . 109
6.3 Protection . 115

6.3.1 Tamper resistant security module . 115
6.3.2 Public-key infrastructure . 115
6.3.3 Security associations . 116
6.3.4 Packet forwarding protocol . 117
6.3.5 Credit synchronization protocol . 118
6.3.6 Robustness . 119
6.3.7 Overhead . 119

6.4 Simulations . 120
6.4.1 Simulation description . 120
6.4.2 Simulation results . 122

6.5 Related work . 126
6.6 Summary . 128

Conclusion 129

Summary of contributions . 130
Directions for future research . 131

Bibliography 133

A Synthesis rules 143

B Proofs of Section 5.2 147

C Proofs of Section 5.4 149

D Summary of notations 153

Index 157

Curriculum Vitae 163

xiii

xiv

Introduction

Advances in communication technology, in particular, the Internet explosion and the wide-
spread deployment of digital cellular systems provide opportunities for a vast range of new
services for industry and commerce. Examples range from remote control of industrial pro-
cesses to commercial transactions carried out over public communication networks. However,
the electronic infrastructure that supports these services is known to be susceptible to misuse.
Therefore, a crucial requirement for these services to be successful is security.

This thesis is concerned with two security mechanisms: authenticated key transport and
rational exchange protocols. These mechanisms are potential building blocks in the security
architecture of a range of di�erent services. Authenticated key transport protocols are used
to establish a shared secret key between two (or more) entities in a dynamic manner. The
established key can then be used by the entities to achieve various security objectives. Intu-
itively, an authenticated key transport protocol can be thought of as a mechanism to build
a secure (logical) channel between the entities, which protects their communication against
eavesdropping and alteration by an outside attacker.

Entities involved in a commercial transaction often distrust each other. Protecting an
honest entity from the other entities involved in the transaction is as important as protecting
the entities from an outside attacker. A typical situation where this need arises is when two
remote parties have to exchange some digital items via a communication network. Examples
include electronic contract signing, certi�ed e-mail, and purchase of network delivered services.
An inherent problem in these applications is that a misbehaving party may bring the other,
correctly behaving party in a disadvantageous situation. For instance, a service provider may
deny service provision after receiving payment from a user. This may discourage the parties
and hinder otherwise desired transactions.

The best known approach to solve this problem is to use a fair exchange protocol, which
guarantees for a correctly behaving party that it cannot su�er any disadvantages. This thesis
is not speci�cally concerned with this approach. It is about an alternative approach, called
rational exchange. Roughly, a rational exchange protocol ensures that a misbehaving party
cannot gain any advantages, therefore, misbehavior is not interesting, and should happen only
rarely.

Scope of research

Designing good security mechanisms that ful�ll their purpose is a di�cult exercise. There
are countless examples for security mechanisms proposed in the literature that were found to
be awed some time after their publication. This is true for cryptographic algorithms (e.g.,
encryption schemes) as well as cryptographic protocols (e.g., key transport protocols).

1

2 Introduction

It is widely accepted that informal reasoning does not provide su�cient evidence of the
correctness of even simple security mechanisms. This has led many researchers to construct
formal models, in which security mechanisms can be represented and their properties can be
rigorously investigated. In this thesis, we follow this approach and focus on the construction
of formal models for authenticated key transport and rational exchange protocols.

Regarding authenticated key transport protocols, numerous formal models have already
been proposed in the literature (see Section 1.5). Most of these models are tailored for
the formal veri�cation of existing protocols. Our goal is slightly di�erent: We aim at a
formal model that directly supports the construction of robust key transport protocols. More
precisely, we want to develop a model, and on top of that, a protocol construction tool that
enables the design of protocols that are guaranteed to be correct in the underlying model1.
The advantage of such a tool is quite obvious: One can save numerous rounds of veri�cation
and redesign steps by constructing robust protocols in the �rst place.

As opposed to key transport protocols, there exist only a few formal models developed for
exchange protocols (see Section 4.7), and no formal model for rational exchange in particular.
Consequently, there exists no rigorous study of what exactly rational exchange protocols
achieve and how they are related to fair exchange. Therefore, our goal is to come up with a
formal model for exchange protocols, in which both rationality and fairness can be de�ned,
and the relationship between the two concepts can be investigated. We expect that a formal
de�nition of rational exchange and its comparison to fair exchange will help us to better
understand the concept. In addition, the formal model can serve as the basis for rigorous
veri�cation of existing rational exchange protocols.

Outline of the thesis

Part I: Authenticated key transport protocols

In Chapter 1, we propose a formal model for key transport protocols, and based on that
model, a systematic protocol construction approach. Our model is based on a logic of belief
(similar to the well-known BAN logic [BAN90a]). The protocol construction approach is
based on a set of synthesis rules that we obtain by reversing some implications that can easily
be derived in the logic. The synthesis rules are used to construct a protocol and a set of
assumptions starting from a set of goals in a systematic way. The main advantage of this
approach is that the resulting protocol is guaranteed to be correct in the sense that all the
speci�ed goals can be derived from the protocol and the assumptions using the logic. Another
advantage is that all the assumptions, upon which the correctness of the protocol depends,
are made explicit, so someone who reviews the design can easily verify if they are acceptable
in a given application or not.

The main notion of our logic is the channel. Channels are abstractions that we use to
model, in a uniform manner, the multitude of ways in which principals can send messages to
each other in a protocol. Channels can represent physical links, such as a wire or a network
connection, but we mainly use them to represent cryptographic primitives, such as encryption
with a given key or digital signature of a given user. As a consequence, our logic does not
have any construct that explicitly deals with cryptographic operations; instead, we use only

1When we started to work on this problem in 1997 and published our �rst results [BSW98] in 1998, no such
protocol construction tool existed that we were aware of. Since then, some other researchers have also stared
to work on the same problem (see e.g., [PS00]).

Outline of the thesis 3

channels with various access properties. This allows us to reason about protocols at a high
abstraction level, without being concerned with actual implementation details. This feature
of our model is particularly useful when designing protocols from scratch.

In Chapter 2, we illustrate the application of our approach through an example. We
analyze an authenticated key transport protocol that was proposed in the literature for the so
called global mobility network. Using our logic, we identify several weaknesses in the protocol,
and show how these can be exploited by various, previously unknown attacks. Then, we
redesign the protocol using our systematic protocol construction approach. The new protocol
resists against the previously presented attacks, and it is simpler than the original one.

Part II: Rational exchange protocols

In Chapter 3, we introduce the concept of rational exchange in an informal way. We present an
original rational payment protocol as an example, and show how the main idea of rationality
can be used to improve a family of micropayment protocols by making cheating uninteresting
at virtually no cost (loss in e�ciency). Our goal with these examples is to illustrate the
usefulness of the concept of rational exchange, and to prepare the grounds for the formal
treatment.

In Chapter 4, we present an original formal model of exchange protocols, which is based
on game theory. In this model, an exchange protocol is represented as a set of strategies in a
game that is played by the protocol parties and the network that they use to communicate
with each other. Then, we give formal de�nitions for various properties of exchange protocols,
including rationality and fairness. Most importantly, rationality is de�ned in terms of a Nash
equilibrium in the protocol game. The model and the formal de�nitions allow us to rigor-
ously study the relationship between rationality and fairness. We prove that fairness implies
rationality (given that the protocol satis�es some further usual properties), but the reverse
is not true in general. This means that fair exchange protocols provide stronger guarantees
than rational exchange protocols. Thus, one expects that rational exchange protocols are
less complex than fair exchange protocols. This means that rational exchange can be viewed
as a trade-o� between true fairness and complexity, and as such, it may provide interesting
solutions to the exchange problem in certain applications.

In Chapter 5, we illustrate how the formal model can be used for rigorous veri�cation of
existing rational exchange protocols: We analyze two exchange protocols, and formally prove
that they satisfy our de�nition of rational exchange. The �rst protocol that we prove to be
rational is the example payment protocol of Chapter 3; the second one is a protocol proposed
by Syverson in [Syv98].

Part III: Incentives to cooperate in ad hoc networks

Finally, in Chapter 6, we extend the concept of rational exchange, and describe how similar
ideas can be used to stimulate cooperation in self-organizing ad hoc networks. The functioning
of such networks heavily depends on the cooperative behavior of the nodes. In military and
rescue applications, the nodes are naturally motivated to cooperate, because they belong to
a single authority and have a common goal. However, in civilian applications, which are
expected in the future, the nodes have no good reason to cooperate. Indeed, in order to save
their own resources (e.g., battery), they tend to be \sel�sh".

We focus on the stimulation of packet forwarding, which is a fundamental service that

4 Introduction

the nodes should provide to each other in ad hoc networks. We propose an original approach
that is based on a trusted and tamper resistant hardware module (called security module) in
each node and cryptographic protection of packets. We present a protocol that requires that
each packet (generated as well as received for forwarding) be passed to the security module.
The security module maintains a counter, which is decreased when the node wants to send
a packet as originator, and increased when the node forwards a packet. The counter must
remain positive, which means that if the node wants to send its own packets, then it must
forward packets for the bene�t of others. Like in rational exchange protocols, a node can still
misbehave (e.g., it can deny packet forwarding, or bypass the security module), however, our
design ensures that it cannot gain any advantages by doing so. Therefore, misbehavior is un-
interesting, and should happen only rarely. We analyze the proposed mechanism analytically
and by means of simulations.

Part I

Authenticated key transport

protocols

5

Chapter 1

A logic of channels

1.1 Introduction

In large scale, open systems (e.g., in the Internet), it is necessary to have protocols by which
a pair of principals (users, computers, services) that originally do not share any secrets can
establish a shared secret in a dynamic manner. Such protocols are usually referred to as key
establishment protocols, and the established shared secret is called session key [MvOV97].
Once two principals have established a session key, they can use it to authenticate each other
and to cryptographically protect their further communication.

In general, it is desired that each party in a key establishment protocol can determine the
identity of the other party or parties that could have access to the established session key.
In other words, each party should know with whom exactly the key was established. This
is particularly important, if the session key is intended to be used for entity authentication
or data origin authentication. This property is sometimes called (implicit) key authentica-
tion. If a key establishment protocol provides (implicit) key authentication, then it is called
authenticated key establishment protocol.

Key establishment can be subdivided into key agreement and key transport. Key agree-
ment is a key establishment technique where a session key is derived by two parties as a
function of information contributed by, or associated with, each of them, such that ideally no
party can predetermine the resulting value. In key transport, one party creates or otherwise
obtains a session key, and securely transfers it to the other party. In this thesis, we are
exclusively concerned with key transport protocols.

Despite their apparent simplicity, the design of authenticated key transport protocols
is surprisingly error prone. This is illustrated by the fact that many protocols have been
proposed that were found to be awed later on. The most well-known example is probably
the Needham-Schroeder symmetric key protocol [NS78], which was found by Denning and
Sacco to allow an intruder to pass an old, possibly compromised session key as a new one
to a legitimate party [DS81]. Many other examples for awed protocols can be found in the
literature (see e.g., [BAN90a, Low95, AN96, Aba97, CJ97]).

It is important to note that most of the aws are related to weaknesses in the structure of
the protocol, and independent of the underlying cryptographic primitives. This means that
protocols can fail even if the cryptographic algorithms used within them are sound. In fact,
most of the aws leave the protocol unprotected from some form of replay attack [Syv94]. An
important consequence of this observation is that it indeed makes sense to focus attention on

7

8 Chapter 1: A logic of channels

the structure of the protocols, and abstract away the details of the cryptographic primitives.

In order to support the design of robust key transport protocols, many researchers have
proposed veri�cation methods to be used to discover aws in protocols. Since aws are
sometimes very subtle, they can easily be overlooked when reasoning about the protocol in
an informal way. For this reason, most of the proposed veri�cation methods are based on
formal techniques, such as logics and algebrae (see Subsection 1.5.3 for an overview). Although
formal techniques in general are often criticized to be applicable only to \toy examples", the
techniques proposed for the formal veri�cation of key transport protocols proved to be very
useful by discovering many previously unknown aws in existing protocols.

While they certainly have their merits, formal protocol veri�cation techniques also have a
major drawback: they are of little help in re-designing a awed protocol or designing a new
one from scratch. Even if the formal veri�cation of a protocol suggests a possible correction of
a aw, one will certainly want to verify the modi�ed protocol again, because the modi�cation
may introduce new aws. This may lead to many rounds of veri�cation and re-design steps.
It is therefore desirable to have methods that allow the construction of robust protocols in
the �rst place.

We address this problem by proposing a systematic approach to construct key transport
protocols that is based on a logic of belief similar to the well-known BAN logic [BAN90b,
BAN90a]. Our main idea is to reverse some implications that can be derived from the axioms
of the logic and to turn them into synthesis rules. The synthesis rules can be used by the
protocol designer to derive a protocol � and a set of assumptions � starting from a set of
goals �. Our approach has the advantage that it results in correct protocols in the sense
that all the goals in � can be derived from � and � using the logic. Another important
advantage is that all the assumptions upon which the correctness of the protocol depends are
made explicit, so someone who reviews the design can verify if they are acceptable in a given
application.

We hasten to note that we do not claim a fully automated protocol synthesis method.
In particular, the synthesis rules do not replace human creativity. They simply help the
designer to construct protocols in a systematic way. We will illustrate this in detail through
an example in Chapter 2. We do not claim either that the set of synthesis rules presented in
this thesis is complete; one can derive new rules from our logic if this is deemed necessary in
a particular application.

A fully automated protocol construction tool, APG, has recently been proposed in [PS00].
However, APG is based on a di�erent approach: Instead of systematic construction of the
protocol, a large number of protocols are generated in a random manner, and a fast automatic
protocol veri�cation tool, Athena [Son99], is used to �lter the correct ones. At the time we
worked out our approach (in 1998), neither APG nor any other protocol construction tool
existed that we were aware of.

An approach similar to our synthesis rules is described in [AS97], where a weakest pre-
condition calculus is used to generate the least restrictive set of required assumptions from
the goals of the protocol and the protocol itself. Although the authors discuss the possibility
of using their approach for protocol derivation, they do not actually use their results to con-
struct protocols as we do. Instead, they use the weakest precondition calculus for protocol
veri�cation.

As we mentioned before, our approach is based on a logic of belief. While this logic has
some similarities to the well-known BAN logic, it also di�ers from it in many ways. The

1.1 Introduction 9

most striking di�erence is that our logic does not have any construct that explicitly deals
with cryptographic primitives, such as encryption or digital signature. Instead, we model
these primitives in a uniform manner as channels with various access properties. In addition
to cryptographic primitives, channels can also represent physical links, such as a wire or a
network connection between two devices, but we will not use this feature of our model in this
thesis.

The use of channels makes our logic simple and compact. It also allows us to reason
about protocols at a rather high abstraction level without being concerned with the actual
cryptographic implementation details. We believe that this feature is useful when designing
protocols, because it allows us to identify the required properties of a channel �rst, and decide
about its implementation afterwards (possibly taking into consideration additional design
criteria). Note also that similar kind of abstractions are considered to be useful in software
engineering, and in particular, in distributed computing (e.g., socket, remote procedure call,
etc.).

On the other hand, we admit that reasoning about the protocol at a high abstraction level
has no real advantage in protocol veri�cation. Indeed, by abstracting away some details, we
reduce the class of attacks that our logic can discover. In particular, aws that are related to
the incorrect usage of cryptographic primitives remain hidden. We do not consider this to be
a disadvantage of our approach, since our primary goal is not protocol veri�cation.

We are not the �rst who use channel abstractions to represent cryptographic primitives.
�-calculus and join-calculus channel primitives are used in a similar manner in [AG98] and
[AFG98], respectively. However, those approaches are not based on a logic, but on process
algebrae. In [BM94b, BM94a], channel abstractions are used to design and analyze key
transport protocols, but again not within a logic. A logic that uses channels is introduced
in [LABW92, WABL94] although in the somewhat di�erent context of distributed operating
systems. In addition, unlike our logic, that logic does not distinguish between past and
present, and therefore, it cannot be used to discover vulnerabilities to replay attacks. On the
other hand, the logic described in [LABW92, WABL94] deals with some other issues (e.g.,
roles and delegation), which are not addressed in our logic. Finally, we must also mention
[ABKL92], in which a logic very similar to ours is described. In fact, that logic provided some
inspiration in the development of our logic. The di�erence is that in [ABKL92], both channels
and cryptographic primitives are used, and channels model only physical links. By abstracting
away cryptographic primitives and using the channel abstraction in a more uniform way, our
logic is more elegant and simpler.

Since our synthesis rules are based on our logic, they also involve channel formulae. As
a consequence, the abstract protocol obtained in the synthesis process is described in terms
of channels. The replacement of the channels with concrete cryptographic primitives (or
physical links) (i.e., the implementation or re�nement of the abstract protocol) is only partially
supported by our method. Namely, we do not provide formal translation rules from channels
to cryptographic primitives, but a set of required properties for the channels (in terms of beliefs
held by various principals) are derived as assumptions during the synthesis. We believe that
in most of the cases, this gives su�cient guidance to choose the appropriate implementation.

A formal treatment of secure implementation of channel abstractions is described in
[AFG98] in the context of the join-calculus and the sjoin-calculus. In [Rue91] and [TB95],
production rules are given for some types of channels that describe how to establish them. A
similar approach is presented in [MS94]. In addition, a detailed treatment of channels that
are implemented by encryption can be found in [LABW92].

10 Chapter 1: A logic of channels

Although replacing the channels with the appropriate cryptographic primitives is quite
straightforward, we cannot exclude the possibility of introducing some aws in the protocol
during channel replacement. For this reason, we require that once the channels are replaced
with their implementations, the protocol is veri�ed with another tool in which cryptographic
primitives are explicitly represented.

In other words, our approach can be viewed as part of a more general design principle
known as top-down design. According to this design principle, the protocol designer should
�rst use a relatively abstract model to specify, construct, and verify the protocol. If the
protocol is correct at that level, then the designer can switch to a less abstract (more detailed)
model, which re�nes the previous one. This means that the protocol should be translated into
the notation of the less abstract model, and analyzed with the tools available at that level.
Through the repeated execution of this process, a detailed description or even the actual
protocol code can be produced.

The top-down approach bridges the abstraction gap between the informal protocol speci-
�cation (e.g., plain English) and the �nal implementation (e.g., C source code) by introducing
several smaller steps. We assume that it is easier at each level to produce a correct implemen-
tation of the previous level than to produce a �nal implementation of the protocol directly
from the informal speci�cation. It also makes it easier to change the implementation later
on (which might be necessary because of modi�cations to the original design assumptions),
because there is a chance that the protocol does not have to be completely redesigned, but it
might be su�cient to propagate the changes through the di�erent levels.

We believe that our logic of channels and the corresponding synthesis rules provide an
abstract modeling tool that can be used at the beginning of the design process. However,
according to the top-down approach, more detailed models and the corresponding analysis
tools should also be used in subsequent phases of the design.

The rest of this chapter is organized as follows: In Section 1.2, we describe our logic.
In section 1.3, we give some examples for channels. Based on the logic, in Section 1.4, we
construct protocol synthesis rules. Finally, in Section 1.5, we give an overview of the formal
models proposed for key transport protocols.

1.2 The logic

Our logic is a modal logic [HC96] of belief, similar to the well-known BAN logic [BAN90b,
BAN90a]. It consists of a language, a set of axioms, and a few inference rules. The language
is used to describe the protocol, its goals, and the assumptions made. The inference rules are
used to derive statements about the protocol (more precisely, about the state of the protocol
participants) from the axioms, the assumptions, and the protocol itself. The novelty of our
logic is the use of channels. We commence the presentation of the logic by the introduction
of this novel notion.

1.2.1 Channels

A channel is an abstraction that we mainly use to represent various cryptographic primitives,
such as encryption and digital signature, in a uniform way. The main advantage of using
channels is that we can reason about the protocol at a rather high abstraction level. We
believe that this is a useful feature when designing protocols (although perhaps less interesting
when verifying them), because it allows us to determine the required properties of a channel

1.2 The logic 11

�rst, and to decide about its implementation afterwards (possibly taking into consideration
additional design criteria).

We could characterize a channel C with two sets: the reader set r(C) and the writer set
w(C), where r(C) contains those principals that can read from C, and w(C) contains those
principals that can write in C. However, instead of the writer set, we will use another notion:
the source set s(C), which contains those principals that could be the source of a message that
arrived on C. Clearly, s(C) � w(C), and intuitively, w(C) n s(C) contains those principals
that could write in C but that are trusted not to do so. There is a good reason for focusing
on the source set instead of the writer set, which we now explain.

Suppose that a principal P received a message X on a channel C. Ultimately, P 's goal is
to determine who could have sent X. It is, therefore, more important for P to know s(C),
than to know w(C). Suppose, for instance, that C is implemented by encryption with a key
that has been generated and distributed by a trusted principal S (e.g., a key server). This
means that S may be able to write in C, but it is trusted for never doing so. Therefore, when
P receives a message on C, it should not attribute the message to S.

The following example may shed more light on the di�erence between the writer set and
the source set of a channel. Let us consider a slightly modi�ed version of the Wide-mouthed-
frog protocol described in [BAN90a]:

Modi�ed Wide-mouthed-frog protocol

(msg1) A! S : A; B
(msg2) S ! A : fTS ; B; KABgKAS

(msg3) S ! B : fTS ; A; KABgKBS

The protocol is described as follows: When A wants to establish a session key with B, it
sends a request to the key server S. The request simply contains the name of A and B in
clear (msg1). When S receives the request, it generates a session key KAB and sends it to A
and B together with a timestamp TS and the name of the other party. The message (msg2)
intended for A is encrypted with the key KAS , which is a long-term key shared by A and S.
Similarly, the message (msg3) intended for B is encrypted with KBS , which is a long-term
key shared by B and S. When A and B receive their messages, they decrypt them and verify
the timestamp. If the messages are timely, then both A and B accept KAB as a session key
to be used with the other party.

We want to model the encryption with KBS in (msg3) as a channel C. It is clear that
r(C) = w(C) = fB;Sg, since both B and S can encrypt and decrypt with KBS . However,
notice that only the server encrypts messages with the long-term keys. In other words, when
B receives (msg3), it knows that (1) only S and B itself can generate such a message, and
(2) B itself actually never generates such a message. Therefore, B can safely conclude that
only S can be the source of (msg3). This means that s(C) = fSg 6= w(C).

Let us consider now the original Wide-mouthed-frog protocol:

Wide-mouthed-frog protocol

(msg1) A! S : A; fTA; B; KABgKAS

(msg2) S ! B : fTS ; A; KABgKBS

12 Chapter 1: A logic of channels

In this protocol, the session key KAB is not generated by the server, but the initiator
party A. The server is used only to relay the key received from A to B. Otherwise, the
messages are almost identical to those of the previous protocol. If we want to model again
the encryption withKBS in (msg2) as a channel C, then we have that r(C) = w(C) = fB;Sg.
In addition, s(C) = fB;Sg too, because both B and S use KBS to encrypt messages for each
other (B uses KBS to send messages of the �rst type to S when it wants to setup a session
key with someone), and the messages from S to B are indistinguishable from the messages
from B to S. This means that when B receives (msg2) in the Wide-mouthed-frog protocol,
it cannot determine the source of the message: it could have been generated by B itself, sent
to S, and intercepted and reected back to B by an attacker (within the validity interval of
the timestamp). Of course, the attacker cannot �nd out the session key, or cannot coerce B
to accept a compromised session key, and so the attack (if we can call this an attack at all)
is not a very useful one. Our goal was simply to give an insight into the di�erence between
the source set and the writer set of a channel.

As for the reader set of a channel C, it will represent those principals that can recognize
the usage of C. This means that when a principal in r(C) receives a message on C, it is able
to determine that it has received a message on C (and not on another channel). We make
this assumption to keep our model simple. Real implementations of channels can support this
feature, for instance, by putting enough redundancy into the messages and using references
to channels (e.g., key identi�ers) as hints.

Another important characteristic of a channel is timeliness. A channel C is said to be
timely (denoted by \(C)) if whenever a message arrives via C, we can conclude that the
message has been recently sent by someone in s(C). Timely channels are typically imple-
mented by using freshly established session keys or including freshly generated nonces in
cryptographically protected messages.

Now we turn our attention to the logic itself. Our presentation will follow the style of the
Abadi-Tuttle logic described in [AT91].

1.2.2 Language

Like in [BAN90a], we want that in our model, principals can send logical formulae to each
other in messages. In other words, we want to allow idealized messages. A message that
contains logical formulae is called idealized, because, unlike a pure bit string representation,
it explicitly describes the intended meaning of the message, and does not leave any ambiguities
about its interpretation.

The need for idealization in BAN logic was criticized as being the source of potential
errors in protocol veri�cation (see e.g., [BM93]). This may indeed be true. The problem is
that the person who veri�es the protocol and translates the original protocol messages into
idealized messages may not be the same person who designed the protocol, and so, she may
misinterpret some messages. While idealization may be a drawback in protocol veri�cation,
we believe that it is extremely useful in protocol design, since the designer { at least in the
�rst stage of the design { should not be concerned with bit strings, but should focus on the
meaning of the messages, which can conveniently be expressed with logical formulae. Of
course, the idealized messages then need to be translated into bit strings, but fortunately,
this translation appears to be easier than the reverse operation.

In this subsection, we de�ne a languageM in which idealized messages can be written. We
distinguish a sublanguage F ofM, which is called the (sub)language of formulae. Intuitively,

1.2 The logic 13

F contains those sentences of M to which we can assign a truth value, whileMnF contains
sentences, to which it does not make sense to assign a truth value (e.g., principal names).
We will de�ne M and F by mutual induction. However, before doing so, we must introduce
some more de�nitions:

� Primitive terms: Let T be a set of primitive terms. Primitive terms are constant
symbols that represent principal names, channels, keys, and things like nonces and
other data items that might be used in protocols.

� Principal lists: Let P 0 be the language of principal lists de�ned over T by induction as
follows:

{ P is a sentence in P 0 if P 2 T is a principal name;

{ �0; P is a sentence in P 0 if �0 is a sentence in P 0 and P 2 T is a principal name
such that �0 does not contain P .

� Principal sets: Let P be the language of principal sets de�ned over P 0 as follows: f�0g
is a sentence in P if �0 is a sentence in P 0. This just means, that we will write a set of
principals as a comma separated list of principal names in curly braces.

Now, we are ready to de�ne M and F . M is the smallest language that satis�es the
following conditions:

� X is a sentence in M if X 2 T (i.e., X is a primitive term);

� X;Y is a sentence in M if X and Y are sentences in M;

� C(X) is a sentence in M if X is a sentence in M and C 2 T is a channel;

� � is a sentence in M if � is a sentence in F ,

and F is the smallest language that satis�es the following conditions:

� (r(C) = �), (P 2 r(C)), (s(C) = �), and (P 2 s(C)) are sentences in F if C 2 T is a
channel, P 2 T is a principal name, and � is a sentence in P;

� (K � �) is a sentence in F if K 2 T is a key and � is a sentence in P;

� (P j� �) is a sentence in F if � is a sentence in F and P 2 T is a principal name;

� (P �X), (P j� X), and (P jj� X) are sentences in F if X is a sentence inM and P 2 T
is a principal name;

�](X) is a sentence in F if X is a sentence in M;

� \(C) is a sentence in F if C 2 T is a channel;

� �nally, :�, (� ^), (� _), (�)), and (�,) are sentences in F if � and are
sentences in F .

The intuitive meaning of the main constructs of the language is the following:

� X;Y means a compound message constructed from two (sub)messages X and Y by
concatenation.

14 Chapter 1: A logic of channels

� C(X) denotes message X in channel C.

� (r(C) = �) represents the statement that the reader set of channel C is �. (P 2 r(C))
represents the statement that principal P is in the reader set of channel C. (s(C) = �)
and (P 2 s(C)) represent similar statements for the source set of channel C.

� (K � �) represents the statement that the key K is a session key for the set � of
principals. One may ask the question: Why do we have statements that involve keys,
when the purpose of introducing channels was to eliminate them? In principle, we
could replace a statement about a session key K with statements about channels, but
the problem is that the protocol usually does not specify what kind of channels are
supposed to be created from K. In other words, how the session key is used once it has
been established depends on the application, and it is out of the scope of the protocol
itself. Therefore, we need a formula that describes the general statement that a key is
a session key for a set of principals without referring to any channels that may be build
from K later.

� (P j� �) represents the statement that principal P believes that the formula � is true.
This does not mean that � is really true, but P acts as though.

� (P � X) means that principal P sees message X. This is possible, for instance, if
someone has sent X or a message that contains X via a channel from which P can read.

� (P � C(X)) means that principal P received message X on channel C. However, if
P cannot read from C, then P cannot recognize that this is message X in channel C.
Nevertheless, if C is not a physical channel, then we allow P to store C(X) and to
repeat it on another channel.

� (P j� X) means that P once said X. In other words, P at some time sent a message
that contained X. It is not known exactly when the message was sent.

� (P jj� X) means that P has recently said X. More precisely, we distinguish two epochs:
present and past. Every event that happened after the start of the current protocol run
will be considered as an event happened in the present. (P jj� X) means that P uttered
X in the present epoch (i.e., in the current protocol run).

�](X) means that X is fresh (i.e., it has never been said before the present epoch). This
is usually true for messages that contain nonces.

� \(C) means that channel C is timely. As we mentioned before, if a channel is timely,
then whenever a message arrives on it, we can conclude that it has been said recently
(in the present epoch).

� :�, (� ^), (� _), (�)), and (�,) represent the usual connectives (negation,
`and' operation, `or' operation, implication, and equivalence) from propositional logic.

We can demonstrate the expressive power of our language by showing how certain aspects
of trust can be represented in it. For instance, the belief of principal P in the honesty of
principal Q is described by the following formula:

P j� ((Q jj� �)) (Q j� �))

1.2 The logic 15

This means that P believes that if Q has recently said �, then Q believes �. In other words,
P believes that \Q says only what it believes". Note that P does not necessarily believe that
what Q says is true; it only believes that Q believes it is true. However, it is possible that P
does not share all of Q's beliefs.

Another aspect of trust, which we call competency, can be expressed by the following
formula:

P j� ((Q j� �)) �)

This means that P believes that if Q believes �, then � is true. If we combine these two
formulae, then we obtain the following:

P j� ((Q jj� �)) �)

This means that P believes that if Q says �, then � is true. In other words, P believes \what
Q says is true".

In fact, in the above formulae � is meant to be universally quanti�ed, and we could make
this explicit by writing, for instance:

P j� 8� : ((Q jj� �)) �)

While in principle, it is necessary to make the quanti�ers explicit in order to avoid ambi-
guities, in practice, this need arises only in complex statements. In the simple statements that
we will use in this thesis, it will be clear from the context if we mean universal quanti�cation.
For this reason, we leave quanti�ers implicit.

We can restrict the scope of the above beliefs by giving more details about �. P can
believe, for instance, that Q is competent only in attributing messages to R. We can express
this with the following formula:

P j� ((Q j� (R j� X))) (R j� X))

At the same time, P may not believe, for instance, that Q is competent in recognizing
freshness, which means that

P j� ((Q j�](X)))](X))

does not necessarily hold.

1.2.3 Axioms

The axioms are the heart of the logic. They capture the basic properties of channels, com-
munication, time, and the concept of belief at an abstract level. In fact, the set of axioms
describes a model, in which we can reason about the properties of key transport protocols.

The axioms of our logic are all the instances of tautologies of propositional logic, and the
following axiom schemas:

(AX1) P � C(X) ^ P 2 r(C)) P j� (P � C(X))

(AX2) P � C(X) ^ P 2 r(C)) P �X

16 Chapter 1: A logic of channels

(AX3) P �X;Y) P �X and P �X;Y) P � Y

(AX4) P � C(X) ^ s(C) = S)
W
Q2S(Q j� X)

(AX5) P � C(X) ^ s(C) = S ^ \(C))
W
Q2S(Q jj� X)

(AX6) Q j� X;Y) Q j� X and Q j� X;Y) Q j� Y

(AX7) Q jj� X;Y) Q jj� X and Q jj� X;Y) Q jj� Y

(AX8) Q j� X ^](X)) Q jj� X

(AX9)](X))](X;Y) and](X))](Y ;X)

(AX10) P j� � ^ P j� (�))) P j�

(AX11) P j� �) P j� (P j� �)

(AX12) P j� � ^ P j� , P j� (� ^)

The meaning of most of the axioms should be clear; nevertheless, we provide explanations
hereafter. Axioms (AX1{AX3) are concerned with seeing. (AX1) and (AX2) states that if a
principal P receives a message X via a channel C, and P can read from C, then P recognizes
that it received X via C, and it sees X. (AX3) says that if a principal sees a compound
message, then it sees also parts of the message.

Axioms (AX4{AX5) are concerned with source association. (AX4) states that if a principal
P sees C(X), where the source set of C is S, then someone from S must have said X. (AX5)
states that if, in addition, C is timely, then someone from S must have recently said X.

Axioms (AX6{AX7) are concerned with saying. (AX6) states that if a principal said a
(compound) message, then it said parts of the message as well. Similarly, (AX7) states that
if a principal has recently said a (compound) message, then it has recently said parts of the
message as well.

Axioms (AX8{AX9) deal with message freshness. (AX8) states that a fresh message must
have been said recently, while (AX9) states that if part of a compound message is fresh, then
the whole message is fresh.

Finally, Axioms (AX10{AX12) are concerned with the properties of the belief operator.
(AX10) states that a principal believes all logical consequences of its beliefs. (AX11) states
that a principal can tell what it believes. (AX12) states that believing � and believing is
equivalent to believing � ^ .

1.2.4 Inference rules

The inference rules describe how to derive new formulae from already available formulae such
as axioms, assumptions, or previously derived formulae. The main inference rule of our logic
is modus ponens:

�; �)

(MP)

This should be interpreted in the usual way: If both � and �) are available, then we also
have .

1.2 The logic 17

In addition to the rule (MP), we have another inference rule that we call necessitation:

` �

` P j� �
(Nec)

This rule should be interpreted in the following way: If � is a theorem (denoted by the `
symbol in front of �), then we have P j� �, and we consider it as a theorem as well. A formula
� is a theorem if there exists a sequence of formulae �1; �2; : : : ; �n such that �n = � and for
each �i of the sequence at least one of the following holds:

� �i is an axiom of the logic;

� �i can be obtained from some �j and �k that occur earlier in the sequence (i.e., j; k < i)
via the rule (MP) (i.e., �k = (�j) �i));

� �i can be obtained from some �j that occurs earlier in the sequence (i.e., j < i) via the
rule (Nec) (i.e., �i = (P j� �j) for some principal P).

A formula is thus a theorem if it can be derived only from the axioms using the inference
rules (MP) and (Nec). However, we are mainly interested in the formulae that can be derived
from a set of other formulae that represent the assumptions of a protocol and the protocol
itself. Therefore, we introduce the derivable relation as follows: A formula � is derivable from
a set of formulae �, denoted by � ` � if there exists a sequence of formulae �1; �2; : : : ; �n
such that �n = � and for each �i of the sequence at least one of the following holds:

� �i is a theorem (i.e., �i is an axiom or it can be derived from axioms only via (MP) and
(Nec));

� �i 2 �;

� �i can be obtained from some �j and �k that occur earlier in the sequence (i.e., j; k < i)
via the rule (MP) (i.e., �k = (�j) �i)).

Finally, we introduce the following inference rule, which we call conjunction:

�;

� ^
(Con)

The interpretation of (Con) is straightforward: If both � and are available, then we also
have � ^ . Note that if � and are available, then using the axiom �) () (� ^))
(which is a tautology), we can obtain � ^ via two applications of the rule (MP). Therefore,
strictly speaking, the rule (Con) is not necessary. We introduced it for convenience, and to
make our proofs more intuitive.

In addition to the inference rules, we allow any derived formula or subformula of a derived
formula to be replaced with an equivalent formula or subformula. For instance, (�)) can
be replaced with (:� _).

18 Chapter 1: A logic of channels

1.2.5 Using the logic

One can use our logic of channels for analyzing existing key transport protocols. For this,
the protocol description �rst have to be translated into our notation. This usually means
that all the cryptographic operations, such as encryption and digital signature, have to be
eliminated from the description, and must be replaced by channels. It is also required to
interpret some messages, and to extend or replace certain parts of them by logical formulae
when it is necessary to capture implicit assumptions behind protocol steps. This process is
called idealization [BAN90a]. Finally, the usual P ! Q : X notation, which is used to
indicate that P sends message X to Q, must be replaced by the formula Q� ~X , where ~X is
the idealized version of X. In short, if the original protocol description has the form:

P ! Q : X1

Q! P : X2

. . .

then the translation looks like this:

Q� ~X1

P � ~X2

. . .

Note that, for the purpose of the analysis, the protocol is translated into a set of formulae.
The goal of the analysis is to prove that the formulae that represent the goal of the

protocol can be derived from the assumptions and the protocol itself using the axioms and
the inference rules of the logic. In other words, the goal of the analysis is to show that for
every 2 �, �[� ` holds, where � is the set of assumptions, � is the set of formulae that
represents the protocol, and � is the set of goals.

We consider that the protocol is correct if such a proof exists. The inability of constructing
a proof indicates that the protocol may have aws. Although, in this case, we cannot generate
a complete attack scenario with our logic, the analysis reveals the possible weakness in the
protocol, and usually we can construct an attack afterwards easily.

1.2.6 Limitations of the logic

We should mention that our logic has certain limitations. In order to use the logic in an
appropriate way, it is important to understand these limitations. For this reason, we discuss
them briey in this section. Before starting, we note that these limitations are not unique
to our logic; all the logics of the BAN family share them. Nevertheless, these logics are
considered to be useful in protocol veri�cation.

The �rst limitation is that the logic is based on a simple model of time, in which only two
epochs are distinguished: past and present. Everything that happened before the current run
of the protocol under examination is considered to be happened in the past; and everything
that happened after the start of the current protocol run is considered to be happened in
the present. This simpli�cation in the model makes the logic itself simple. However, it also
limits the class of attacks which can be described with the logic. More precisely, the logic is
directed at classic replays [Syv94] (i.e., replays of messages that are sent before the current run
of the protocol), but strictly speaking, it does not address interleaving attacks (i.e., attacks

1.3 Examples for channels 19

that involve replays of messages from multiple simultaneous runs of the same protocol). The
reason is that according to the simple model of time, the messages that are replayed in an
interleaving attack may indeed be generated in the current epoch. This does not mean that
the logic will never discover interleaving attacks, since such an attack may exploit a weakness
in the protocol that can be uncovered by using the logic. The point is that there are no
speci�c features of the logic that address such attacks.

The second limitation is that the logic cannot be used to reason about secrecy. We
cannot explicitly prove, for instance, that an attacker does not know the session key that
is established in a protocol. Usually, it is fairly easy to check if the protocol leaks some
secret out in an obvious way (i.e., to check whether the protocol is resistant against passive
eavesdropping). It is more di�cult, however, to prove that the protocol keeps everything that
it should secret if we admit active attackers. Our logic is not intended to be used for this
purpose; secrecy properties of the protocol might be veri�ed by other tools (e.g., the tools
described in [KMM94]). This does not mean that the logic will never discover a subtle release
of some secret, but again, there are no speci�c features in the logic that address this issue.

Considering these limitations, it is clear that our logic should not be used in isolation, but
in conjunction with other tools that address the above mentioned issues.

1.3 Examples for channels

In this section, we give some examples how well known cryptographic primitives can be
modeled as channels. These examples also suggest how channels can be implemented with
cryptographic primitives.

Digital signatures

Sending a message together with a digital signature of principal P on the message can always
be modeled as a channel C such that r(C) =
 and w(C) = s(C) = fPg, where
 is the set
of all principals in the system.

Symmetric-key encryption

In general, encryption with a key KPQ shared by two principals P and Q can be modeled
as a channel C such that r(C) = w(C) = s(C) = fP;Qg. Such a channel is not very
useful, because no single source can be associated to the messages that are received on it. In
particular, when P receives a message m on C, it does not know whether m was sent by Q
or P itself.

However, if P and Q can recognize their own messages from the structure of the message
or the content of certain �elds, then the encryption with KPQ together with the features
that allow P and Q to recognize their own messages can be modeled as two distinct channels
C 0 and C 00 such that r(C 0) = w(C 0) = r(C 00) = w(C 00) = fP;Qg and s(C 0) = fPg and
s(C 00) = fQg.

Let us suppose, for instance, that every message that P andQ send to each other encrypted
with KPQ contains a direction bit. More precisely, when P wants to send a message m to
Q, then it sends fdP!Q;mgKPQ

, and when Q wants to send a message m0 to P , then it
sends fdQ!P ;m

0gKPQ
, where dP!Q is a bit that indicates that this is a message from P to

Q and dQ!P is a bit that indicates that this is a message from Q to P . We could then

20 Chapter 1: A logic of channels

model fdP!Q;mgKPQ
and fdQ!P ;m

0gKPQ
as C 0(m) and C 00(m0), where s(C 0) = fPg and

s(C 00) = fQg, or at least Q j� (s(C 0) = fPg) and P j� (s(C 00) = fQg).
As an other example, let us consider the following message fk; P;Q;NgKPQ

, and suppose
that P sends this message in some protocol to Q in order to setup a new session key k
between P and Q. N may denote a nonce (e.g., a time-stamp). Q may send a similar message
fk0; Q; P;N 0gKPQ

to P in another run of the same protocol where the roles of P and Q are
swapped. Note that in this example, the principal names in the second and the third �elds
of the messages may play two roles: �rst, their order (P;Q or Q;P) determines the direction
of the message; second, they may also be intended to indicate who are associated with the
new key k (or k0). If both roles were intended by the protocol design1, then we cannot omit
the names when replacing encryption with channels as we did in the previous example with
the direction bits. This means, that we can model fk; P;Q;NgKPQ

and fk0; Q; P;N 0gKPQ

as C 0(k; P;Q;N) and C 00(k0; P;Q;N 0) where s(C 0) = fPg and s(C 00) = fQg, or at least
Q j� (s(C 0) = fPg) and P j� (s(C 00) = fQg).

Asymmetric-key encryption

In general, encryption with the public key of principal P can be modeled as a channel C such
that r(C) = fPg and w(C) = s(C) =
. Similarly to pure symmetric-key encryption, this
channel is not very useful, because no single source can be associated to the messages that
are received on it. Indeed, in this case, any principal of the system can be the source of those
messages.

However, if the message that is encrypted with the public key of P contains a secret
that P can uniquely associate to another principal Q and P itself, then we can model the
encryption as a channel C 0 such that r(C 0) = fPg, w(C 0) = fP;Qg and s(C 0) = fQg or at
least P j� (s(C 0) = fQg).

It is important that the feature of the message that identi�es Q is also associated to
P . Suppose for instance that the message contains the preimage x of the hash value h(x)
previously published by Q in an authentic way. P may believe that if it receives a message
that contains x, then Q revealed x, but this is not enough to model fx;mgKP

as C 0(m) where
s(C 0) = fQg. The reason is that Q may innocently reveal x to another principal, say R, in a
message fx;m0gKR

, and R may send fx;mgKP
to P . On the other hand, if P and Q share a

secret p, then we can model fp;mgKP
as C 0(m) where s(C 0) = fQg, because it is reasonable

to assume that Q never encrypts p with a public key other than the public key of P with
whom it shares p.

Message authentication codes

Let us assume that two principals P and Q share a key KPQ. They can use this key to protect
the integrity of their communication by computing message authentication codes (MAC) on
their messages, and sending those messages together with their MAC to each other. How can
we model this scheme with channels?

Since the messages are sent in clear, one may want to model the above scheme as a channel
C such that r(C) =
. The problem is that in this case anybody can recognize messages
that are sent on C (i.e., Axiom (AX1) can be applied for any principal). This does not

1We note that such overloading should be avoided and the role of each part of a message should be speci�ed
unambiguously.

1.4 Synthesis rules 21

reect the reality, since principals other than P and Q should not be able to recognize these
messages (i.e., they should not be able to associate any source to them). If we require that
r(C) = fP;Qg, then we have another problem: only P and Q can see the content of the
messages that are sent on C (i.e., we cannot apply Axiom (AX2) for principals other than P
and Q). This does not reect the reality either.

A solution is to model the above scheme with two distinct channels C1 and C2 such that
r(C1) = w(C1) = s(C1) =
 and r(C2) = w(C2) = s(C2) = fP;Qg, and to assume that P
and Q send their messages on both channels. Then, anybody can see the messages on C1 but
no source can be associated to these messages. At the same time, only P and Q can read
from C2, and thus, only they can recognize the messages.

Similarly to symmetric-key encryption, if the messages from P to Q can be distinguished
from the messages from Q to P , then we can model this with two channels C 02 and C

00
2 such

that s(C 02) = fPg and s(C 002) = fQg.

1.4 Synthesis rules

As we mentioned earlier, our goal is protocol construction rather than protocol veri�cation.
Although as a conceptual model, the logic described above can be used in protocol construc-
tion as it is, we want to further enhance it to obtain a more handy tool. Our main idea is to
reverse some implications that can easily be derived from the axioms of the logic in order to
obtain synthesis rules. These rules can then be used to construct protocols in a systematic
way.

In order to illustrate the idea, let us assume that the following two formulae have been
derived in some proof:

P j� (P �C(X)) (1.1)

P j� (s(C) = fQg) (1.2)

Then, using the inference rule (Con), we can derive

P j� (P � C(X)) ^ P j� (s(C) = fQg) (1.3)

From (1.3) and the appropriate instance of Axiom (AX12) we obtain by rule (MP) that

P j� (P � C(X) ^ s(C) = fQg) (1.4)

In addition, from the appropriate instance of Axiom (AX4) and rule (Nec), we have

P j� (P � C(X) ^ s(C) = fQg) Q j� X) (1.5)

Note that we could use (Nec) because (AX4) is an axiom, and so it is a theorem. Now, we
can apply rule (Con) for (1.4) and (1.5), and from the resulting formula and the appropriate
instance of Axiom (AX10) we obtain by rule (MP) that

P j� (Q j� X) (1.6)

We have just proved that given (1.1) and (1.2), one can always derive (1.6). This means
that if (1.6) represented a goal during protocol construction, then it could be reached by
reaching the goals (1.1) and (1.2). We record this fact in the following synthesis rule:

P j� (Q j� X)

�
P j� (P �C(X))
P j� (s(C) = fQg)

22 Chapter 1: A logic of channels

In general, synthesis rules have the following form:

8>>><
>>>:

�1
�2
...
�n

and they are interpreted as follows: If one encounters the goal during the construction of
a protocol, then one can replace with the new goals �1, �2, . . . , �n.

A (not necessarily complete) set of proposed synthesis rules can be found in Appendix A.
Most of the rules presented there can be derived from the axioms of our logic in a similar way
as we have illustrated above. There are, however, three synthesis rules (*S13), (*S14) and
(*S15) that cannot be derived from the axioms. Below, we justify them by informal reasoning
based on intuition. Their usefulness will be proved through the example of Chapter 2.

The synthesis process often leads to (sub)goals of the form P j� (Q j� �). Clearly,
we would not like to design a protocol, the correctness of which depends on false beliefs.
Therefore, if P j� (Q j� �) is required, then we want that Q j� � holds. Note however, that
Q j� � is not su�cient to reach P j� (Q j� �), and therefore, the goal Q j� � cannot simply
replace the goal P j� (Q j� �) during protocol synthesis. Instead, it should be considered as
an additional goal to be reached. This leads to the following synthesis rule:

P j� (Q j� �)

�
P j� (Q j� �)
Q j� �

Similarly, when we have a (sub)goal of the form P j� (Q jj� X) or P j� (Q j� X), we
want to ensure that Q was indeed able to say X. Suppose, for instance, that X is a nonce
generated by P . In order for Q to be able to say X, it must �rst see X. But again, Q�X
is not su�cient for P j� (Q jj� X) or P j� (Q j� X), and thus, the goal Q�X cannot simply
replace them. These observations lead to the following two synthesis rules:

P j� (Q jj� X)

8>><
>>:

P j� (Q jj� X)
Q�X1

Q�X2

: : :

and

P j� (Q j� X)

8>><
>>:

P j� (Q j� X)
Q�X1

Q�X2

: : :

where X1;X2; : : : denote those parts of message X that cannot be computed by Q.

1.4.1 Using the synthesis rules

The intended purpose of the synthesis rules is to directly help the construction of robust
protocols. In fact, they allow the protocol designer to construct a protocol in a systematic
way, starting from the desired goals and possibly some initial assumptions that the design
must respect.

1.5 Related work on formal models for key transport protocols 23

The synthesis technique is the following: Given a (sub)goal G, one has to check �rst if
any of the rules (*S13), (*S14) or (*S15) can be applied to G. If one of them can be applied,
and the application results in new goals that have not been considered so far, then it must
be applied. Otherwise, one can choose and apply any of the other synthesis rules that can be
applied. When a synthesis rule is applied, G must be replaced with the new goals speci�ed in
the applied rule. By the repetition of the above process, one constantly generates new goals.
The synthesis is �nished, when a set of goals is reached such that each goal in the set can
either be considered as an assumption or as a message sending step. We will illustrate this in
detail through an example in Chapter 2.

Note that it is possible that several synthesis rules could be used to reach a given goal.
Our method gives freedom to the designer to choose from these rules. Therefore, we still rely
on human creativity. However, once a rule has been selected and applied, the new goals to
be reached are explicitly listed for the designer. This reduces the chance that she overlooks
something that she should not.

1.5 Related work on formal models for key transport protocols

In principle, formal models can be used in the speci�cation, in the construction, and in the
veri�cation of key transport protocols. So far, the research community has mainly focused
on the veri�cation aspect. There is also some notable work on formal speci�cation; however,
using formal methods for protocol construction has received much less attention. In this
section, we give an overview of the most signi�cant results in the above mentioned three
areas. Other surveys can be found in [RH93, Mea95, GNG97].

1.5.1 Speci�cation

The design of a protocol should begin with the speci�cation of the requirements that the
designer wants the protocol to satisfy. This means that the designer should have a clear
idea of what she wants the protocol to achieve, or in other words, what the correctness of
the protocol means. However, expressing the correctness criteria of a protocol is not trivial.
Early work in this �eld focused on secrecy as the main correctness criterion (i.e., ensuring that
an attacker cannot learn the session key). Later, authenticity was realized to be an equally
important criterion. The problem has been approached from several di�erent angles, some
with the aim of developing a set of criteria that can be applied to protocols in general, and
others with the aim of developing ways to express criteria for a number of di�erent types of
protocols.

In [DvOW92], Di�e et. al. present informal requirements for the correctness of an
authenticated key transport protocol. Briey, they say that session keys should remain secret
and that protocol runs should match. The latter means that if A and B run a protocol
then A's record of messages received from B should match B's record of messages sent to
A, and vice versa. This notion has been formalized by Bellare and Rogaway in [BR93] and
[BR95], using a model based on communicating probabilistic Turing machines. The notion of
matching runs has also been formalized by Syverson in his extension of the Abadi-Tuttle logic
with temporal logic [Syv93]. In [WL93], Woo and Lam take a similar approach to de�ning the
correctness of a protocol. They de�ne a semantic model that is based on two basic security
properties, correspondence and secrecy. The former requires that certain events can take place
only if others have taken place previously. This is very similar to the notion of matching runs,

24 Chapter 1: A logic of channels

but it is broader, since the events do not have to be the sending and the receiving of the same
message.

Another approach to specifying requirements for authenticated key transport protocols is
presented in the requirement language developed for the NRL Protocol Analyzer [SM93]. The
requirements speci�ed in this language have a form similar to the notion of correspondence in
[WL93] in the sense that the requirements are given on sequences of events. The di�erence is
that, instead of giving general requirements for correspondence that applies to all protocols,
the user of the language can specify requirements for protocols of a particular class. Thus,
requirements can vary according to the intended function of the protocol. Furthermore, the
action, by which the intruder learns a word (a data item) is modeled as an event too, thus,
secrecy does not need to be de�ned as a separate part of the model. In [SM93], Syverson and
Meadows give a set of requirements for various kinds of message authentication protocols,
while in [SM95], they give requirements for key transport protocols.

1.5.2 Construction

Most of the existing work in the application of formal methods to cryptographic protocols
has been focused on the formal veri�cation of existing protocols. However, it would be more
e�ective to use these methods directly in the construction of the protocol, since this would
result in robust protocols in the �rst place, and thus, the expense of the re-design (correction
of errors) could be reduced signi�cantly. Although the use of formal methods for protocol
construction seems to be a natural application of the technology, not much research has been
done in this particular area.

One direction is to develop speci�c protocol construction methodologies so that the result-
ing protocols are more amenable to analysis by formal methods. This approach is followed
by Heintze and Tygar in [HT96]. They develop a modular approach to design cryptographic
protocols. They design a family of tools for reasoning about protocol security, and prove a
composition theorem that allows them to state su�cient conditions on two secure protocols
such that they may be combined to form a new secure protocol. They give counterexamples
to show that when the conditions are not met, the new protocol may not be secure.

Another example of the same approach is described in [GS95], where Gong and Syver-
son present a new methodology to facilitate the design and analysis of secure key transport
protocols. They suggest to restrict protocol designs to well de�ned practices, instead of ever
increasing the complexity of protocol security analysis due to the endless variations in pro-
tocol construction. In particular, they introduce a novel notion of a fail-stop protocol, which
automatically halts in response to any active attack, thus reducing protocol security analysis
to that of passive attacks only. Excluding the possibility of an active attack makes the vali-
dation of the paradoxical secrecy assumption in BAN-like logics easier, and thus, puts modal
logic based analysis methods (see next subsection) on a stronger footing. Gong and Syverson
suggest types of protocols that are fail-stop, however, these may not be practical for some
applications. In [KS96], Keromytis and Smith present a generic method for creating e�cient
fail-stop protocols.

A similar approach is proposed by Boyd and Mao in [BM94b, BM94a]. They de�ne
a methodology for designing key transport protocols in a restricted way by allowing only
protocol messages that contain a small number of elements, which have a well de�ned purpose
and meaning. They argue that the protocols designed in this way must be correct in the
sense that a speci�ed security criterion will not be violated if the protocol participants act

1.5 Related work on formal models for key transport protocols 25

correctly. The protocols are de�ned at an abstract level, where cryptographic operations are
represented as channels. To some extent this is similar to the way in which we use the channel
abstraction, however, Boyd and Mao do not use the notion of channel within the context of
a logic. Actually, their approach is not based on any formal logic. The abstract protocols
can be made concrete in a variety of ways by implementing the channels with cryptographic
primitives.

In [AN96], Abadi and Needham present principles for designing authenticated key trans-
port protocols. Their principles are informal guidelines, but they can complement formal
methods. The principles presented are neither necessary nor su�cient for correctness of pro-
tocols, however, they are helpful in the sense that a number of well-known errors can be
avoided by adhering to them. Similar principles for public-key protocols are proposed in
[AN95]. In [Syv96], Syverson criticizes this approach: He presents limitations and exceptions
for some of the basic design principles, and gives examples for secure protocols that fail to
meet the principles.

More recently, Perrig and Song propose an automatic protocol generation method in
[PS00]. Their approach is based on random generation of a huge number of protocols that
satisfy certain conditions (e.g., number of protocol participants and type of cryptographic
primitives used are �xed), and �ltering of the correct ones using a fast automatic protocol
veri�cation tool (Athena [Son99]).

1.5.3 Veri�cation

Following [Mea95], we classify approaches to the formal veri�cation of key transport protocols
into four types:

� using veri�cation tools not speci�cally developed for the analysis of cryptographic pro-
tocols;

� using expert systems to investigate di�erent scenarios;

� using modal logics of knowledge and belief; and

� algebraic approaches.

Since we are mainly interested in the logic based design of protocols, we put the emphasis on
the modal logic based approach.

Using general purpose veri�cation tools

The main idea of this approach is to treat a key transport protocol as any other (distributed)
program and attempt to prove its correctness. The �rst step is to specify the protocol and
its correctness requirements so that the techniques apply. For this purpose, Varadharajan
uses LOTOS [Var90], Kemmerer speci�es the system in Ina Jo [Kem89], while others use
even more general description techniques such as state machines [Var89] or Petri nets [NT92].
Once the protocol and its requirements are speci�ed, it can be investigated by using the tools
that are available in the formalism used.

In [Var90], Varadharajan studied how LOTOS can be used to analyze cryptographic proto-
cols. He gives example speci�cations of protocols in LOTOS, but he cannot demonstrate any
result in their analysis. The paper concludes by stating that LOTOS tools are not adequate
for this kind of analysis.

26 Chapter 1: A logic of channels

In [Kem89] and [KMM94], Kemmerer uses an extension of �rst-order predicate calculus, a
formal speci�cation language called Ina Jo. Ina Jo was designed as a general purpose tool to
support software development and correctness proofs. Kemmerer describes an example secu-
rity system, and then gives an Ina Jo speci�cation of it. He also speci�es critical requirements
that the system is to satisfy in all states. Once the speci�cation is complete, Ina Jo gener-
ates theorems that can be used to verify if the critical requirements are satis�ed. Kemmerer
uncovers a weakness in his sample system, but the value of this method is limited, because
the speci�cation of the critical requirements requires that the designer knows the potential
attacks in advance.

In [Var89], Varadharajan describes how to specify a protocol using state diagrams. Each
party of the protocol is described by a state diagram, and then the protocol is represented
as the cross product of the state diagrams for each individual parties. Once the protocol
is described in this way, the designer can investigate various executions of the protocol by
applying a technique known as the reachability analysis. The main problem of reachability
analysis techniques is the quick growth of the number of the states (often referred to as the
state explosion problem). In [SS98], Shmatikov and Stern address this problem in the context
of security protocol veri�cation. Their approach is based on the observation that given a
state s, one can safely remove those states from the state graph in which the honest protocol
participants have the same knowledge as in s and the intruder has less knowledge than in s.
They propose two techniques that reduce the number of reachable states and thus allow the
analysis of larger protocols. The �rst technique is to let the intruder always intercept messages
sent by the honest participants. The second technique is to prevent the intruder from sending
messages if at least one of the honest participants is able to send a message. Intuitively, both
techniques increase the intruder's knowledge. They prove that the proposed state reduction
techniques are sound (i.e., each protocol error that would have been discovered in the original
state-graph will be discovered in the reduced graph). The techniques have been implemented
in the Mur' veri�er, and have reduced the execution time signi�cantly.

In [NT92], Nieh and Tavares uses a Petri net based methodology for the formal modeling
and analysis of cryptographic protocols. In particular, they use colored Petri nets to model
protocols. Their model also includes a general intruder model that can be used to formulate
intruder attacks and generate test cases. The analysis of the security properties of crypto-
graphic protocols is based on an exhaustive penetration test that searches for scenarios that
violate certain speci�ed criteria. These criteria are de�ned in terms of requirements on Petri
net states of the protocol. Although the use of colored Petri nets enable them to produce
compact and manageable descriptions, tools that support the e�ective execution of an ex-
haustive search are still missing. One can translate these high level Petri nets into ordinary
Petri nets, and use the tools available for those, but then one has to cope with the state
explosion problem again.

A more recent approach models the protocol participants as Communicating Sequential
Processes (CSP) [Hoa85] and uses the Failure Divergence's Re�nement (FDR) checker, which
is a general purpose tool that can be used to determine whether an implementation re�nes a
speci�cation. This approach has been successfully applied to the veri�cation of key transport
protocols by Roscoe [Ros95] and Lowe [Low96]. It has also been applied to other types
of cryptographic protocols as well (e.g., a non-repudiation protocol has been analyzed by
Schneider in [Sch98]).

Another recent approach is to use the Higher Order Logic (HOL) for stating and proving
properties of cryptographic protocols [Sne95]. Tools that are based on HOL and used for

1.5 Related work on formal models for key transport protocols 27

analyzing key transport protocols are include Convince [LHB96] and Isabelle [BP97, Pau98,
Pau99].

Developing expert systems

The idea of this approach is to develop expert systems that the protocol designer can use
to generate and investigate various scenarios. Most of these systems are based on an un-
derlying, state machine based model of the protocol. But, as opposed to the state machine
based analysis of protocols described in the previous subsection, these systems begin with an
undesirable state and attempt to discover if this state is reachable from an initial state.

One of the earliest system of this approach is the Interrogator by Millen et. al. [MCF87].
In the Interrogator, protocol participants are modeled as communicating state machines whose
messages are intercepted by the intruder who can either destroy messages, modify them, or
let them pass through unmodi�ed. Given a �nal state, in which the intruder knows some
word which should remain secret, the Interrogator tries all possible ways to construct a path
by which that state can be reached. If it �nds such a path, then a security aw is identi�ed.
The Interrogator has not yet found a previously unknown attack, but it has been able to
reproduce a number of known attacks [KMM94].

The NRL Protocol Analyzer [Mea91, KMM94] is similar to the Interrogator: the designer
speci�es an insecure state and the Protocol Analyzer attempts to construct a path to that
state from an initial state. Unlike the Interrogator, an unlimited number of protocol rounds
are allowed in a single path. This allows the Protocol Analyzer to discover attacks that rely
on the intruder's ability to weave several di�erent runs of a protocol together. Also unlike the
Interrogator, the emphasis is, not only on �nding paths to insecure states, but also on proving
that those states are unreachable. This is made possible by having the user prove that certain
paths leading backwards from an insecure state go into in�nite loops, thus, they never reach
an initial state. Once these paths have been eliminated, the resulting search space is often
small enough to search exhaustively. The proofs that paths lead into in�nite loops are largely
guided by the user, thus, the search is less automated than in the Interrogator. The NRL
Protocol Analyzer has been successful in �nding several previously unknown security aws in
protocols [Mea91] [Mea92].

In [LR92], Longley and Rigby use a rule based system that transforms goals into subgoals
and can constantly continue this process. They use this rule based scheme to build a tree,
in which each node represents a data item, and the children of a node represent those data
items that are required for the knowledge of the data represented by the father node. In
this way, they can construct a tree, in which the root node represents the data required by
the intruder for an attack (e.g., a cryptographic key), and the leaves represent those data
items that are required to know the root item. The Longley-Rigby tool allows the user to
interact with the system. The user can determine whether a data can or cannot be found by
the intruder. If the data is judged to be accessible, this information can be inserted into the
system, and the generation of the tree can proceed. Longley and Rigby managed to �nd a
subtle and previously unknown aw in a hierarchical key management scheme.

The problem of expert systems developed speci�cally for the analysis of authentication
protocols is that they are often ine�cient because they perform exhaustive search. Sometimes
they do not even halt and the results are inconclusive. To cope with these problems, they
require human intervention. Their advantage is that if they discover a aw, then the attack
scenario that exploits the aw is directly available, which is not the case, for instance, with

28 Chapter 1: A logic of channels

the more popular modal logic based approach described in the next subsection.

Modal logic based approach

The main idea of this approach is to use modal logics, similar to those that have been de-
veloped for the analysis of the evolution of knowledge and belief during the execution of
distributed algorithms [HM90], for modeling and analyzing authenticated key transport pro-
tocols. After all, these protocols can be viewed as distributed algorithms. Such logics consists
of a language, which is used to describe various statements about the protocol such as what
the participants know or believe, and some inference rules, which are used to derive new state-
ments from previously derived statements. The goal of the analysis is to derive a statement
that represents the correctness condition of the protocol. The designer's inability to do so
means that the protocol may not be correct. The analysis often reveals the possible weakness
in the protocol, and an attack can be constructed easily afterwards. Our logic of channels is
an example application of this approach.

The best known and most inuential logic of this type is called BAN logic [BAN90a,
BAN90b]. It can be used to describe the beliefs of trustworthy parties involved in key trans-
port protocols and the evolution of these beliefs as a consequence of communication. It has
been successfully applied to discover aws in a variety of protocols and has also been helpful
in the understanding of the basic concepts of authentication. BAN logic is simple, which
might be one of the reasons for its popularity. The need for many universal assumptions in
the underlying model, however, is a minor disadvantage. In BAN logic, it is assumed that
principals of the system are trustworthy and do not release secrets (this has not always been
understood with its full meaning [Nes90]); the applied encryption schemes are strong (i.e.,
encrypted messages can be decrypted only with the appropriate key); each encrypted message
contains su�cient redundancy to allow a principal who decrypts it to verify that it has used
the right key; and principals can recognize and ignore their own messages.

BAN logic does not attempt to model a protocol in a richness as other logics do. It does
not attempt to model the distinction between seeing a message and understanding it; it does
not attempt to model the revision of beliefs; it does not attempt to model trust or the lack
of it; and �nally, it does not attempt to model knowledge. The avoidance of these issues is
intentional in BAN logic; this makes it simple and straightforward. However, this also means
that these issues have to be addressed in the informal mapping from protocol speci�cation to
BAN speci�cation. This mapping is called idealization. Burrows et. al. consider the idealized
protocols as clearer and more complete speci�cations than the traditional descriptions found
in the literature, which they view as implementation dependent encodings of the protocol. Al-
though, this is true, no clear idealization method is presented, which led to misunderstandings
and the misuse of the logic [Nes90, BM93].

To overcome these problems, Abadi and Tuttle reformulate the original BAN logic and
provide a new semantics for it in [AT91]. Abadi and Tuttle identi�es many sources of the
confusion created by BAN logic. They remove some unnecessary mixing of semantic and
implementation details in the original de�nitions and inference rules. They de�ne all concepts,
such as seeing, saying, believing, etc., independently rather than jointly with other concepts.
They reformulate the set of inference rules as an axiomatization with modus ponens and
necessitation as the only rules. These changes make the logic much simpler and allow them
to dispense with the implicit assumption of honesty (it is not needed anymore that principals
believe the messages they send). One of the greatest contributions of the paper is a formal

1.5 Related work on formal models for key transport protocols 29

semantics, which de�nes belief as a form of resource-bounded, defeasible knowledge. Abadi
and Tuttle claim that the reformulated logic is sound according to the new semantics de�ned.
However, Syverson and van Oorschot point out in [SvO94] that one of the axioms is not sound.
The presentation of our logic of channels is very similar to that of the Abadi-Tuttle logic.

BAN logic has been extended in many directions. In [GNY90], Gong et. al. propose a logic
referenced later as GNY logic. In GNY logic, it is not required to assume that principals are
trustworthy and redundancy is always explicitly present in encrypted messages. GNY logic
distinguishes between what a principal can possess and what it can believe in. It enables to
express di�erent trust levels and implicit conditions behind protocol steps. This makes GNY
logic a more realistic model for key transport protocols than BAN logic. However, GNY logic
has more than 40 inference rules, which has led many to reject this approach.

Other extensions of BAN logic include [MB93], in which Mao and Boyd propose a logic
with several improvements on the original BAN logic; [GS91], in which Gaarder and Snekkenes
extend BAN logic with constructs to reason about time; [vO93], in which van Oorschot extends
BAN and GNY to deal with key agreement protocols such as Di�e-Hellman; and [CSNP92], in
which Campbell et. al. extend BAN logic using probabilistic reasoning to calculate a measure
of trust rather than using complete trust. The list of extensions above is not complete; there
are many other works in this �eld.

In [SvO94], Syverson and van Oorschot propose a logic, later referenced as SvO, that
encompasses a uni�cation of four of its predecessors in the BAN family, namely, GNY logic
[GNY90], the Abadi-Tuttle logic [AT91], the logic proposed by van Oorschot in [vO93], and
BAN itself [BAN90a]. The proposed logic captures all of the desirable features of its prede-
cessors, nonetheless, it accomplishes this with no more axioms or rules than the simplest of its
predecessors (i.e., BAN). Syverson and van Oorschot also present a model-theoretic semantics
with respect to which the logic is sound.

The importance of having an alternative, independently motivated semantics is empha-
sized by Syverson in [Syv90a, Syv91b, Syv91a, Syv92]. A formal semantics provides a precise
structure with respect to which soundness and completeness of the logic may be proven, and
thus, it allows us to evaluate the logic. If a logic does not have an independently motivated
semantics, then whatever assurances protocol analysis via such logic brings may prove illu-
sory. Syverson also illustrates how the semantics itself can be used as a reasoning tool to
discover results that would be very di�cult or impossible to prove by reasoning syntactically.

There are a number of other logics that do not belong to the BAN family. These in-
clude Bieber's CKT5 [Bie90], Syverson's KPL [Syv90b], Moser's logic [Mos89], Rangan's
logic [Ran88], and the system of Yahalom et. al. [YKB93]. Bieber's CKT5 and Syverson's
KPL can be used to reason about the evolution of knowledge about words used in a protocol.
They also make a distinction between seeing a message and understanding its signi�cance.
Moser's logic is particular, because it is the only non-monotonic logic. It can be used to reason
about beliefs of protocol participants, and about how these beliefs change if, for instance, a
key used in a secure communication becomes compromised. Rangan's logic can be used to
reason about the e�ect of trust in the composition of secure communications channels, and
provides a formal basis for the evolution of belief from trust. The system of Yahalom et. al.
is used to derive information about the nature of the trust that parties in a protocol must
have in each other in order for a protocol to operate correctly.

Using modal logics of knowledge and belief is the most popular approach to applying
formal methods in the analysis of key transport protocols. The reason is, probably, that these

30 Chapter 1: A logic of channels

logics are easy to use and intuitive. However, one must be careful, because there are often
subtle assumptions in the underlying model, getting away from which may lead to the misuse
of the logic and errors in the analysis. Thus, the designer has to be aware of the scope of the
logic and its limitations.

Algebraic approach

Another approach to apply formal methods to cryptographic protocol analysis is to model
the protocol as an algebraic system. Algebraic models were successful to represent very sub-
tle kinds of knowledge in cryptographic protocols. Furthermore, the fact that the objects
modeled correspond strongly to entities and messages used in the tools based on state ma-
chines suggests that algebraic models could be used to provide the state machine tools with
a stronger capability of modeling the knowledge that the intruder can gain. However, the
question of how these algebras can be incorporated in state machine based analysis tools is
still open [Mea95].

The �rst work that considers a cryptographic protocol to be an algebraic system is [DY83]
by Dolev and Yao. In their model, Dolev and Yao assume that the network is under the control
of the intruder who can read all tra�c, alter and destroy messages, and perform any operation,
such as encryption, that is available to legitimate users of the system. However, it is assumed
that initially the intruder does not know any information that is to be kept secret, such as
encryption keys belonging to legitimate users of the system. Since the intruder can prevent
any message from reaching its destination, and since she can also create messages of her own,
Dolev and Yao treat any message sent by a legitimate user as a message sent to the intruder
and any message received by a legitimate user as a message received from the intruder. Thus,
the system becomes a machine used by the intruder to generate words. These words obey
certain rewrite rules, such as the rule that encryption and decryption with the same key
cancel each other out. Thus, �nally, the intruder manipulates a term rewriting system. If
the goal of the intruder is to �nd out a word that is meant to be secret, then the problem of
proving a protocol secure is equivalent to the problem of proving that a certain word cannot be
generated in a term rewriting system. Dolev and Yao use this idea to investigate the security
of certain classes of public key protocols. They de�ne the notion of cascade protocols and
name-stamp protocols. They give su�cient and necessary conditions for cascade protocols to
be secure, and provide a polynomial time algorithm to decide if a given name-stamp protocol
is secure.

The Dolev-Yao model is too restrictive to be useful for the analysis of most key transport
protocols. It can only be used to detect failures of secrecy, and it does not allow participants
to remember state information from one state to the next. Thus, most later works extend it
to be capable for analyzing other classes of protocols. These works include [Mer83], in which
Merritt generalizes the technique of Dolev and Yao to model diverse cryptographic systems
and to formally state and prove security properties other than secrecy. In [Tou92], Toussaint
describes a technique for deriving the complete knowledge of participants in cryptographic
protocols that is based on the algebraic model of Merritt.

A more recent and successful work is [AG98], in which Abadi and Gordon use the �-
calculus [Mil99] to describe protocols at an abstract level. They use the �-calculus primitives
for channels, in particular the scoping rules, to model certain properties of cryptographic
protocols. Then, they extend the �-calculus to what they call spi-calculus to analyze protocols
at a less abstract level. The spi-calculus permits an explicit representation of the use of

1.6 Summary 31

cryptography in protocols. In the spi-calculus, security properties of the protocol are expressed
as equivalences between spi-calculus processes (e.g., a protocol keeps secret a piece of data
X if the protocol with X is equivalent to the protocol with X 0 for every X 0 and in every
environment). The intruder is not explicitly modeled, and this is a great advantage of the
approach. Modeling the intruder can be tedious and can lead to errors (e.g., it is very di�cult
to model that the intruder can invent random numbers but is not lucky enough to guess the
random secrets of legitimate parties). Instead, the intruder is represented as an arbitrary
spi-calculus process.

1.6 Summary

In this chapter, we proposed a systematic approach to construct key transport protocols that
is based on a logic of belief. Our main idea was to reverse some implications that can be
derived from the axioms of the logic and to turn them into synthesis rules. The synthesis
rules can be used by the protocol designer to derive a protocol � and a set of assumptions
� starting from a set of goals �. Our approach has the advantage that it results in correct
protocols in the sense that all the goals in � can be derived from � and � using the logic.
Another important advantage is that all the assumptions upon which the correctness of the
protocol depends are made explicit, so someone who reviews the design can verify if they are
acceptable in a given application. We are not aware of any similar approach that addresses
the same problem in its full generality.

While the logic that underlies our approach is similar to the well-known BAN logic [BAN90a,
BAN90b], it also di�ers from it in many ways. The most striking di�erence is that our logic
does not have any construct that explicitly deals with cryptographic primitives, such as en-
cryption or digital signature. Instead, we model these primitives in a uniform manner as
channels with various access properties. The use of channels makes our logic simple and com-
pact. It also allows us to reason about protocols at a rather high abstraction level without
being concerned with the actual cryptographic implementation details. We believe that this
feature is useful when designing protocols (although perhaps less interesting when verifying
them), because it allows us to identify the required properties of a channel �rst, and decide
about its implementation afterwards (possibly taking into consideration additional design
criteria).

The result of the protocol synthesis process is an abstract description of the protocol, which
involves idealized messages and channels. In order to implement it, the abstract description
needs to be translated into a less abstract one, which involves bit strings and cryptographic
primitives. This translation is only partially supported by our approach. Namely, we do not
provide formal translation rules, but the requirements that the implementation of the channels
must satisfy are identi�ed in form of assumptions about the source set and the reader set of
the channels. In practice, this is usually su�cient to choose an appropriate implementation.

Our approach has certain limitations. First, the synthesis is not fully automatic: It is
possible that at a given point in the construction there are several synthesis rules that are
available, and the designer is left with her intuition (or creativity) to choose among these.
On the other hand, once a synthesis rule has been chosen and applied, the further steps are
explicitly listed for the designer, which reduces the chance that she overlooks something that
she should not. Another limitation stems from an inherent limitation of BAN-like logics,
namely, that we cannot reason about secrecy directly within the logic. Also, because of

32 Chapter 1: A logic of channels

the rather simple way in which time is modeled, complex interleaving attacks cannot be
represented in the logic. This means that our approach should not be used in isolation,
but in conjunction with other tools that overcome these problems. While this is certainly a
limitation, it is not a real drawback, since if a top-down design approach is used, then such
tools are applied anyhow in later steps of the design.

Publication: [BSW98]

Chapter 2

Protocol construction with the logic

of channels

2.1 Introduction

Our main goal in this chapter is to illustrate the usage of the logic of channels presented in
the previous chapter, and in particular to demonstrate the usage of the synthesis rules and
our systematic protocol construction approach. For this reason, we consider an authenticated
key transport protocol proposed for the so called Global Mobility Network (GLOMONET)
in [SN97]. We identify several weaknesses in this protocol, and explain how these weaknesses
can be exploited by various attacks. Then, we redesign the protocol using the synthesis rules
introduced in the previous chapter. The result will be a robust, and intuitively much clearer
protocol.

2.1.1 The Suzuki-Nakada protocol

In [SN97], an authentication mechanism is proposed for the Global Mobility Network, which
consists of two phases:

� the roaming-service-setup phase, in which authentication and key transport is performed
by the visited network, the home network, and the roaming user in order to set up the
roaming-service environment; and

� the roaming-service-provision phase, in which authentication is performed only by the
visited network and the roaming user in order to provide the roaming service within the
visited network.

The motivation for this two-phase model is to have the home network involved in the
authentication process only once, during the roaming-service-setup phase. In this phase, a
shared session key is established between the visited network and the roaming user with the
help of the home network. This secret key is used later in the roaming-service-provision
phase to authenticate the roaming user and the visited network to each other without any
contribution from the home network. Thus, as long as the roaming user stays in the region of
the visited network, authentication can be performed without contacting the home network
of the roaming user (unlike, for instance, in the GSM system, where the visited network often

33

34 Chapter 2: Protocol construction with the logic of channels

has to obtain challenge-response pairs from the home network in order to authenticate the
roaming user [MG98]).

The following authenticated key transport protocol1 is proposed for the establishment
of the session key between the visited network and the roaming user, which we will call
Suzuki-Nakada protocol after the authors:

Suzuki-Nakada protocol

(msg1) U ! V : request(U;H)
(msg2) V ! H : r1
(msg3) H ! V : fr1gKHV

; r2
(msg4) V ! H : fr2gKHV

; U; ffKagKtgKHV

(msg5) H ! V : ffKagKtgKUH

(msg6) V ! U : r3; Kt; ffKagKtgKUH

(msg7) U ! V : fr3gKa

(msg8) V ! U : ffr3gKagKa

where U , V , and H denote the roaming user, the visited network, and the home network,
respectively; r1, r2, and r3 are random numbers used as nonces; KHV is a long-term secret
key shared by H and V ; KUH is a long-term secret key shared by U and H; and Kt and Ka

are keys generated by V . The operation of the protocol is described as follows:

� The roaming user U sends a service request to the visited network V (msg1). We assume
that the service request contains the identi�ers of U and her home network H. The
original description of the protocol in [SN97] does not make this explicit, but we prefer
to do so, because it makes it easier to explain the attacks later.

� V generates a random number r1, and sends it to the home network H of U (msg2).
This is a challenge for authenticating H.

� H responds to V 's challenge with the encrypted random number fr1gKHV
, and sends

another random number r2 to V (msg3). The number r2 is a challenge for authenticating
V .

� V veri�es if it has received back its random number r1 encrypted with the key KHV . If
so, then V believes that H is present. V generates the user authentication key Ka and
the temporary cipher key Kt. Then, V responds to H's challenge with fr2gKHV

, and
sends also the identi�er of U and the ciphertext ffKagKtgKHV

to H (msg4). Sending
the identi�er of U is not made explicit in [SN97], but it is clear that H needs to know
it in order to be able to use the appropriate key in (msg5) later.

� H veri�es if it has received back its random number r2 encrypted with the key KHV .
If so, then H believes that V is present. H decrypts ffKagKtgKHV

with KHV and
re-encrypts the result fKagKt with the key KUH . H sends ffKagKtgKUH

to V (msg5).

� V forwards ffKagKtgKUH
to U along with the key Kt and the random number r3, which

is a challenge for authenticating U (msg6).

1We modi�ed the notation used in [SN97], in order to keep the presentation of the whole thesis uniform.

2.2 Analysis 35

� U uses the long-term key KUH , and the key Kt that she has just received to obtain the
authentication key Ka. Then, U responds to V 's challenge with fr3gKa (msg7).

� V veri�es if it has received back its random number r3 encrypted with the fresh authen-
tication key Ka. If so, then V believes that U is present and that she has accepted the
key Ka. V sends ffr3gKagKa to U (msg8).

� U veri�es if she has received back fr3gKa encrypted with Ka. If so, then U believes
that V is present and knows the key Ka.

Conceptually, the Suzuki-Nakada protocol can be divided into three sub-protocols:

1. The �rst sub-protocol consists of (msg2), (msg3), and the �rst block of (msg4). The
goal of this sub-protocol is mutual authentication of V and H.

2. The second sub-protocol consists of (msg1), the second part of (msg4), (msg5), and
(msg6) (except the random number r3). The goal of this sub-protocol is to establish a
secret session keyKa between U and V . Ka can then be used by U and V to authenticate
each other in the third sub-protocol and later in the roaming-service-provision phase.

3. The third sub-protocol consists of the �rst block of (msg6) (the random number r3),
(msg7), and (msg8). Similar sub-protocols are often used by authenticated key transport
protocols to achieve explicit key con�rmation. However, the authors of the protocol do
not mention explicit key con�rmation to be a goal of their protocol. Instead, they
require the third sub-protocol for mutual authentication of U and V .

In fact, the protocol does not reach any of the above mentioned three goals. The weak-
nesses in the protocol are quite obvious, and could be explained without any formal method.
Nevertheless, in the next section, we will explain them in terms of our logic of channels, in
order to illustrate how the logic would discover them.

2.2 Analysis

As we said before, the goal of the �rst sub-protocol is mutual authentication of V and H.
This goal can be represented by the logical formulae: V j� (H jj� r1) and H j� (V jj� r2).
We can assume that V j�](r1) and H j�](r2), since r1 and r2 are generated by V and H,
respectively. This means that it would be su�cient to show that the formulae V j� (H j� r1)
and H j� (V j� r2) can be derived for the protocol.

The intention of encrypting r1 and r2 with KHV is to send them through channels to
which the intended receiver can associate a source. Ideally, we would like that fr1gKHV

can be
modeled as C 0HV (r1), and fr2gKHV

can be modeled as C 00HV (r2), where V j� (s(C 0HV) = fHg)
and H j� (s(C 00HV) = fV g) hold. The problem is that both V and H use KHV to encrypt
random numbers for the other, therefore, the encryption of these numbers with KHV cannot
be modeled as two channels C 0HV and C 00HV with distinct source sets. Indeed, when V receives
fr1gKHV

, it does not know whether the message was generated by H or V , since there is
nothing in the message that identi�es its source. And similarly, when H receives fr2gKHV

, it
does not know whether it was generated by V or H. In particular, if the roles of V and H can
be swapped (i.e., if V can be a home network of a user, and H can be a visited network for

36 Chapter 2: Protocol construction with the logic of channels

V E (impersonating H) H

r1

{ }r1 KHV
, r’2

r1

{ }r1 KHV
, r’2

{ }r’2 KHV
, ...

(msg2)

(msg2’)

(msg3’)

(msg3)

(msg4)

Figure 2.1: Illustration of a reection attack on the �rst sub-protocol

the same user), then the �rst sub-protocol is vulnerable to the well-known reection attack
[BGH+93], which is illustrated in Figure 2.1.

The reection attack is described as follows: The attacker E intercepts r1 sent by V to
H in one instance of the �rst sub-protocol (msg2). Then E starts another instance of the
�rst sub-protocol with V pretending to be H and sending r1 to V (msg2'). V probably does
not check every challenge received from H against pending challenges that it sent to H, and
therefore, it simply encrypts r1 with KHV , and sends fr1gKHV

to H (msg3'). This message
is intercepted by E, and fr1gKHV

is reected back to V as a response to V 's challenge in the
�rst instance of the sub-protocol (msg3). Note that from V 's point of view, it successfully
ran an instance of the �rst sub-protocol with H, although H may not be present at all.

The goal of the second sub-protocol is to setup a secret session key Ka between U and V .
This can be represented by the following formulae in our logic: U j� ((Ka � fU; V g) ^](Ka))
and V j� ((Ka � fU; V g) ^](Ka)). Since Ka is generated by V , we can assume that
V j� ((Ka � fU; V g) ^](Ka)) holds. The goal of the second sub-protocol is to establish the
corresponding belief for U .

We can assume that U trusts V for generating good session keys, which can be represented
by the following formulae:

U j� ((V j� ((Ka � fU; V g) ^](Ka)))) ((Ka � fU; V g) ^](Ka)))

U j� ((V jj� ((Ka � fU; V g) ^](Ka)))) (V j� ((Ka � fU; V g) ^](Ka))))

Thus, it would be su�cient to show that U j� (V jj� ((Ka � fU; V g) ^](Ka))) can be
derived. Note, however, that there is no direct channel between V and U through which V
can send Ka and utter (Ka � fU; V g) ^](Ka) to U . Therefore, V sends Ka to U via H. We
can assume that U trusts H for reliably relaying messages between V and U , and perhaps
even for recognizing freshness. This can be represented by the following formulae:

U j� ((H j� (V jj� X))) (V jj� X))

U j� ((H jj� (V jj� X))) (H j� (V jj� X)))

2.3 Attacks 37

On the other hand, H is not trusted for any statement regarding the session key Ka itself.
In fact, the authors of the protocol even intended to hide Ka from H, that is why Ka is
encrypted with Kt. This means that U j� (V jj� ((Ka � fU; V g) ^](Ka))) can only be
derived via the formula U j� (H jj� (V jj� ((Ka � fU; V g) ^](Ka)))).

Now the problem is that the above formula cannot be derived because no timely channel
exists on which H can send messages to U . There is a channel CUH between H and U
implemented by the encryption with the keyKUH for which we even have that U j� (s(CUH) =
fHg), since only ever H encrypts messages with KUH . But this channel is not timely. In
addition, the message sent by H to U through CUH does not contain anything fresh for U .
This means that all that we can derive are formulae like U j� (H j� : : :).

This weakness of the Suzuki-Nakada protocol is similar to the well-known weakness of
the Needham-Schroeder protocol [NS78] discovered by Denning and Sacco in [DS81]. As a
consequence, in the next section we will show that an attack similar to the attack against the
Needham-Schroeder protocol can, indeed, be mounted against the Suzuki-Nakada protocol
too.

Finally, we note that the third sub-protocol cannot reach its goal, since it depends on
the result of the second sub-protocol. If the second sub-protocol was correct, then the single
encryption withKa in (msg7) and the double encryption with Ka in (msg8) could be modeled
as two channels C 0a and C 00a such that V j� ((s(C 0a) = fUg) ^ \(C 0a)) and U j� ((s(C 00a) =
fV g) ^ \(C 00a)), and we could derive that V j� (U jj� r3) and U j� (V jj� r3), which represent
the goal of mutual authentication of U and V . But the second sub-protocol is not correct.

2.3 Attacks

In this section, we present three attacks that exploit the weaknesses identi�ed in the previous
section. The �rst two attacks exploit the vulnerability of the protocol to reection attacks as
described above. They enable a legitimate, but malicious user to obtain the authentication
key Ka established between the roaming user and the visited network. In this way, she can
impersonate the roaming user or the visited network. These attacks require that the attacker
has access to the communication link between the visited network and the home network,
and that she can intercept and modify messages. Sometimes, it can be assumed that this is
not possible (or too expensive). The third attack that we present is valid even in this case.
By exploiting the weakness that the user does not receive anything fresh in the protocol, it
allows the attacker to feed the roaming user with a compromised, old authentication key, and
thus, to masquerade as the visited network.

2.3.1 Attack 1

In this attack, the attacker E obtains the authentication key Ka of the roaming user U and
the visited network V . We assume that E is a legitimate, but malicious user from the same
home network H as the roaming user U , and that E eavesdropped and recorded the protocol
run in which Ka has been established. Thus, E knows ffKagKtgKHV

and Kt. The attack
scenario is illustrated in Figure 2.2.

Since E is a legitimate user, she can start the protocol with V . E lets the protocol run
until (msg4) is sent. Then, E substitutes the second part of the message ffK 0agK0

t
gKHV

with
ffKagKtgKHV

. H decrypts ffKagKtgKHV
, and re-encrypts the result fKagKt with KEH ,

which is the long-term key shared by E and H. When E receives (msg6) from V , she obtains

38 Chapter 2: Protocol construction with the logic of channels

VE H

r’1

{ }r’1 KHV
, r’2

(msg1)

(msg2)

(msg3)

(msg4a)

(msg5)

{ }r’2 KHV
, E , { }K’a K’t

{ }
KHV

{ }r’2 KHV
, E , { }Ka K t

{ }
KHV

{ }Ka K t
{ }

KEH

r’3 , K’t { }Ka K t
, { }

KEH

request(E, H)

E

(msg4b)

(msg6)

Figure 2.2: Scenario of Attack 1

Ka, since she knows both KEH and Kt. Later, E can use Ka to impersonate U or V in the
roaming-service-provision phase.

Obviously, Attack 1 is a coordinated activity of several physically dispersed malicious
entities that we consider jointly to be the attacker. Two of these entities eavesdrop the
communication between U and V , and between V and H, respectively, a third one starts
the protocol with V , and a fourth one modi�es (msg4) in transit between V and H. We
assume that the attacker entities communicate with each other (possibly in a proprietary
way). The attack requires that the intruder can associate messages, which are observed on
di�erent interfaces, to each other. In particular, E has to eavesdrop (msg4) of the original
protocol run on the V {H interface, and (msg6) from the same protocol run on the V {U
interface. Similarly, E has to catch and modify (msg4) on the V {H interface, which belongs
to the protocol run initiated by E on the E{V interface. Considering that (msg4) contains
the identi�er of the initiator of the protocol, the problem of associating the right messages to
each other does not seem to be too di�cult.

Furthermore, the attack does not require the modi�cation of messages on the air interface
(between U and V), which would be quite di�cult to do. Whereas, eavesdropping of messages
sent over a wireless connection is considered to be rather simple, because of the broadcast
nature of wireless communication. Eavesdropping and modifying messages that are sent
between the visited network and the home network is technically possible, since these networks
are usually connected via a �xed network, which is not necessarily secure2. Therefore, we
believe that Attack 1 is valid and feasible.

However, the �xed network is often assumed to be physically protected and thus, the
communication between the visited network and the home network is considered to be secure.
If we accept this assumption, then neither eavesdropping nor modi�cation of messages is pos-
sible between V and H, and Attack 1 no longer works. But we note that a small modi�cation
of the protocol would also prevent Attack 1, and we would not need the assumption of the
security of the �xed network. We would prefer to make the protocol itself more robust than

2The authors of the protocol also considered this as a threat (see [SN97], Section II, threat 4).

2.3 Attacks 39

to rely on strong assumptions.

2.3.2 Attack 2

Attack 2 is similar to Attack 1 with the di�erence that the home network H is not involved in
it. In this attack too, the attacker E obtains the authentication key Ka of the roaming user
U and the visited network V . Now, we assume that E is a legitimate, but malicious user,
and that the home network of E is V . We also assume that E eavesdropped and recorded
the protocol run, in which Ka has been established. Thus, E knows ffKagKtgKHV

and Kt.
The attack scenario is illustrated in Figure 2.3.

VE (impersonating U’) H

r1

{ }r1 KHV
, r’2

(msg1)

(msg2)

(msg3’)

(msg4)

(msg5’)

{ }r’2 KHV
, U’, { }K’a K’t

{ }
KHV

{ }r’2 KHV
, E , { }Ka K t

{ }
KHV

{ }Ka K t
{ }

KEV

request(U’, H)

E (impersonating H)

r1

{ }r1 KHV
, r’2

(msg2’)

(msg3)

(msg4’)

Figure 2.3: Scenario of Attack 2

The attacker E pretends to be a user U 0 from the home network H of the roaming user U .
Note that U 0 is not necessarily equal to U . When V receives the false request of U 0 (msg1),
it generates a random number r1, and sends it to H as a challenge to authenticate H (msg2).
This is intercepted and reected back to V by E (msg2'). V interprets r1 as the challenge of
H to authenticate V in another session. Note that such challenges are regularly received by
V form H, when users from the network of V roam in the network of H and request roaming
service setup there. So V responds the challenge with fr1gKHV

and sends another random
number r02 to H as a challenge to authenticate H (msg3'). This message is intercepted and
reected back to V by E as (msg3) of the �rst session. V accepts the message, since it is
correct response to its challenge sent in (msg2). Then, V generates an authentication key
K 0a and a temporary cipher key K 0t and sends (msg4) to H. E again intercepts the message,
and reects it back to V , but before doing so, it replaces U 0 with E, and ffK 0agK0

t
gKHV

with
ffKagKtgKHV

(msg4'). V interprets the message as the fourth message of the second session.
Since it contains a correct response to its challenge sent in (msg3'), it accepts the message,
and sends (msg5') to H. E can now decrypt message (msg5'), and obtain the key Ka. All the
notes on the required capabilities of the attacker described in Attack 1 apply here as well.

40 Chapter 2: Protocol construction with the logic of channels

2.3.3 Attack 3

This attack, which enables an attacker E to impersonate the visited network V to the roaming
user U , exploits the fact that U does not receive any fresh message in the protocol. Attack 3 is
essentially the same as the attack against the Needham-Schroeder protocol [NS78] described
in [DS81]. In Attack 3, we assume that K�a is a compromised, old, authentication key, and
that the attacker E recorded the protocol run that established K�a . Thus, E possesses the
old authentication key K�a , the corresponding temporary cipher key K�t , and the ciphered
message ffK�agK�

t
gKUH

. The attack scenario is illustrated in Figure 2.4.

VU H

(msg1)

(msg6)

request(U, H)

E (impersonating V)

r’3 , K*t { }Ka K*t
, { * }

KUH

(msg7)

(msg8)

{ }r’3 K*a

{ }r’3 K*a K*a
{ }

Figure 2.4: Scenario of Attack 3

When U starts a new instance of the protocol, E intercepts the request, and plays back
(msg6) from the old protocol3. U thinks that the authentication key is K�a , so she sends
fr03gK�

a
to V . This message is intercepted by E. E generates the last message ffr03gK�

a
gK�

a
,

and sends it to U . Notice that neither the visited network nor the home network was involved
in the attack.

In Attack 3, the attacker has to be able to play the role of the visited network and
to make the roaming user send messages to her instead of the visited network. Although
this requirement seems to be strong, satisfying it is not impossible. There are commercially
available devices called \IMSI catchers" [Fed99], the functionality of which is very similar to
that the attacker needs in Attack 3. From the side of the mobile phone, an IMSI catcher
behaves as a base station of the mobile network. A mobile phone, which is closer to an IMSI
catcher than to a base station, can be coerced by the IMSI catcher to establish a connection
with it rather than with the base station. The mobile phone does not even know that it talks
with an IMSI catcher instead of a base station. The IMSI catcher can relay communication
between the mobile phone and the base station, and stay unnoticed. We believe that such a
device would enable Attack 3.

3E may change the random number r3 to r
0

3.

2.4 Correction 41

2.4 Correction

In this section, we re-design the protocol. This will be a demonstration of the usage of the
synthesis rules introduced in the previous chapter (see also Appendix A) and our systematic
protocol construction approach. During the design, we will keep the assumptions identi�ed
in Section 2.2 in mind, although we will not strictly stick to them. We will use them to guide
the selection of the next synthesis rule to be applied when there are several rules available.
We give detailed illustration for the re-construction of the second sub-protocol (i.e., the setup
of the session key), since this is the most important part of the protocol.

2.4.1 Re-construction of the second sub-protocol

As we said earlier, the goal of the second sub-protocol is to establish a secret session key Ka

between U and V , which can be represented by the formulae: U j� ((Ka � fU; V g) ^](Ka))
and V j� ((Ka � fU; V g) ^](Ka)). Recall that in the Suzuki-Nakada protocol, V generates
Ka, and thus, we can take V j� ((Ka � fU; V g) ^](Ka)) as an assumption. We will keep
this feature of the protocol. This means that the goal of the second sub-protocol reduces to
the single formula:

U j� (2.1)

where = ((Ka � fU; V g) ^](Ka)).
We start the synthesis from the above goal (2.1). Using (S2), we replace it with the new

goals:

U j� (V j�) (2.2)

U j� ((V j�))) (2.3)

We will consider (2.3) as an assumption. This means that we assume that U believes that V
is competent in generating the session key. This makes sense since V represents a network
operator. In addition, the original protocol made the same assumption. We continue the
synthesis with (2.2). Since (*S13) can be applied to this goal, we must apply it. The new
goals are:

U j� (V j�) (2.4)

V j� (2.5)

We have already considered (2.5) as an assumption. From (2.4), using (S3), we obtain the
following new goals:

U j� (V jj�) (2.6)

U j� ((V jj�)) (V j�)) (2.7)

We will consider (2.7) as an assumption. This means that we assume that U believes that V
is honest with respect to statements about the session key. Again, the same assumption was
made in the original protocol. Next, we should apply (*S14) to (2.6), but it does not result
in any new goals, since V knows the identi�ers of U and V , and the session key Ka (i.e., it
can say). We apply (S5) to (2.6), and we obtain the following new goals:

U j� (V j� ; r0) (2.8)

U j�](; r0) (2.9)

42 Chapter 2: Protocol construction with the logic of channels

The goal (2.9) can be replaced with the new goal:

U j�](r0) (2.10)

which we will consider as an assumption. We continue with the goal (2.8), to which we must
apply (*S15). We obtain the following new goals:

U j� (V j� ; r0) (2.11)

V � r0 (2.12)

We will consider (2.12) as a message sending step. We continue the synthesis with the other
goal (2.11). Using (S2) again, we obtain the following new goals:

U j� (H j� (V j� ; r0)) (2.13)

U j� ((H j� (V j� ; r0))) (V j� ; r0)) (2.14)

We will consider (2.14) as an assumption. This means that we assume that U believes that
H is competent in recognizing messages that are sent by V . Next, we must apply (*S13) to
(2.13). The new goals that we obtain are:

U j� (H j� (V j� ; r0)) (2.15)

H j� (V j� ; r0) (2.16)

For the moment we put aside the goal (2.16); we will return to it later. We continue the
synthesis with the other goal (2.15), which we can replace with the following new goals using
(S3):

U j� (H jj� (V j� ; r0)) (2.17)

U j� ((H jj� (V j� ; r0))) (H j� (V j� ; r0))) (2.18)

We will consider (2.18) as an assumption. This means that we assume that U believes that H
honestly relays messages between V and U . Next, we must apply (*S14) to the goal (2.17).
We obtain the following new goals:

U j� (H jj� (V j� ; r0)) (2.19)

H � (2.20)

H � r0 (2.21)

We will take care of the goals (2.20) and (2.21) a bit later. We continue the synthesis by
replacing the goal (2.19) with the following new goals using (S5):

U j� (H j� (V j� ; r0); r0) (2.22)

U j�]((V j� ; r0); r0) (2.23)

The goal (2.23) can be replaced by U j�](r0), which we have already considered as an
assumption. Thus, we can continue with the goal (2.22). We should apply (*S15) to this
goal, but it does not result in any new goals, since H knows the identi�er of V , and we have

2.4 Correction 43

already considered H � and H � r0 as goals (see (2.20) and (2.21) above). So we replace
(2.22) with the following new goals using (S8):

U j� (U �CUH((V j� ; r0); r0)) (2.24)

U j� (s(CUH) = fHg) (2.25)

We will take the goal (2.25) as an assumption. This means that we assume that there exist
a channel CUH such that U believes that only H sends messages through CUH . Clearly, this
assumption is related to the existence of the long-term key KUH shared between U and H
that can be used to implement CUH . From (2.24), we obtain the following new goals using
(S10):

U � CUH((V j� ; r0); r0) (2.26)

U 2 r(CUH) (2.27)

Taking into account the discussion on KUH and CUH above, we can consider (2.27) as an
assumption. As for (2.26), we will consider it as a message sending step.

Now, we return to the goals that we have put aside. These are (2.16), (2.20), and (2.21).
We start with the goal (2.16). We should �rst apply (*S15), but it does not result in any new
goals. Therefore, we can replace (2.16) with the following new goals obtained by using (S8):

H j� (H �CHV (; r0)) (2.28)

H j� (s(CHV) = fV g) (2.29)

The goal (2.29) will be considered as an assumption. Thus, we assume that there exists a
channel CHV such that H believes that only V sends messages on CHV . Such a channel can
easily be implemented based on the long-term key KHV shared by H and V . Before going on
with the goal (2.28), we consider the goals (2.20) and (2.21) that we have put aside. Using
(S11), we can replace both with the goal:

H � ; r0 (2.30)

Now, both (2.28) and (2.30) can be replaced with the goals:

H � CHV (; r0) (2.31)

H 2 r(CHV) (2.32)

by using either (S10) or (S12), respectively. We will consider the goal (2.32) as an assumption,
while (2.31) will be a message sending step.

Since there is no more goal to be considered, the synthesis is �nished. We obtained the
following set of assumptions:

(A1) V j� where = ((Ka � fU; V g) ^](Ka))

V believes that Ka is a fresh session key between U and V . This is a reasonable
assumption, since V generates Ka.

(A2) H 2 r(CHV) and H j� (s(CHV) = fV g)

There exists a channel CHV such that H can read from CHV , and H believes that
only V sends messages via CHV . Such a channel can easily be implemented using the
long-term key KHV shared by H and V .

44 Chapter 2: Protocol construction with the logic of channels

(A3) U 2 r(CUH) and U j� (s(CUH) = fHg)

There exists a channel CUH such that U can read from CUH , and U believes that onlyH
sends messages via CUH . Such a channel can easily be implemented using the long-term
key KUH shared by U and H.

(A4) U j� ((V j�))) and U j� ((V jj�)) (V j�))

U believes that V is competent in generating session keys and honestly makes statements
about those keys.

(A5) U j� ((H j� (V j� X))) (V j� X)) and U j� ((H jj� (V j� X))) (H j� (V j� X)))

U believes that H is competent in recognizing messages sent by V and honestly relays
those messages to U .

(A6) U j�](r0)

U believes that r0 is fresh. For instance, r0 could be a random number freshly generated
by U .

and the following set of message sending steps:

V � r0
H � CHV (; r0)
U � CUH((V j� ; r0); r0)

The above example illustrates the rather tedious process of using the synthesis rules. We
will not detail further how the �rst and the third sub-protocol can be re-constructed. Instead,
we re-state the goals of these sub-protocols, and give the assumptions and the message sending
steps that we obtained during their synthesis.

2.4.2 Re-construction of the �rst sub-protocol

For the �rst sub-protocol, we keep the goals V j� (H jj� r1) and H j� (V jj� r2). This means
that we only want the �rst sub-protocol to check the presence of the parties. It would be
possible to tie mutual authentication between H and V to a particular protocol run4, but
this would not have any e�ect on the second sub-protocol, and therefore we do not pursue
this possibility further.

The assumptions we obtained are:

(A7) V 2 r(C 0HV) and V j� (s(C 0HV) = fHg)

There exists a channel C 0HV such that V can read from C 0HV and V believes that only
H sends messages via C 0HV . Such a channel can be implemented using the long-term
key KHV shared by H and V .

(A8) V j�](r1)

V believes that r1 is fresh. r1 could be a random number freshly generated by V .

4One possible way to do so would be to change the goals to V j� (H jj� r) and H j� (V jj� r), where
r is a value that identi�es the particular protocol run. In practice, r can be computed from random values
contributed by both parties.

2.4 Correction 45

(A9) H 2 r(C 00HV) and H j� (s(C 00HV) = fV g)

There exists a channel C 00HV such that H can read from C 00HV and H believes that only
V sends messages via C 00HV . Such a channel can be implemented using the long-term
key KHV shared by H and V .

(A10) H j�](r2)

H believes that r2 is fresh. r2 could be a random number freshly generated by H.

The message sending steps for the �rst sub-protocol are:

H � r1
V � C 0HV (r1); r2
H � C 00HV (r2)

2.4.3 Re-construction of the third sub-protocol

For the third sub-protocol, we slightly change the goals. Recall that the purpose of the third
sub-protocol of the original Suzuki-Nakada protocol was mutual authentication of U and V .
This can be represented by logical formulae of the form U j� (V jj� : : :) and V j� (U jj� : : :).
Note that U j� (V jj�) can be derived from the re-constructed second sub-protocol, which
means that V is already authenticated to U , and there is no reason to authenticate it again
in the third sub-protocol. On the other hand, no formula of the form V j� (U jj� : : :) can
be derived from the �rst and second sub-protocols. Therefore, we set the goal of the third
sub-protocol to V j� (U jj� ack), where ack represents a value (acknowledgement) known to
both U and V a priori. Starting from this goal, we obtained the following assumption:

(A11) V 2 r(Ca) and V j� ((s(Ca) = fUg) ^ \(Ca))

There exists a channel Ca such that V can read from Ca, and V believes that only U
sends messages via Ca and Ca is timely. This channel is implemented using the freshly
established session key Ka.

and message sending step:

V � Ca(ack)

Alternatively, we could consider that the goal of the third sub-protocol is explicit key
con�rmation. This goal can be represented by the formulae U j� (V j�) and V j� (U j�),
where = ((Ka � fU; V g) ^](Ka)). Again, U j� (V j�) can be derived from the re-
constructed second sub-protocol, but V j� (U j�) can be derived neither from the second
nor from the �rst sub-protocol. Therefore, we set the goal of the third sub-protocol to
V j� (U j�). Staring from this goal, we obtained the following two assumptions:

(A11') V 2 r(Ca) and V j� ((s(Ca) = fUg) ^ \(Ca))

This assumption is the same as (A11).

(A12') V j� ((U jj�)) (U j�))

V believes that U honestly makes statements about the session key (i.e., if U says that
Ka is a fresh session key between U and V , then U actually believes that).

46 Chapter 2: Protocol construction with the logic of channels

The message sending step that we obtained for the alternative goal is the following:

V � Ca()

2.4.4 Implementation of the abstract protocol

Putting together the message sending steps that we obtained for the sub-protocols we arrive
to the following abstract protocol:

Abstract corrected Suzuki-Nakada protocol

(msg1) V � r0
(msg2) H � r1
(msg3) V � C 0HV (r1); r2
(msg4) H � C 00HV (r2);CHV (; r0)
(msg5) U � CUH((V j� ; r0); r0)
(msg6) V � Ca(ack) or V �Ca()

Given the abstract protocol and the set of assumptions about the channels that it uses, we
can now suggest implementations. In fact, there are many ways to translate the channels into
the use of cryptographic primitives. For instance, an implementation that uses symmetric-key
encryption (and thus, in this sense, resembles the original protocol) could look like this:

A correction of the Suzuki-Nakada protocol

(msg1) U ! V : request(U;H); r0
(msg2) V ! H : r1
(msg3) H ! V : fH; r1gKHV

; r2
(msg4) V ! H : fV; r2gKHV

; fU; Ka; r0gKHV

(msg5) H ! V : fV; Ka; r0gKUH

(msg6) V ! U : fV; Ka; r0gKUH

(msg7) U ! V : fackgKa

Here, each channel is implemented by symmetric key encryption with some further con-
straint. A general assumption that we make is that the encryption primitive provides message
authentication as well. In general this is not true, but it can be achieved by putting enough re-
dundancy into the messages (e.g., by appending the hash value of the message to the message
before encryption).

The channel C 0HV is realized by encryption with KHV with the constraint that the �rst
�eld of every encrypted message must be the name of H, and the second �eld must be a
random number. Requiring that the �rst �eld is the name of H ensures that the response
to the challenge of V in (msg3) cannot be confused with a response to a similar challenge of
H in another run of the protocol. Thus, reection attacks are excluded. Similarly, C 00HV is
realized by encryption with KHV with the constraint that the �rst �eld of every encrypted
message must be the name of V , and the second �eld must be a random number.

The channel CHV is implemented by encryption with KHV with the constraint that the
�rst �eld of every encrypted message must be the identi�er of a user, the home network of

2.4 Correction 47

which is H, and the second and third �elds must be a session key and a random number,
respectively. This is �ne as long as no user can have two home networks, which we take as
an assumption.

CUH is realized by encryption with KUH with the constraint that only H encrypts mes-
sages with this key. Finally, Ca is realized by encryption with Ka with the constraint that
only U encrypts messages with this key. Note, however, that sinceKa is a session key between
U and V , it is very unlikely that only U encrypts messages with Ka. Therefore, depending
on the further usage of Ka, some additional constraint might be necessary. One option would
be, for instance, to require that neither U nor V ever sends the special message ack to the
other party encrypted with Ka after the completion of the protocol.

In addition to the channels, we should say some words about the implementation of the
idealized messages that contain the formula . Actually, refers to U , V , andKa, so it should
be possible to associate these entities to the appropriate messages of the implementation. In
the second part of (msg4), U and Ka are explicitly mentioned, and V can be inferred from the
context, namely, from the source set of the channel, on which the message is sent. Similarly,
in (msg5) and (msg6), V and Ka are explicitly mentioned, and U can be inferred from the
context, namely, from the fact that the message is encrypted with KUH , and the destination
of such a message can only be U .

It is easy to verify that the above correction of the Suzuki-Nakada protocol resists against
all the attacks described in Section 2.3. An interesting thing is that the correction that we
obtained using the synthesis rules resists against Attack 1 and Attack 2, although these attacks
are interleaving attacks (i.e., attacks that involve simultaneous runs of multiple instances of
the same protocol), and they cannot be represented in our simple model, where we distinguish
only two epochs: past and present. This illustrates that our approach is useful in designing
protocols that resist against subtle attacks.

In addition, the correction is simpler than the original protocol in two senses. First, it
uses one less message ows. Second, it does not involve the use of the temporary cipher key
Kt. Note that the use of Kt in the original protocol is somewhat paradoxical. The authors of
[SN97] mention that \it is possible that the entities concerned take illegal actions in roaming-
service provision. Therefore, it is desirable not to leak the authentication keys needed for their
authentication to the other networks." Thus, it seems that the role of Kt is to hide Ka from
the home network H. However, Kt is sent in clear to U in a later step of the protocol. This
means that if H wants, then it can easily obtain Ka: an agent can eavesdrop communications
within the visited network, and send temporary cipher keys to the home network, which can
use them to obtain authentication keys. This unclear feature is automatically eliminated from
the corrected protocol.

Clearly, implementations di�erent from the one described above are possible too. Note,
for instance, that the channels C 0HV , C

00
HV , and Ca do not carry any secret information. In

addition, as long as the implementation of does not reveal the session key Ka, we do not
need to restrict either who can read from CHV and CUH . These observations lead to the
following implementation:

48 Chapter 2: Protocol construction with the logic of channels

Another correction of the Suzuki-Nakada protocol

(msg1) U ! V : request(U;H); r0
(msg2) V ! H : r1
(msg3) H ! V : macKHV

(H; r1); r2
(msg4) V ! H : macKHV

(V; r2); fKagKHV
; macKHV

(U; h(Ka); r0)
(msg5) H ! V : fKagKUH

; macKUH
(V; h(Ka); r0)

(msg6) V ! U : fKagKUH
; macKUH

(V; h(Ka); r0)
(msg7) U ! V : macKa(ack)

where mack(m) denotes message m (in clear) together with a message authentication code
computed on m with the key k, and h is a cryptographic hash function. Due to the properties
of cryptographic hash functions, h(Ka) does not reveal Ka, and at the same time it is a
good reference to Ka. The advantage of this implementation is that it uses less encryption
operations. Another advantage is that only a short message (namely, the keyKa) is encrypted,
thus the cipher can be used in electronic code book (ECB) mode [MvOV97], which might have
been a design criterion for the original protocol, although it was not mentioned in [SN97].

2.5 Summary

The goal of this chapter was to demonstrate our systematic approach to protocol construc-
tion and the usage of the logic of channels introduced in Chapter 1. For this reason, we
explained some weaknesses in an authenticated key transport protocol proposed in the litera-
ture in terms of our logic, and re-designed the protocol from scratch using our synthesis rules.
We showed two possible implementations of the resulting abstract protocol. The protocols
that we obtained are robust and resist against various attacks, including even interleaving
attacks. Furthermore, they are intuitively simpler and use less messages than the original
protocol. Another important output of our systematic protocol construction method was a
set of assumptions upon which the correctness of the protocol depends.

Publication: [BGSW00]

Part II

Rational exchange protocols

49

Chapter 3

An informal overview of the

concept of rational exchange

3.1 Introduction

There are many applications where two remote parties have to exchange digital items via a
communication network. Examples include

� electronic contract signing { where the contracting parties have to exchange non-repudi-
able commitments (typically implemented by digital signatures) to the contract text;

� certi�ed electronic mail { where the sender and the recipient have to exchange a mail
for an acknowledgement of receipt; and

� purchase of network delivered services { where the user and the service provider have
to exchange a payment for a service (e.g., a music �le, news, etc.).

An inherent problem in these applications is that a misbehaving party may bring the other
party in a disadvantageous situation. For instance, a service provider may deny service
provision after receiving payment from a user. This may discourage the parties and hinder
otherwise desired transactions. We will refer to this problem as the exchange problem.

The best known approach to solve the exchange problem is to use a two-party fair exchange
protocol. Such a protocol guarantees for a correctly behaving party (i.e., a party that follows
the protocol faithfully) that it cannot su�er any disadvantages { no matter whether the other
party behaves correctly or tries to cheat. Thus, executing the protocol faithfully is safe for
both parties.

Two-party fair exchange has been extensively studied by the research community. Early
work has resulted in fair exchange protocols that are based on gradual secret release schemes
(e.g., [Cle90]). In these protocols, the items of the parties are exchanged in small pieces,
typically bit-by-bit in such a way that the computational e�ort required from the parties to
obtain each other's remaining bits is approximately equal at any stage during the execution
of the protocol. Although they are theoretically important, these protocols are typically not
considered to be suitable for practical applications.

Practical fair exchange protocols use a trusted third party that assists the main parties
to accomplish fair exchange. There are o�-line and on-line protocols proposed in the liter-
ature. O�-line protocols (e.g., [ASW97, BDM98, ASW00]) require the trusted third party

51

52 Chapter 3: An informal overview of the concept of rational exchange

to participate actively only when one of the main parties has decided to invoke the third
party. These protocols are also called optimistic, because they are most e�cient in the
hoped-for case when the third party does not need to be invoked. On-line protocols (e.g.,
[Ket95, DGLW96, Tyg96, ZG96, FR97]) require the trusted third party to participate in every
exchange.

In principle, fair exchange protocols provide an ultimate solution to the exchange problem.
However, there are applications where fair exchange cannot be used for technical reasons. An
example is when at least one of the parties is permanently disconnected from the trusted
third party. Consider, for instance, a system which consists of a set of vending machines
that sell electronic tickets (e.g., tickets for movies or public transportation) and a set of users
that are equipped with small portable devices (e.g., smart-cards or PDAs) that can be used
to buy and store those tickets. This system can work in the following way: Users can load
their portable devices with electronic coins at home or in a bank. When a user wants to buy
a ticket from a vending machine, the portable device of the user and the vending machine
execute a transaction in which the appropriate number of coins are exchanged for the desired
ticket. The ticket is then stored on the portable device, which can later output it if necessary.
The communication between the portable device and the vending machine can be based on
short range communication technology (e.g., infrared or Bluetooth, or if the portable device
is a smart-card, then it can simply be inserted in the smart-card reader built into the vending
machine). Now, assume that the portable device has no other communication capabilities (for
smart-cards this is de�nitely the case, and for most of today's PDAs as well). This means that
the portable device cannot directly connect to the network, but only via the vending machine.
In other words, if a fair exchange protocol was used in this scenario, then the communication
between the portable device and the trusted third party would be fully under the control
of the vending machine. We are not aware of any fair exchange protocol that can provide
fairness to the portable device in these circumstances.

Therefore, we believe that it makes sense to study alternative approaches to alleviate the
exchange problem. Such an alternative approach is rational exchange. To the best of our
knowledge, this term was �rst used by Syverson in [Syv98]. Roughly, a rational exchange
protocol ensures that a misbehaving party cannot gain any advantages by the misbehavior.
Therefore, rational (self-interested) parties have no reason to deviate from the protocol. This
means that cheating should happen only rarely.

As opposed to fair exchange, rational exchange has received less attention from the re-
search community. We are aware only of a few rational exchange protocols proposed in the
literature [Jak95, San97, Syv98]. These protocols seem to provide weaker guarantees than
fair exchange protocols, but at the same time, they are also less complex. Therefore, rational
exchange protocols can be viewed as a trade-o� between complexity and true fairness, and as
such, they may provide interesting solutions to the exchange problem in certain applications.

Our goal in the second part of this thesis is to study the concept of rational exchange and
its relationship with fair exchange. For this reason, in the next chapter, we will introduce a
formal model of exchange protocols, which is based on game theory. We will use this model,
to give a formal de�nition for rational exchange relating it to the concept of Nash equilibrium
in games. Furthermore, we will show how the concept of fair exchange can be de�ned in
our model. This will allow us to compare the two notions and to prove formally (within our
model) that fair exchange implies rational exchange, but the reverse is not true. To the best
of our knowledge, such a study has not been performed yet in the literature.

3.2 An example: A rational payment protocol 53

However, before starting with the formal treatment, in the rest of this chapter, we give an
example for a rational exchange protocol. Furthermore, we show how the main idea of this
protocol can be used to improve a family of micropayment schemes with respect to fairness
without substantial loss in e�ciency in most practical cases. Our goal with these examples
is to further illustrate the usefulness of the concept of rational exchange and to prepare the
grounds for the formal de�nitions of the next chapter.

3.2 An example: a rational payment protocol

Let us consider the following payment protocol, which can be used for transferring payment
from a user U to a vendor V in exchange for some service provided by V to U . Besides the
main parties U and V , the protocol uses a trusted third party, the bank B.

A rational payment protocol

U ! V : m1 = (U; V; tid ; val ; h(rnd); �U (U; V; tid ; val ; h(rnd)))
V ! U : m2 = srv
U ! V : m3 = rnd
if V received m1 and m3:

V ! B : m4 = (m1; rnd ; �V (m1; rnd))
if V received only m1:

V ! B : m04 = (m1; �V (m1))

We assume that before starting the protocol, U and V have already agreed on the details
of the transaction. In particular, we assume that U and V agreed on the value val of the
payment that U is supposed to pay to V , and the description of the service srv that V is
supposed to provide to U . In addition, we assume that U and V also agreed on a fresh
transaction identi�er tid .

U starts the protocol by generating a random number rnd and computing its hash value
h(rnd). Then, she generates the digital signature �U(U; V; tid ; val ; h(rnd)), and sends m1 to
V . When V receives m1, it provides the service to U (represented by sending m2 = srv). If
U is satis�ed, then she reveals the random number rnd to V . If V received m1 and m3, then
it generates the digital signature �V (m1; rnd), and sends m4 to B. If V received only m1,
then it generates the digital signature �V (m1), and sends m04 to B.

Upon reception of m4, B veri�es that it has never processed a transaction between U and
V with the transaction identi�er tid before by looking up its internal database, where it logs
all processed transactions. Then, it veri�es that the hash value of rnd equals the hash value
in m1, and the digital signatures of U and V in the message are valid. If these veri�cations
are successful, then it logs the transaction, and transfers the value val from the account of U
to the account of V . Upon reception of m04, B performs similar veri�cations, and if these are
successful, then B logs the transaction, and it debits U 's account with the value val , but it
does not credit V 's account. This leaves B with a surplus of the value val . This surplus is
handled according to some policy (e.g., it can be distributed to charity purposes). This policy
is veri�ed and the respect for it is controlled by independent law enforcement organizations,
thus rendering collusion between the user and the bank, as well as between the vendor and
the bank di�cult.

54 Chapter 3: An informal overview of the concept of rational exchange

What does this protocol achieve? It is clear that it does not provide fairness, since any
of the parties can bring the other, correctly behaving party in a disadvantageous situation.
For instance, U can refuse to reveal rnd to V . In this case, V can send only m04 to B, which
means that V does not get paid for the service that it provided. Similarly, V can refuse the
provision of the service after having received m1 from U . In this case, V can send m04 to B,
which means that U 's account is debited, although she did not receive any service.

On the other hand, note that none of the parties gain any (�nancial) advantages by
cheating. The reason is that V cannot obtain any money without providing the service to
U (since U reveals rnd only if she received the service); and U cannot receive any service
without being charged (since V provides the service only if it receivedm1, in which case it can
send at least m04 to B). This means that none of the parties has an incentive to deviate from
the protocol. In a word, the protocol seems to be a rational exchange protocol. Indeed, in
Chapter 5, we will prove this formally within the model that we will introduce in Chapter 4.

We would also like to point out that the protocol uses only a trusted third party (the
bank) that is needed anyway in order to maintain the accounts of the users and the vendors.
In addition, the bank performs essentially the same operations as it would perform in any
check based payment systems.

3.3 An application: Removing the �nancial incentive to cheat

in micropayment schemes

Micropayment schemes (e.g., [Ped95, GMA+95, AMS95, RS96, HSW96] and more recently
[MPM+98]) are electronic payment schemes explicitly developed for very low value payment
transactions, such as payment for information on the World Wide Web and payment for
each second of a phone call. The main design goal of micropayment protocols is e�ciency.
Reaching this goal requires that communication and processing costs of micropayments be
kept as low as possible, otherwise these costs may exceed the value of the payment itself, and
thus, applying the micropayment scheme would not be economical. Other properties, and in
particular fairness, are sacri�ced to e�ciency.

Since micropayment schemes are not fair, cheating is always possible: If the payer has
to move �rst, then the payee can cheat by not providing the service after a micropayment
has been received, otherwise, if the payee has to move �rst, then the payer can cheat by not
sending the micropayment for the received service. It is argued that this potential misbehavior
of the parties is tolerable, since the potential loss is very low. While this is true considering
a single transaction, it might be a problem considering the whole system and longer time
periods. In order to illustrate this, let us consider a service provider that persistently cheats
by stealing 1 cent in each transaction. This service provider can earn more than 1 million
dollars in a year assuming that it has about 300000 transactions per day. As a rough guide,
a rather small telecommunication network operator with 50000 subscribers processes 300000
phone calls per day. One can say that a service provider risks to obtain a bad reputation
by such a misbehavior, and therefore, it will not cheat. This may be true, however, as we
will show in this section, such a misbehavior can also be made uninteresting for the service
provider based on a technical approach.

In principle, a fair exchange protocol could be used to exchange micropayments for ser-
vices. However, this would be too expensive (ine�cient) as a solution for micropayments.
Now we show, how a rational exchange protocol may provide an elegant solution in this situa-

3.3 An application: Removing the �nancial incentive to cheat in micropayment schemes 55

tion. We describe how a family of micropayment schemes can be improved and made rational
(so that cheating becomes uninteresting for any of the parties) at virtually no cost and loss
in e�ciency. Our solution is based on the main idea of the rational payment protocol of the
previous section.

3.3.1 Original micropayment scheme

We only consider micropayment schemes where payment is based on the successive release
of elements in a chain of cryptographic hash values (e.g., [Ped95, AMS95, RS96, HSW96,
MPM+98]). In particular, we will illustrate our ideas by extending the PayWord system
[RS96]. Other members of the same family can be extended in a similar way.

There are three roles in PayWord: the user U , the vendor V , and the broker B. Each
user is registered with at least one broker. This relationship is represented by a PayWord
certi�cate issued by the broker to the user. User U 's certi�cate CU contains the broker's
name B, the user's name U , a public key KU , such that the corresponding private key K�1U

is known exclusively to U , and other data that is not relevant to our discussion. CU is signed
by B.

When U wants to buy some services from V , she generates a fresh chain of hash values
w0; w1; : : : ; wn by picking wn at random and then computing wi = h(wi+1) for i = n� 1; n�
2; : : : ; 0, where h denotes a publicly known, cryptographically strong one-way hash function
and n is chosen by U . w1; w2; : : : ; wn are called paywords. w0 is not a payword itself; it is
called the root of the payword chain. Then, U signs a commitment M to the payword chain
with the private key K�1U . M contains the vendor's name V , the user's certi�cate CU , the
root of the payword chain w0, and other data that is not relevant to our discussion. This
commitment authorizes B to pay V for any of the paywords w1; w2; : : : ; wn that V redeems
with B later. U sendsM to V . After veri�cation of the signature on M , V stores M for later
use.

The i-th micropayment from U to V consists of the pair (wi; i). This can be veri�ed by
V using wi�1, which is known from the previous micropayment or from the commitment in
case of i = 1. A service session consists of a sequence of micropayments:

Service session in PayWord

U ! V : w1; 1
V ! U : �rst piece of the service
U ! V : w2; 2
V ! U : second piece of the service
. . .
U ! V : w`; `
V ! U : last piece of the service

where ` � n.
After service provision, V contacts B, which it knows from CU , and presents M and the

last micropayment (w`; `). B checks the signature on M , and veri�es if ` applications of h on
w` gives w0, which is in M . If all the veri�cations are successful, then B pays V the amount
corresponding to ` paywords and charges that amount to the billing account of U .

56 Chapter 3: An informal overview of the concept of rational exchange

PayWord is very economical in terms of the number of public key operations performed.
In particular, the user has to sign only one commitment, which in turn allows a potentially
large number of self-authenticating micropayments to be made to the same vendor. This is
achieved by the application of the cryptographically strong one-way hash function h, which
guarantees that only the user can generate the next payword (assuming that the user keeps
wn secret, which is in her own interest). Furthermore, paywords do not need to be encrypted,
since they cannot be re-used and they represent �nancial value only for the vendor speci�ed
in the commitment to which the paywords belong.

As discussed before, PayWord does not provide fairness. The vendor may cheat the user
by sending an unexpected service or nothing at all. If such a misbehavior is detected by the
user, then she can stop sending more paywords, but she still loses the last one already sent.
Since a payword has a very low value, this does not cause too much damage for the user. A
persistently cheating vendor, however, can earn a substantial amount of money in this way.

3.3.2 Improved micropayment scheme

We will now present our extension to PayWord that removes the �nancial incentive to cheat
and, thus, makes the misbehavior described above practically futile. We modify the original
scheme only slightly and show that e�ciency does not decrease substantially in most practical
cases. Our basic idea stems from the rational payment protocol described in Section 3.2: We
double the size of the hash chain and let a payword consist of two consecutive hash values.
Intuitively, these can be thought of as two half-paywords. The �rst half-payword is sent to
the vendor before the service provision and the second half is sent after the service has been
provided1. Thus, the vendor can redeem the full payword only if it has provided the service.
Now, this gives an advantage to the user, who can refuse to send the second half-payword
hoping that she can escape from paying for the received service. In order to deter the user
from this misbehavior, we let the broker charge the full value of a payword to the user's
account if the vendor presents the �rst half-payword (which leaves the broker with a surplus
of the value of one payword). This makes cheating uninteresting to the user, because she has
to pay, even though the vendor cannot get the money. The surplus of the broker is handled
in a similar way as in the payment protocol of Section 3.2.

We modify only the micropayment protocol and the rules of the broker. When user
U wants to buy some services from vendor V , she generates a fresh chain of hash values
w00; w1; w

0
1; w2; w

0
2; : : : ; wn; w

0
n by picking w0n at random and then computing wi = h(w0i) and

w0i�1 = h(wi) for i = n; n� 1; : : : ; 1. The root of the chain is now w00 and U puts this value in
the commitment, which she constructs in the same way as in the original scheme and sends
to V at the beginning of the service session.

The i-th micropayment has three steps. First U sends the pair (wi; 2i� 1) to V (the �rst
half-payword), then V provides the i-th piece of the service to U , and �nally U sends the
pair (w0i; 2i) to V (the second half-payword). Each half-payword can be checked by V using
the previously received half-payword. It might seem that our scheme requires twice as many
messages from U to V as the original one, but fortunately this is not true in most practical
cases, because a service session consists of a series of consecutive micropayments, and U can
send the second half-payword of the i-th payment (w0i; 2i) and the �rst half-payword of the
(i+ 1)-st payment (wi+1; 2i+1) in a single message. In fact, since V can always compute w0i

1This is similar to the way how ripped coins are used in [Jak95].

3.3 An application: Removing the �nancial incentive to cheat in micropayment schemes 57

from wi+1, only the second pair (wi+1; 2i + 1) has to be sent. A service session, thus, looks
like this:

Service session in the improved scheme

U ! V : w1; 1
V ! U : �rst piece of the service
U ! V : w2; 3
V ! U : second piece of the service
: : :
U ! V : w`; 2`� 1
V ! U : last piece of the service
U ! V : w0`; 2`

which involves only one additional message compared to the original scheme.
If everything goes well, then V can present the commitment and the pair (w0`; 2`) to B,

which performs the same veri�cations (with twice as many hash computations) as in the
original scheme. If the veri�cations are successful, then B pays V the amount corresponding
to ` paywords and charges the same amount to the account of U . If something goes wrong
and the last half-payword is missing, then V can only present the commitment and the pair
(w`; 2`�1) to B. After the veri�cations, B pays V the amount corresponding to `�1 paywords
and charges U for the amount corresponding to ` paywords.

3.3.3 Brief analysis

Rationality

Just like in the rational payment protocol of Section 3.2, none of the parties gain any �nancial
advantages by cheating. In PayWord, it is possible that the vendor provides services that are
worth ` � 1 paywords and redeems ` paywords. In our scheme, the vendor can never earn
more than the value of the services it provided, since the user authorizes the broker to pay the
vendor after she has received the services (by sending the second half-payword). Similarly, the
user can never receive services that are worth more than that she is charged for, because she
lets the broker charge her before receiving the service (when releasing the �rst half-payword).

E�ciency

In most practical cases, our scheme is not substantially less e�cient than PayWord (and
other similar micropayment schemes). First of all, the number of public key cryptographic
operations (digital signature generation and veri�cation) is the same as in PayWord. Although
each sequence of consecutive micropayments in our scheme requires one additional message
from the user to the vendor, this is negligible considering that such a sequence probably
consists of hundreds of messages.

We require the hash chain to be twice as long as in the original scheme. This requires twice
as many hash computations by the user (when the paywords are generated), by the vendor
(when the paywords are veri�ed), and by the broker (when the paywords are redeemed). The
user and the broker cases are not real e�ciency problems, because these computations can
be performed o�-line.

58 Chapter 3: An informal overview of the concept of rational exchange

The size of the memory where the user stores the chain does not need to be doubled. It is
more e�cient to store only the �rst half-paywords (i.e., w1; w2; : : : ; wn) and w

0
n additionally,

because the second half-paywords are usually not used in a sequence of consecutive micropay-
ments. If a second half-payword is needed, then it can easily be computed by one application
of the hash function on one of the stored values. The required memory sizes for the vendor
and the broker are the same as in the original scheme.

Thus, the only factor that makes our scheme less e�cient than the original one is that
veri�cation of the micropayments requires twice as many on-line hash computations by the
vendor (i.e., two hash computations per micropayment). This is the \price" that we have to
pay for the additional guarantees that our scheme provides2.

3.4 Summary

In this chapter, we introduced the concept of rational exchange informally. We gave an
example for a rational payment protocol, in which none of the parties can gain any �nancial
advantages by cheating. Our protocol uses only a trusted third party that would be needed
anyway in order to maintain the accounts of the users. Furthermore, the trusted third party
performs essentially the same operations as it would perform in any check based payment
system (in which cheating is not made uninteresting).

We used the main idea of the example rational payment protocol to improve a family of
micropayment schemes. More precisely, we made the PayWord scheme rational at virtually no
cost and loss in e�ciency. This example shows that rational exchange protocols may provide
interesting solutions in situations where a fair exchange protocol would be too expensive.

Publications: [But00, BB01]

2One of the reviewers of this thesis (Asokan) called our attention to another way of improving the original
PayWord scheme that does not require the doubling of the size of the hash chain, and thus, fully retains the
e�ciency of the original scheme. In this improvement, always the vendor moves �rst by providing the next
piece of the service, and the user moves next by sending the next payword in the chain. Thus, a service session
looks like this:

V ! U : �rst piece of the service

U ! V : w1; 1
V ! U : second piece of the service

U ! V : w2; 2
. . .
V ! U : last piece of the service

U ! V : w`; `

When the vendor redeems the paywords at the bank, it indicates whether it correctly received the last payword
or not (by setting a boolean ag in the redemption message). If the bank receives w` and no indication of
fault from the vendor, then it charges the user with ` units and credits the vendor with the same amount.
Otherwise, if the bank receives w` and an indication of a fault, then it charges the user with `+ 1 units and
credits the vendor with ` units. This protocol is rational, because the user cannot gain anything by not sending
the last payword w`, since the vendor can still make her charged with ` units, and because the vendor cannot
gain anything by maliciously indicating a fault.

Chapter 4

Protocol games and a formal

de�nition of rational exchange

4.1 Introduction

Our goal in this chapter is to give a formal de�nition for rational exchange. The value of a
formal de�nition is threefold:

� First, attempting to give a formal de�nition itself may help us to better understand the
concept.

� Second, it requires the construction of a mathematical model, in which other, simi-
lar concepts, such as fair exchange, could also be de�ned and compared to rational
exchange. Such a comparison may also help us to better understand rational exchange.

� Third, a formal de�nition is indispensable to rigorous veri�cation of rational exchange
protocols.

In order to give a formal de�nition for rational exchange, �rst we need an informal char-
acterization of it that we can formalize later on. A natural approach to obtain such a charac-
terization is to start from an informal de�nition of fair exchange. We have already mentioned
that a fair exchange protocol should guarantee for each correctly behaving party that it can-
not su�er any disadvantages. More precisely, the following is required for a two-party fair
exchange protocol:

� Fairness: If a party A behaves correctly, then the other party B cannot get the item of
A unless A gets the item of B.

Furthermore, a useful fair exchange protocol should also satisfy the following requirements
[Aso98, PVG01]:

� Termination: The protocol will eventually be completed (i.e., a correctly behaving party
will terminate execution at a certain point in time).

� E�ectiveness: If both parties behave correctly, then each will have access to the expected
item when the protocol is completed.

59

60 Chapter 4: Protocol games and a formal de�nition of rational exchange

Additional requirements, such as non-repudiation, might also be speci�ed [Aso98]. However,
these are not integral requirements for fair exchange, therefore, we do not consider them here.

Now, rational exchange protocols can be de�ned in a similar way, but instead of fairness,
the following is required:

� Rationality : None of the parties are motivated to misbehave. In other words, if one
of the parties misbehaves, then she may bring the other, correctly behaving party in a
disadvantageous situation, but she cannot gain any advantages by the misbehavior.

The above characterization is su�cient for a general understanding of the concept of
rational exchange, and it seems to be a good starting point for the formalization. Note
however that it is certainly not precise enough for a rigorous veri�cation of a rational exchange
protocol. In addition, it does not shed light on the relationship between rational exchange
and fair exchange. One might have an intuitive feeling that fairness is a stronger requirement
than rationality, but it seems to be di�cult to prove this using only the informal de�nitions
above. These observations further justify our goal of de�ning rational exchange formally.

The mathematical model, in which we will give a formal de�nition for rational exchange,
is based on game theory [OR94]. Game theory is a set of analytical tools developed to
study situations in which self-interested parties (which want to maximize their own bene�ts)
interact with each other according to certain rules. Since exactly this kind of situations occur
in exchange protocols, game theory appears to be a natural choice.

Thus, we model the situation in which participants of a given exchange protocol �nd
themselves as a game. Hereafter, we refer to this game as the protocol game. The protocol
game encodes all the possible interactions of the protocol participants. The protocol partic-
ipants are modeled as players. The protocol itself (as a set of rules) is represented as a set
of strategies (one strategy for each protocol participant). Misbehavior means that a protocol
participant follows a strategy that is di�erent from its prescribed strategy.

We de�ne the above described requirements for rational exchange protocols (i.e., termi-
nation, e�ectiveness, and rationality) in terms of properties of the protocol game and the
prescribed strategies of the protocol participants. Most importantly, we have been inspired
by the striking similarity between the informal de�nition of rationality above and the concept
of Nash equilibrium in games. Therefore, we de�ne rationality in terms of a Nash equilibrium
in the protocol game.

In addition, we also give a formal de�nition for the fairness requirement in our model.
Representing the concepts of rational exchange and fair exchange in the same model allows us
to study their relationships. In particular, it allows us to prove that fairness implies rationality
(assuming that the protocol satis�es certain additional requirements), but the reverse is not
true in general. Thus, the result that we obtain from the model justi�es our intuition that
fairness is a stronger requirement than rationality.

Finally, de�ning a formal model for exchange protocols and giving a formal de�nition
for rational exchange in this model allows us to rigorously verify existing rational exchange
protocols. In order to illustrate this, in Chapter 5, we formally prove that the payment
protocol described in Section 3.2 and Syverson's exchange protocol described in [Syv98] satisfy
the de�nition of rational exchange.

To the best of our knowledge, we are the �rst who formalized the concept of rational
exchange in its full generality, studied its relation to fair exchange, and provided rigorous
proofs of rationality for existing rational exchange protocols. Although game theory has
already been applied in the context of exchange protocols (see e.g., [San97, KR00]), we are

4.2 Preliminaries 61

not aware of any formal models with the same precision and generality as our protocol game
model.

The outline of this chapter is the following: In Section 4.2, we briey introduce some basic
notions from game theory that we will use in the development of our model. We present a
general framework for the modeling of exchange protocols as games in Section 4.3. Based
on this, in Section 4.4, we formally de�ne various properties of exchange protocols including
rationality and fairness. In Section 4.5, we study the relationship between rational exchange
and fair exchange, and formally prove that fairness implies rationality, but the reverse is not
true. In all the above mentioned sections, we assume that the network that is used by the
protocol participants is reliable. In Section 4.6, we sketch how this assumption could be
relaxed. Finally, in Section 4.7, we report on some related work.

4.2 Preliminaries

In this section, we briey introduce some notions from game theory that we will use in the
development of our model later. These notions include the de�nition of extensive games,
strategies, and the concept of Nash equilibrium. Our presentation follows the presentation
of [OR94], however, there are some di�erences in the de�nition of strategies, which we will
explain at the appropriate point below.

4.2.1 Extensive games

An extensive game with imperfect information or shortly an extensive game is a tuple

hP;Q; p; (Ii)i2P ; (�i)i2P i

where

� P is a set of players;

� Q is a set of action sequences that satis�es the following properties:

{ the empty sequence � is a member of Q,

{ if (ak)
w
k=1 2 Q and 0 < v < w, then (ak)

v
k=1 2 Q,

{ if an in�nite action sequence (ak)
1
k=1 satis�es (ak)

v
k=1 2 Q for every positive integer

v, then (ak)
1
k=1 2 Q;

If q is a �nite action sequence and a is an action, then q:a denotes the �nite action
sequence that consists of q followed by a. An action sequence q 2 Q is terminal if it is
in�nite or if there is no a such that q:a 2 Q. The set of terminal action sequences is
denoted by Z. For every non-terminal action sequence q 2 Q n Z, A(q) denotes the set
fa : q:a 2 Qg of available actions after q.

� p is a player function that assigns a player in P to every action sequence in Q n Z;

� Ii is an information partition of player i 2 P , which is a partition of the set fq 2
QnZ : p(q) = ig with the property that A(q) = A(q0) whenever q and q0 are in the same
information set Ii 2 Ii;

62 Chapter 4: Protocol games and a formal de�nition of rational exchange

� �i is a preference relation of player i 2 P on Z.

The interpretation of an extensive game is the following: Each action sequence in Q
represents a possible history of the game. The action sequences that belong to the same
information set Ii 2 Ii are indistinguishable to player i. This means that i knows that the
history of the game is an action sequence in Ii but she does not know which one. The empty
sequence � represents the starting point of the game. After any non-terminal action sequence
q 2 Q n Z, player p(q) chooses an action a from the set A(q). Then q is extended with a,
and the history of the game becomes q:a. The action sequences in Z represent the possible
outcomes of the game. If q; q0 2 Z and q �i q

0, then player i prefers the outcome q0 to the
outcome q.

The preference relations of the players are often represented in terms of payo�s: a vector
y(q) = (yi(q))i2P of real numbers is assigned to every terminal action sequence q 2 Z in such
a way that for any q; q0 2 Z and i 2 P , q �i q

0 i� yi(q) � yi(q
0).

Small �nite games can conveniently be represented by trees. The edges and the vertices
of the tree correspond to actions and action sequences, respectively. A distinguished vertex,
called the root, represents the empty sequence �. Every other vertex u represents the sequence
of the actions that belong to the edges of the path between the root and u. Let us call a
vertex u terminal if the path between the root and u cannot be extended beyond u. Terminal
vertices represent the terminal action sequences in the game. Each non-terminal vertex u
is labeled by p(q) where q 2 Q n Z is the action sequence that belongs to u. Finally, the
terminal vertices may be labeled with payo� vectors to represent the preference relations of
the players.

1

2 2

A B

L RLR

(2, 5) (1, 4)

(5, 3)
1

C D E F

1
(0, 0)

(3, 1)(4, 2)

Figure 4.1: Tree representation of an extensive game

As an example let us consider Figure 4.1, which represents a game, where

� P = f1; 2g,

� Q = f�; A; B; A.L; A.R; B.L; B.R; A.L.C; A.L.D; B.R.E; B.R.Fg,

� p(�) = 1; p(A) = 2; p(B) = 2; p(A.L) = 1; p(B.R) = 1,

� I1 = ff�g; fA.Lg; fB.Rgg and I2 = ffA; Bgg (the nodes that represent action sequences
that belong to the same information set are connected with a dashed line in Figure 4.1),
and

4.2 Preliminaries 63

� B.L �1 A.L.D �1 A.L.C �1 B.R.F �1 B.R.E �1 A.R and B.L �2 B.R.F �2 B.R.E �2

A.R �2 A.L.D �2 A.L.C.

4.2.2 Strategy

In [OR94], a strategy of player i is de�ned as a function si that assigns an action in A(q)
to each non-terminal action sequence q 2 Q n Z for which p(q) = i, with the restriction that
it assigns the same action to q and q0 whenever q and q0 are in the same information set of
i. This means that si speci�es the action to be chosen by i for every action sequence after
which it is i's turn to move, even for action sequences that never occur if i follows si. In other
words, the domain dom(si) of si is de�ned as dom(si) = fq 2 Q nZ : p(q) = ig. The need for
this de�nition of strategy arises in the concept of subgame perfect equilibrium. Since we will
not use this equilibrium concept, we de�ne strategies in a slightly di�erent way.

In fact, our de�nition of strategy is similar to the above de�nition, with the di�erence
that we de�ne the domain of a strategy in a more restrictive way. For us, the domain dom(si)
of a strategy si of player i contains only those non-terminal action sequences q for which
p(q) = i and q is consistent with the moves prescribed by si. Formally, we can de�ne dom(si)
in an inductive way as follows: A non-terminal action sequence q = (ak)

w
k=1 is in dom(si) i�

p(q) = i and

� either there is no 0 � v < w such that p((ak)
v
k=1) = i;

� or for all 0 � v < w such that p((ak)
v
k=1) = i, (ak)

v
k=1 is in dom(si) and si((ak)

v
k=1) =

av+1.

In [OR94], this notion is called reduced strategy.
We denote the set of all strategies of player i by Si. Since a strategy si assigns the same

action to every action sequence q that belongs to the same information set I, we sometimes
write si(I) instead of si(q).

A strategy pro�le is a vector (si)i2P of strategies, where each si is a member of Si. Some-
times, we will write (sj ; (si)i2Pnfjg) instead of (si)i2P in order to emphasize that the strategy
pro�le speci�es strategy sj for player j.

In the game of Figure 4.1, player 1 has four strategies sAC1 , sAD1 , sBE1 , and sBF1 , such that

� the domain of sAC1 is f�; A.Lg, and sAC1 (�) = A, and sAC1 (A.L) = C;

� the domain of sAD1 is f�; A.Lg, and sAC1 (�) = A, and sAC1 (A.L) = D;

� the domain of sBE1 is f�; B.Rg, and sBE1 (�) = B, and sBE1 (B.R) = E;

� the domain of sBF1 is f�; B.Rg, and sBF1 (�) = B, and sBF1 (B.R) = F.

Note that, for instance, the action sequence B.R is not consistent with the strategy sAC1 ,
because in B.R, � is followed by B, whereas sAC1 (�) = A 6= B. For this reason B.R is not in the
domain of sAC1 and sAD1 . For similar reasons A.L is not in the domain of sBE1 and sBF1 .

Player 2 has only two strategies sL2 and sR2 , since the constraint that a strategy assigns
the same action to every action sequence that belongs to the same information set must be
respected. The domain of both strategies is fA; Bg, and we have that sL2 (A) = sL2 (B) = L

and sR2 (A) = sR2 (B) = R. In short, we could write sL2 (fA;Bg) = L and sR2 (fA;Bg) = R.

64 Chapter 4: Protocol games and a formal de�nition of rational exchange

4.2.3 Nash equilibrium

Let o((si)i2P) denote the resulting outcome when the players follow the strategies in the
strategy pro�le (si)i2P . In other words, o((si)i2P) is the (possibly in�nite) action sequence
(ak)

w
k=1 2 Z such that for every 0 � v < w we have that sp((ak)vk=1)((ak)

v
k=1) = av+1. A

strategy pro�le (s�i)i2P is a Nash equilibrium i� for every player j 2 P and every strategy
sj 2 Sj we have that

o(sj ; (s
�
i)i2Pnfjg) �j o(s

�
j ; (s

�
i)i2Pnfjg)

This means that if every player i other than j follows s�i , then player j is not motivated to
deviate from s�j , because she does not gain anything by doing so.

The game of Figure 4.1 has a single Nash equilibrium, which is (sAC1 ; sL2). In order to see
that this is a Nash equilibrium, let us �rst assume that player 1 plays sAC1 . If player 2 now
plays sL2 , then her payo� is 5, whereas if she plays sR2 , then her payo� is 3. Thus, player 2 is
better o� if she plays sL2 . Now, let us assume that player 2 plays sL2 . If player 1 plays sBE1
or sBF1 , then her payo� is 0. If she plays sAC1 or sAD1 , then her payo� is 2 or 1, respectively.
Thus, the best response of player 1 to sL2 is sAC1 .

4.2.4 Restricted games

Let us consider an extensive game G = hP;Q; p; (Ii)i2P ; (�i)i2P i. Let us divide the player set
P into two disjoint subsets Pfree and P�x . Furthermore, let us �x a strategy sj 2 Sj for each
j 2 P�x , and let us denote the vector (sj)j2P�x of �xed strategies by �s�x . The restricted game
Gj�s�x is the extensive game that is obtained from G by restricting each j 2 P�x to follow the
�xed strategy sj. Formally, Gj�s�x = hP;Qj�s�x ; pj�s�x ; (Iij�s�x)i2P ; (�ij�s�x)i2P i, where

� Qj�s�x is the set of action sequences (ak)
w
k=1 2 Q such that for every 0 � v < w for which

p((ak)
v
k=1) = j 2 P�x we have that sj((ak)

v
k=1) = av+1;

� pj�s�x (q) = p(q) for each q 2 Qj�s�x ;

� for any q; q0 2 Qj�s�x , q and q
0 are in the same information set of a player i in Gj�s�x i�

they are in the same information set of player i in G; formally:

Iij�s�x =
[
I2Ii

fI \Qj�s�xg

� q �ij�s�x q
0 i� q �i q

0 for any terminal action sequences q; q0 2 Qj�s�x .

As an example, let us consider the game in Figure 4.2. Let Pfree = f1; 3g and P�x = f2g,
and let �s�x = (sLL2), where sLL2 is player 2's strategy that assigns L to both A and B. The
restricted game that we obtain is illustrated in Figure 4.3.

If we set Pfree = f2; 3g, P�x = f1g, and �s�x = (sA1), where s
A
1 is player 1's strategy that

assigns A to �, then we obtain the restricted game depicted in Figure 4.4.
For any player i 2 Pfree and for any strategy si 2 Si of player i, let sij�s�x denote the strategy

that si induces in the restricted game Gj�s�x . For instance, in the game of Figure 4.2, player
3 has a strategy sXV3 such that the domain of sXV3 is fA.L; A.R; B.L; B.Rg, and sXV3 (A.L) =
sXV3 (A.R) = X and sXV3 (B.L) = sXV3 (B.R) = V. In the restricted game of Figure 4.3, sXV3

4.3 Protocol games 65

1

2 2

A B

L RLR

3

V WV W

3 3 3

X YX Y

Figure 4.2: An extensive game

1

2 2

A B

L L

3

V W

3

X Y

Figure 4.3: A restricted game obtained from the game of Figure 4.2 by restricting player 2 to
follow the strategy sLL2

becomes sXV3j�s�x , where the domain of sXV3j�s�x is fA.L; B.Lg, and s
XV

3j�s�x
(A.L) = X and sXV3j�s�x (B.L) =

V.
Note that in Gj�s�x , only the players in Pfree can have several strategies; the players in P�x

are bound to the �xed strategies in �s�x . This means that the outcome of Gj�s�x solely depends
on what strategies are followed by the players in Pfree . In other words, the players in Pfix
become pseudo players, which are present, but do not have any inuence on the outcome of
the game.

The concept of Nash equilibrium in restricted games is de�ned as follows. Let us denote the
resulting outcome in Gj�s�x when the players in Pfree follow the strategies in the strategy pro�le
(sij�s�x)i2Pfree by oj�s�x ((sij�s�x)i2Pfree). A strategy pro�le (s�

ij�s�x
)i2Pfree is a Nash equilibrium in

the restricted game Gj�s�x i� for every player k 2 Pfree and every strategy skj�s�x of k in Gj�s�x
we have that

oj�s�x (skj�s�x ; (s
�
ij�s�x

)i2Pfreenfkg) �kj�s�x oj�s�x (s
�
kj�s�x

; (s�ij�s�x)i2Pfreenfkg)

4.3 Protocol games

In this section, we describe a general framework for the construction of protocol games.
This involves the de�nition of the players, the information sets of the players, the available

66 Chapter 4: Protocol games and a formal de�nition of rational exchange

1

2

A

L R

3 3

X YX Y

Figure 4.4: A restricted game obtained from the game of Figure 4.2 by restricting player 1 to
follow the strategy sA1

actions in each information set, the set of action sequences of the game, and the payo�s.
Before starting the description of these elements, we introduce our system model and some
limitations on the possible misbehavior of the protocol participants.

We should note that we consider only two-party exchange protocols (i.e., protocols that
involve only two main parties and possibly a trusted third party) for two reasons. First, we
want to make the presentation easier. Second, most of the exchange protocols proposed in
the literature are two-party exchange protocols. However, our model can easily be extended
to multi-party exchange protocols as well.

4.3.1 System model

We assume that the network that is used by the protocol participants to communicate with
each other is reliable, which means that it delivers messages to their intended destinations
within a constant time interval. Such a network allows the protocol participants to run
the protocol in a synchronous fashion. We will model this by assuming that the protocol
participants interact with each other in rounds, where each round consists of the following
two phases:

1. each participant generates some messages based on her current state, and sends them
to some other participants;

2. each participant receives the messages that were sent to her in the current round, and
performs a state transition based on her current state and the received messages.

We adopted this approach from [Lyn96], where the same model is used to study the properties
of distributed algorithms in a synchronous network system. In Section 4.6, we sketch how
this assumption could be relaxed and how asynchronous systems could be modeled as games.

4.3.2 Limitations on misbehavior

We want that the protocol game of an exchange protocol models all the possible ways in
which the protocol participants can misbehave within the context of the protocol. The crucial
point here is to make the di�erence between misbehavior within the context of the protocol
and misbehavior in general. Letting the protocol participants misbehave in any way they can

4.3 Protocol games 67

would lead to a game that would allow interactions that have nothing to do with the protocol
being studied. Clearly, such a game would not be a good model of the protocol, because it
would be far too rich, and we suspect that it would be di�cult, if not impossible, to analyze.
Therefore, we want to limit the possible misbehavior of the protocol participants. However,
we must do so in such a way that we do not lose generality. Essentially, the limitation that we
will impose on protocol participants is that they can send only messages that are compatible
with the protocol. We make this precise in the following paragraphs of this subsection.

We consider an exchange protocol to be a description �(L) of a distributed computation
on a set L of parameters, where L usually contains the identi�ers of the executing parties,
the items to be exchanged, the description of the items, and cryptographic parameters, such
as keys, random numbers, etc. �(L) consists of a set f�1(L1); �2(L2); : : :g of descriptions
of local computations, where each Lk is a subset of L. We call these descriptions of local
computations shortly programs. Each program �k(Lk) is meant to be executed by a protocol
participant, and each Lk contains those parameters that are known to the participant that
executes �k(Lk). Typically, each �k(Lk) contains instructions to wait for messages that satisfy
certain conditions. When such an instruction is reached, the local computation can proceed
only if a message that satis�es the required condition is provided (or a timeout occurs). We
call a message m compatible with �k(Lk) if the local computation described by �k(Lk) can
reach a state in which a message is expected and m would be accepted. Let us denote the set
of messages that are compatible with �k(Lk) by M�k(Lk). Then, the set of messages that are
compatible with the protocol is de�ned as M�(L) = [kM�k(Lk).

Note that each M�k(Lk), and thus, M�(L) too may contain a large number of messages.
The simple reason is that the condition upon which a message is accepted by �k(Lk) may
be satis�ed by a large number of messages. Let us consider, for instance, a protocol, in
which a protocol participant should receive a message that contains data encrypted with a
key that is unknown to the participant. The condition upon which this message is accepted
cannot depend on the data within the encryption, because it is hidden from the participant.
Therefore, the participant should accept any message that contains arbitrary data within the
encryption but otherwise satis�es the required condition.

Apart from requiring the protocol participants to send messages that are compatible with
the protocol, we do not impose further limitations on their behavior. In particular, we allow
the protocol participants to quit the protocol at any time, or to wait for some time without
any activity. Furthermore, the protocol participants can send any messages (compatible with
the protocol) that they are able to compute in a given state. This also means that the protocol
participants may alter the prescribed order of the protocol messages (if this is not prevented
deliberately by the design of the protocol).

4.3.3 Players

We model each protocol participant (i.e., the two main parties and the trusted third party
if there is any) as a player. In addition, we model the communication network that is used
by the protocol participants to communicate with each other as a player too. Therefore, the
player set P of the protocol game is de�ned as P = fp1; p2; p3;netg, where p1 and p2 represent
the two main parties of the protocol, p3 stands for the trusted third party, and net denotes
the network. If the protocol does not use a trusted third party, then p3 is left out from P .
We denote the set P n fnetg by P 0.

It might seem that it is useless to model the trusted third party explicitly as a player,

68 Chapter 4: Protocol games and a formal de�nition of rational exchange

because it always behaves correctly, and thus, its actions are fully predictable. However,
usually, the payo�s for the main parties depend on the state of the trusted third party, and
it is easier to handle the state transitions of the trusted third party if we explicitly model
it as a player. In addition, modeling the trusted third party in the same way as we model
the other protocol participants leads to a more uniform model. After all, the trusted third
party is a protocol participant. We will make the distinction between the trusted third party
and the potentially misbehaving main parties of the protocol in another way: We restrict the
player that represents the trusted third party to follow a particular strategy (the one that
represents the correct behavior), whereas we allow the players that represent the potentially
misbehaving main parties to choose among several strategies.

As we mentioned before, we assume that the protocol participants interact in synchronous
rounds, where every message sent in the �rst phase of a round is delivered in the second phase
of the same round. It might again seem that it is useless to model the network explicitly as
a player, because the only action it can perform is the delivery of the messages that were
sent in the current round, and therefore, it does not have choices. Nevertheless, we represent
the network explicitly as a player. The reason is that it seems to be easier to present the
model if we explicitly include the message delivery actions, because they clearly identify the
second phases of the rounds, and thus, the points where the states of the players change as the
result of obtaining (partial) information about the actions performed by the other players. In
addition, modeling the network explicitly as a player makes it easier to extend our model with
unreliable networks, because such networks can be modeled as real players that can choose
between delivering a message or further delaying it.

4.3.4 Information sets

Each player i 2 P has a local state �i(q) that represents all the information that i has
obtained in the action sequence q. If for two action sequences q and q0, �i(q) = �i(q

0), then
q and q0 are indistinguishable to i. Therefore, two action sequences q and q0 belong to the
same information set of i i� it is i's turn to move after both q and q0, and �i(q) = �i(q

0).
Before describing what constitutes the local states of the players, we need to introduce

the concept of events. We de�ne two types of events: send and receive events. The send
event snd(m; j) is generated for player i 2 P 0 when she submits a message m 2 M�(L) with
intended destination j 2 P 0 to the network, and the receive event rcv(m) is generated for
player i 2 P 0 when the network delivers a message m 2M�(L) to i. We denote the set of all
events by E (i.e., E = fsnd(m; j) : m 2M�(L); j 2 P

0g [frcv(m) : m 2M�(L)g).
The local state �i(q) of player i 2 P 0 after action sequence q is de�ned as a tuple

h�i(q);Hi(q); ri(q)i, where

� �i(q) 2 ftrue; falseg is a boolean, which is true i� player i is still active after action
sequence q (i.e., she did not quit the protocol);

� Hi(q) � E � N is player i's local history after action sequence q, which contains the
events that were generated for i together with the round number of their generation;

� ri(q) 2 N is a non-negative integer that represents the round number for player i after
action sequence q.

Initially, �i(�) = true, Hi(�) = ;, and ri(�) = 1 for every player i 2 P 0.

4.3 Protocol games 69

The local state �net (q) of the network consists of a set Mnet (q) � M�(L) � P 0 � P 0

which contains those messages together with their source and intended destination that were
submitted to the network and have not been delivered yet. We call Mnet (q) the network
bu�er. Initially, Mnet (�) = ;.

4.3.5 Available actions

In order to determine the set of actions available for a player i 2 P 0 after an action sequence
q, we �rst tag each message m 2 M�(L) with a vector (�mi (�i(q)))i2P 0 of conditions. Each
�mi (�i(q)) is a logical formula that describes the condition that must be satis�ed by the local
state �i(q) of player i in order for i to be able to send message m after action sequence q. Our
intention is to use these conditions to capture the assumptions about cryptographic primitives
at an abstract level. For instance, it is often assumed that a valid digital signature �i(m) of
player i on message m can only be generated by i. This means that a message m0 2 M�(L)
that contains �i(m) can be sent by a player j 6= i only if j received a message that contained
�i(m) earlier. This condition can be expressed by an appropriate logical formula for every
j 6= i.

Now, let us consider an action sequence q, after which player i 2 P 0 has to move. There
are two special actions, called idlei and quiti, which are always available for i after q. In
addition to these special actions, player i can choose a send action of the form sendi(M),
where M is a subset of the set Mi(�i(q)) of messages that i is able to send in her current
local state.

Formally, we de�ne Mi(�i(q)) as:

Mi(�i(q)) = f(m; j) : m 2M�(L); �
m
i (�i(q)) = true; j 2 P 0 n figg

The set Ai(�i(q)) of available actions of player i 2 P
0 after action sequence q is then de�ned

as

Ai(�i(q)) = fidlei; quitig [fsendi(M) :M �Mi(�i(q))g

The interpretation of the above formula is the following: every player other than the
network can do nothing, quit the protocol at any time, or send any subset of the messages
that she is able to send in her current local state to any other player in P 0. Note that
sendi(;) 2 Ai(�i(q)). By convention, sendi(;) = idlei.

Let us consider now an action sequence q, after which the network has to move. Since
the network is assumed to be reliable, it should deliver every message that was submitted to
it in the current round. This means that there is only one action, called delivernet , that is
available for the network after q, which will mean the delivery of all messages in the network
bu�er. Thus,

Anet (�net (q)) = fdelivernetg

The above de�ned actions change the local states of the players as follows:

� If a player i 2 P 0 performs the action idlei, then the state of every player j 2 P remains
the same as before.

Formally: For any action sequence q, after which player i 2 P 0 has to move, we have
that

70 Chapter 4: Protocol games and a formal de�nition of rational exchange

�j(q:idlei) = �j(q)

for every j 2 P .

� If a player i 2 P 0 performs the action quiti, then the activity ag of i is set to false. The
state of every other player j 2 P n fig remains the same as before.

Formally: For any action sequence q, after which player i 2 P 0 has to move, we have
that

�i(q:quiti) = false

Hi(q:quiti) = Hi(q)
ri(q:quiti) = ri(q)

and for every j 2 P n fig,

�j(q:quiti) = �j(q)

� If a player i 2 P 0 performs an action sendi(M) such that M 6= ;, then the messages in
M are inserted in the network bu�er, and the corresponding send events are generated
for i. The state of every other player j 2 P n fi;netg remains the same as before.

Formally: For any action sequence q, after which player i 2 P 0 has to move, and for any
available send action sendi(M) 2 Ai(�i(q)) such that M 6= ;, we have that

�i(q:sendi(M)) = �i(q)
Hi(q:sendi(M)) = Hi(q) [f(snd(m; j); ri(q)) : (m; j) 2Mg
ri(q:sendi(M)) = ri(q)

Mnet (q:sendi(M)) =Mnet (q) [f(m; i; j) : (m; j) 2Mg

and for every j 2 P n fi;netg,

�j(q:sendi(M)) = �j(q)

� If the network performs the action delivernet , then for every message in the network
bu�er, the appropriate receive event is generated for the intended destination of the
message if it is still active. Then, every message is removed from the network bu�er,
and the round number of every active player is increased by one.

Formally: For any action sequence q, after which the network has to move, we have that

Mnet (q:delivernet) = ;

and for every i 2 P 0,

{ if �i(q) = true, then

�i(q:delivernet) = �i(q)
Hi(q:delivernet) = Hi(q) [f(rcv(m); ri(q)) : 9j 2 P

0 : (m; j; i) 2Mnet (q)g
ri(q:delivernet) = ri(q) + 1

{ otherwise

�i(q:delivernet) = �i(q)

4.3 Protocol games 71

p1 p2
p1 u�p1 u+p1
p2 u+p2 u�p2

Table 4.1: The values that the items to be exchanged are worth to the protocol parties

4.3.6 Action sequences and player function

The game is played in repeated rounds, where each round consists of the following two phases:

1. each active player in P 0 moves, one after the other, in order;

2. when each active player in P 0 moved, the network moves.

The game is �nished when every player in P 0 becomes inactive.
In order to make this formal, let us denote the set of players that are still active after

action sequence q and have an index larger than v by P 0(q; v) (i.e., P 0(q; v) = fpk : pk 2
P 0; �pk(q) = true; k > vg). Furthermore, let us denote the smallest index in P 0(q; v) by
kmin(q; v) (i.e.,

kmin(q; v) = minfk:pk2P 0(q;v)g k).
We de�ne the set Q of action sequences and the player function p of the protocol game

together in an inductive manner. By de�nition, � 2 Q. Moreover, p(�) = p1. In addition,

� if an action sequence q is in Q and p(q) = pv, then

1. q:a 2 Q for every a 2 Apv(�pv(q));

2. if P 0(q:a; v) 6= ;, then p(q:a) = pkmin(q:a;v), otherwise p(q:a) = net ;

� if an action sequence q is in Q and p(q) = net , then

1. q:a 2 Q for the single action a = delivernet 2 Anet (�net (q));

2. if P 0(q:a; 0) 6= ;, then p(q:a) = pkmin(q:a;0), otherwise q:a is a terminal action
sequence, and thus, p is not de�ned in q:a.

4.3.7 Payo�s

Now, we describe a framework for the determination of the payo�s. Let us consider the two
main parties p1 and p2 of the protocol, and the items p1 and p2 that they want to exchange

1.
We denote the values that p1 is worth to p1 and p2 by u

�
p1

and u+p2 , respectively. Similarly,
the values that p2 is worth to p1 and p2 are denoted by u+p1 and u�p2 , respectively (see also
Table 4.1).

Intuitively, u+i and u�i can be thought of as a potential gain and a potential loss of player
i 2 fp1; p2g in the game. In practice, it may be di�cult to quantify u+i and u�i . However,
our approach does not depend on the exact values; we require only that u+i > u�i for both
i 2 fp1; p2g, which we consider to be a necessary condition for the exchange to take place at
all. In addition, we will assume that u�i > 0.

1Typically, p1 and p2 are members of the parameter set L of the protocol.

72 Chapter 4: Protocol games and a formal de�nition of rational exchange

The payo� yi(q) for player i 2 fp1; p2g assigned to the terminal action sequence q is de�ned
as yi(q) = y+i (q) � y�i (q). We call y+i (q) the gain and y�i (q) the loss of player i, and de�ne
them as follows:

y+i (q) =

�
u+i if �+i (q) = true

0 otherwise

and

y�i (q) =

�
u�i if ��i (q) = true

0 otherwise

where �+i (q) and �
�
i (q) are logical formulae. The exact form of �+i (q) and �

�
i (q) depends on

the particular exchange protocol being modeled, but the idea is that �+i (q) = true i� i gains
access to j (j 6= i), and ��i (q) = true i� i loses control over i in q. A typical example would
be �+i (q) = (9r : (rcv(m); r) 2 Hi(q)), where we assume that m is the only message inM�(L)
that contains j.

Note that according to our model, the payo� yi(q) of player i can take only four possible
values: u+i , u

+
i � u�i , 0, and �u

�
i for every terminal action sequence q of the protocol game.

Since we are only interested in the payo�s of p1 and p2 (i.e., the players that represent
the main parties), we de�ne the payo� of every other player in P n fp1; p2g to be 0 for every
terminal action sequence of the protocol game.

4.4 Formal de�nition of rational exchange and some related

properties

In this section, we give a formal de�nition for rational exchange. We do this by de�ning the
requirements of termination, e�ectiveness, and rationality within the formal model described
in the previous section. We also de�ne the fairness requirement, and two other properties
called gain closed property and safe back out property that we will use later in this thesis. The
gained closed property requires that if a party A gains access to the item of the other party
B, then B loses control over the same item. The safe back out property requires that if a
party abandons the exchange right at the beginning without doing anything else, then it will
not lose control over its item (i.e., it is safe to back out of the exchange). All the protocols
that we are aware of satisfy the gain closed and the safe back out properties; nevertheless, we
need to de�ne them for technical reasons.

Before starting with the formal de�nitions, recall that an exchange protocol �(L) is a
set f�1(L1); �2(L2); : : :g of programs. As such, each �k(Lk) must specify for the protocol
participant that executes it what to do in any conceivable situation. This is what a strategy
does in a game. Therefore, we relate each �k(Lk) to a strategy s

�
k in the protocol game G�(L)

of �(L).
Now, we are ready to present the formal de�nitions:

De�nition 4.1 (Properties of Exchange Protocols) Let us consider a two-party exchange
protocol �(L) = f�1(L1); �2(L2); �3(L3)g, where �1(L1) and �2(L2) are the programs for the
main parties, and �3(L3) is the program for the trusted third party (if there is any). Further-
more, let us consider the protocol game G�(L) of �(L) constructed according to the framework
described in Section 4.3. Let us denote the strategy of player pk that represents �k(Lk) within

4.4 Formal de�nition of rational exchange and some related properties 73

G�(L) by s
�
pk

(k 2 f1; 2; 3g), the single strategy of the network by s�net, and the strategy vector
(s�p3 ; s

�
net) by �s.

� Termination: �(L) is said to be terminating i�

{ for every strategy sp1j�s of p1, there exists a �nite pre�x q0 of q, such that �p2(q
0) =

false, where q = oj�s(sp1j�s; s
�
p2j�s

); and

{ for every strategy sp2j�s of p2, there exists a �nite pre�x q0 of q, such that �p1(q
0) =

false, where q = oj�s(s
�
p1j�s

; sp2j�s).

� E�ectiveness: �(L) is said to be e�ective i� y+p1(q
�) = u+p1 and y+p2(q

�) = u+p2 , where
q� = oj�s(s

�
p1j�s

; s�
p2j�s

).

� Rationality: �(L) is said to be rational i�

{ (s�
p1j�s

; s�
p2j�s

) is a Nash equilibrium in the restricted protocol game G�j�s(L); and

{ both p1 and p2 prefer the outcome of (s�
p1j�s

; s�
p2j�s

) to the outcome of any other Nash

equilibrium (s0
p1j�s

; s0
p2j�s

) in G�j�s(L).

� Fairness: �(L) is said to be fair i�

{ for every strategy sp1j�s of p1, y
+
p1
(q) = u+p1 implies y+p2(q) = u+p2, where q =

oj�s(sp1j�s; s
�
p2j�s

); and

{ for every strategy sp2j�s of p2, y
+
p2
(q) = u+p2 implies y+p1(q) = u+p1, where q =

oj�s(s
�
p1j�s

; sp2j�s).

� Gain closed property: �(L) is said to be gain closed i� for every terminal action
sequence q of G�j�s(L) we have that y

+
p1
(q) > 0 implies y�p2(q) > 0 and y+p2(q) > 0 implies

y�p1(q) > 0.

� Safe back out property: Let Q0j�s = f(ak)
w
k=1 2 Qj�s : pj�s((ak)

w
k=1) = p1; @v < w :

pj�s((ak)
v
k=1) = p1g, and let s0

p1j�s
be the strategy of p1 that assigns quitp1 to every action

sequence in Q0j�s. Similarly, let Q00j�s = f(ak)
w
k=1 2 Qj�s : pj�s((ak)

w
k=1) = p2; @v < w :

pj�s((ak)
v
k=1) = p2g, and let s0

p2j�s
be the strategy of p2 that assigns quitp2 to every action

sequence in Q00j�s. �(L) satis�es the safe back out property i�

{ for every strategy sp1j�s of p1, y
�
p2
(q) = 0, where q = oj�s(sp1j�s; s

0
p2j�s

); and

{ for every strategy sp2j�s of p2, y
�
p1
(q) = 0, where q = oj�s(s

0
p1j�s

; sp2j�s).

All the properties above are de�ned in the restricted game, where the trusted third party
is restricted to follow its program faithfully (i.e., to behave correctly).

Termination means that if a player follows the strategy that corresponds to the faithful
execution of her program (i.e., she behaves correctly), then no matter what strategy is played
by the other player, the well behaving player will terminate computation and reach an inactive
state (i.e., she will perform the quit action) in a �nite number of rounds.

E�ectiveness means that if both players follow the strategy that corresponds to the faithful
execution of their programs, then the outcome will be an action sequence in which the gain

74 Chapter 4: Protocol games and a formal de�nition of rational exchange

of both players is positive (this represents a state, where both players have access to the
expected items).

Rationality is de�ned in terms of a Nash equilibrium. More precisely, we require that the
strategies that correspond to the faithful execution of the programs of the main parties form a
Nash equilibrium in the restricted protocol game. In addition, we require that no other Nash
equilibrium be strongly preferable for any of the main parties. This ensures that both main
parties are indeed interested in behaving correctly and executing their programs faithfully, or
at least they are not interested in misbehaving and deviating from their programs.

Fairness means that if a player follows the strategy that corresponds to the faithful execu-
tion of her program, then the other player can have a positive gain only if the well behaving
player also has a positive gain. Recall that having a positive gain represents a state where the
player has access to the expected item. So our formal de�nition corresponds to the informal
characterization of fairness given at the beginning of this chapter.

A protocol is then said to be a rational exchange protocol, i� it satis�es the termination,
e�ectiveness, and rationality properties. Similarly, fair exchange protocols should satisfy the
termination, e�ectiveness, and fairness properties.

The gain closed property means that no gain comes from outside of the system. In other
words, if a player has a positive gain, then the other player must have a positive loss, no
matter what strategies are followed by the players. All the protocols that we are aware of
have this property. Note, however, that protocols are not necessarily closed for losses, which
means that if a player has a positive loss, then the other player may not necessarily have a
positive gain.

In the de�nition of the safe back out property, the action sequences in Q0j�s represent those

states of the game in which p1 has to move the �rst time. The strategy s0
p1j�s

assigns the quitp1
action to all these action sequences. Thus, if p1 follows s

0
p1j�s

, then she quits the game the �rst

time when she has to move. Similarly, the action sequences in Q00j�s represents those states in

which p2 has to move the �rst time, and s0
p2j�s

prescribes the quitp2 action for p2 after each of

these action sequences. The safe back out property then means that if a player i 2 fp1; p2g
follows s0

ij�s, then she cannot have a positive loss (i.e., she does not lose control over her item),
no matter what strategy is followed by the other player.

4.5 The relationship between rational exchange and fair ex-

change

Proposition 4.1 If the protocol satis�es the e�ectiveness, gain closed, and safe back out
properties, then fairness implies rationality.

Proof: First, we have to prove that (s�
p1j�s

; s�
p2j�s

) is a Nash equilibrium in G�j�s(L) where

�s = (s�p3 ; s
�
net). Let us suppose that it is not. This means that either s�

p1j�s
is not the best

response to s�
p2j�s

, or s�
p2j�s

is not the best response to s�
p1j�s

. Without loss of generality, we can

assume that the �rst is the case. This means that p1 has a strategy s0
p1j�s

such that playing

s0
p1j�s

against s�
p2j�s

yields a higher payo� for p1 than the payo� that she gets if she plays s�
p1j�s

.

In other words, yp1(q
�) < yp1(q

0), where q� = oj�s(s
�
p1j�s

; s�
p2j�s

), and q0 = oj�s(s
0
p1j�s

; s�
p2j�s

). Since
q� is the outcome when both parties behave correctly and, by assumption, the protocol is
e�ective, we have that y+p1(q

�) = u+p1 and y
+
p2
(q�) = u+p2 . In addition, since the protocol is also

4.5 The relationship between rational exchange and fair exchange 75

gain closed, we get that y�p1(q
�) = u�p1 and y

�
p2
(q�) = u�p2 . This means that yp1(q

�) < yp1(q
0) is

possible only if y+p1(q
0) = u+p1 and y

�
p1
(q0) = 0 hold. However, this is impossible, because, from

the fairness property, y+p1(q
0) = u+p1 implies y+p2(q

0) = u+p2 , and from the gain closed property,
y+p2(q

0) = u+p2 > 0 implies y�p1(q
0) > 0.

Next, we have to prove that no other Nash equilibrium is strongly preferable for any of
the players. Let us suppose the contrary, and assume that there exists a Nash equilibrium
(s0
p1j�s

; s0
p2j�s

) in G�j�s(L) such that one of the players, say p1, has a higher payo� if (s0
p1j�s

; s0
p2j�s

)

is played than if (s�
p1j�s

; s�
p2j�s

) is played. This means that yp1(q
�) < yp1(q

0), where q� =

oj�s(s
�
p1j�s

; s�
p2j�s

), and q0 = oj�s(s
0
p1j�s

; s0
p2j�s

). For similar reasons as before, yp1(q
�) < yp1(q

0) is

possible only if y+p1(q
0) = u+p1 and y�p1(q

0) = 0 hold. Now, from the gain closed property, we
get that y+p1(q

0) = u+p1 > 0 implies y�p2(q
0) > 0, and y�p1(q

0) = 0 implies y+p2(q
0) = 0. Therefore,

the payo� yp2(q
0) of p2 in q0 is negative. However, since the protocol has the safe back out

property, p2 can always do better, and achieve a non-negative payo� by not participating in
the exchange at all (i.e., quitting at the beginning of the protocol without doing anything).
This means that s0

p2j�s
is not the best response to s0

p1j�s
, and thus, (s0

p1j�s
; s0

p2j�s
) cannot be a

Nash equilibrium. 2

We have just proved that fairness implies rationality. However, the reverse is not true
in general; the payment protocol presented in Section 3.2, for instance, can be proven to be
rational in our model (we will prove this in Chapter 5), but it is not fair.

The simple game of Figure 4.5 also illustrates that there may be protocol games that
satisfy the e�ectiveness, gain closed, safe back out, and rationality properties, but fail to
satisfy the fairness property. In this game, there are two players 1 and 2. The payo� of each
player i has the form of y+i (q) � y�i (q), where y

+
i (q) can be 3 or 0, and y�i (q) can be 2 or 0,

depending on the terminal action sequence q. Let s�1 be the strategy of player 1 that assigns
the action R to both action sequences after which player 1 has to move, and let s�2 be the
strategy of player 2 that assigns the action R to the single action sequence after which player
2 has to move.

1

2

L R

RL(0 - 0, 0 - 0)

L R
1

(0 - 2, 0 - 0)

(3 - 2, 3 - 2)(3 - 2, 0 - 2)

Figure 4.5: A restricted protocol game that satis�es the e�ectiveness, gain closed, safe back
out, and rationality properties, but does not satisfy the fairness property

This game can be interpreted as a restricted protocol game, where the players represent
the main protocol parties, the strategy vector (s�1; s

�
2) represents the protocol, y

+
i (q) represents

the gain and y�i (q) represents the loss of player i in q, and the action L represents the action
of quitting the protocol. The network and the trusted third party (if any) are not represented,

76 Chapter 4: Protocol games and a formal de�nition of rational exchange

since these become pseudo players in the restricted protocol game that do not have choices.
It is easy to verify the following:

� E�ectiveness: y+1 (q
�) = y+2 (q

�) = 3, where q� = R.R.R is the outcome of the game when
player 1 and player 2 follow s�1 and s

�
2, respectively.

� Gain closed property : y+1 (q) > 0 is satis�ed if q = R.R.L or q = R.R.R, and y�2 (R.R.L) =
y�2 (R.R.R) > 0. y+2 (q) > 0 is satis�ed if q = R.R.R, and y�1 (R.R.R) > 0.

� Safe back out property : Let s01 be the strategy of player 1 that prescribes the action L

at the beginning of the game (i.e., s01 assigns L to the empty sequence �), and let s02 be
the strategy of player 2 that prescribes the action L after the �rst move of player 1 (i.e.,
s02 assigns L to the action sequence R).

{ No matter what strategy is followed by player 2, if player 1 follows s01, then the
outcome is the action sequence L, and y�1 (L) = 0.

{ If player 1 follows a strategy di�erent from s01, and player 2 follows the strategy s02,
then the outcome is the action sequence R.L, and y�2 (R.L) = 0. If player 1 follows
s01, then the outcome is the action sequence L, and y�2 (L) = 0.

� Rationality :

{ (s�1; s
�
2) is a Nash equilibrium.

{ There is only one Nash equilibrium in the game that is di�erent from (s�1; s
�
2), which

is (s01; s
0
2), and the payo� of each player is greater in (s�1; s

�
2), then in (s01; s

0
2).

Note, however, that if player 2 follows s�2, and player 1 follows a strategy that assigns the
action L to the action sequence R.R, then the outcome of the game is R.R.L, and y+1 (R.R.L) = 3,
while y+2 (R.R.L) = 0. This means that the protocol game does not satisfy the fairness property.

The direct consequence of Proposition 4.1 and the above discussion is that every fair
exchange protocol is a rational exchange protocol (assuming that the protocol is also gain
closed and satis�es the safe back out property, which is usually the case), but the reverse is not
true in general. This means that a fair exchange protocol achieves stronger guarantees than a
rational exchange protocol. Therefore, one expects that rational exchange protocols are less
complex than fair exchange protocols. This means that rational exchange protocols can be
viewed as a trade-o� between complexity and true fairness. They can be used in applications
where misbehavior should be prevented, but using a fair exchange protocol would be too
\expensive". Micropayments are examples for such applications, and we have already showed
in Section 3.3, how the concept of rational exchange can be used to improve them with respect
to fairness by making misbehavior uninteresting.

4.6 Towards an asynchronous model

So far, we have assumed that the network that is used by the protocol participants to com-
municate with each other is reliable. Now we sketch how this assumption can be relaxed, and
how unreliable communication links can be included in our model.

4.6 Towards an asynchronous model 77

A simple extension of our model would be to give choices to the network. More precisely,
instead of de�ning the set of available actions for the network as a singleton fdelivernetg,
which means that at the end of each round the network delivers every message that is in the
network bu�er, we could de�ne the set of available actions for the network as

Anet (�net (q)) = fdelivernet (M) :M �Mnet (q)g

which would mean that the network can deliver any subset of the messages that are currently
in the network bu�er. Thus, depending on the strategy followed by the network, some mes-
sages would not be delivered immediately, but they could stay in the network bu�er for some
time, even forever.

Another possible extension would be to allow reliable and unreliable (as de�ned above)
networks to coexist in the model. For instance, some exchange protocols may require a
reliable channel between the trusted third party and a main party, while allowing an unreliable
channel between the main parties. Describing such a protocol would require both reliable and
unreliable networks in the model. Our model can easily be extended in this direction: we
simply need to include more players that represent di�erent types of networks between the
protocol participants2.

Giving choices to the network to delay the delivery of some messages as described above
leads to a more general but still synchronous model, since each player's local state still con-
tains the same current round number. However, if all the networks between the protocol
participants are unreliable, then a synchronous system model is not realistic. Now, we sketch
how asynchronous models can be de�ned.

The �rst approach would be to keep the rounds in the protocol game, but to remove
any references to round numbers from the local states of the players that model the protocol
participants. This means that one must remove the variable that represents the round number,
and slightly modify the notion of event history (since so far events have been stored together
with the round number of their generation in the history). Removing the round number is
easy. The event history can be rede�ned as a sequence of event sets, where the order of the
event sets in the sequence represents a temporal order. Note that we need a sequence of event
sets, and not simply a sequence of events, because the protocol participants can still send
and receive several messages in a single round; these actions and the corresponding events
are considered to be contemporaneous.

Removing the round number from the local states of the protocol participants has a subtle
consequence: In the synchronous model, the protocol participants can use their knowledge of
the current round number to distinguish between local states that otherwise have the same
event histories. This feature allows us to avoid the explicit modeling of timers and timeouts.
This is not the case in an asynchronous model. Let us consider, for instance, a protocol
participant p with local state �. If p's strategy prescribes that it should wait in � (i.e., it
should perform the idlep action), then it must wait until it receives a message, and thus, its
local state changes3. This does not reect the reality, where protocol participants can always
decide to wait or to do some other action without any external intervention. Typically, a

2Maybe, in this case, it would be more appropriate to call them channels instead of networks, however, we
prefer the term network here, because we want to avoid any confusion with the concept of channels described
in the �rst part of the thesis.

3Recall that a strategy assigns the same action to every action sequence that belongs to the same information
set, and two action sequences belong to the same information set of a player if the local state of the player is
the same after both action sequences.

78 Chapter 4: Protocol games and a formal de�nition of rational exchange

protocol participant sets a local timer, and when this timer signals a timeout, the participant
decides what action to perform next. Modeling this feature requires the explicit modeling of
timers and timeouts.

Timers can be modeled as players. For instance, each protocol participant could have a
timer associated with it. A timer could perform idle and timeout actions, where the latter
would change the local state of the corresponding protocol participant. There are many ways
to realize this; for instance, we could introduce a new type of event that represents timeouts
and could be placed in the local history of the protocol participants. Like other players, a
timer can have many strategies too. However, in order to avoid that a player in�nitely waits
for a timeout, one may want to require each timer to follow a strategy that does not prescribes
an in�nite sequence of idle actions for the timer.

The second approach to de�ne an asynchronous model would be to construct a game that
is not played in rounds, but the players can perform their actions in a more liberal order.
The main problem that arises in this approach is how to schedule the turns of the players.
This problem can be solved by introducing a special player, which we can call scheduler, that
would move in every second step, and decide the player that has to move next. In order to
avoid starvation, the scheduler could be restricted to play a strategy that eventually allows
every active player (protocol participant, timer, network) to perform an action.

In this model, the protocol participants would no longer be allowed to send several mes-
sages within a single send action, and the network would not deliver several messages within
a single deliver action either. This leads to a fully asynchronous model, in which the protocol
game contains all the possible orders of concurrent actions of di�erent players. In this model,
the local event history of the players would be a sequence of events, where the order of the
events in the sequence would represent a temporal order.

Note that all the properties de�ned in De�nition 4.1 are de�ned in terms of strategies,
action sequences, and payo�s, and do not assume that all the players are aware of the same
current round number, or even that the game is played in rounds. This allows us to easily
generalize the de�nitions in the asynchronous model. Indeed, the only thing that we must
take care of is that now the network has several strategies, and there are some additional
players, the timers and the scheduler, which also have several strategies. In order to handle
this, we can extend the strategy vector �s, with which the protocol game is restricted in the
de�nitions, to include the strategies of the timers and the scheduler as well, and we can require
for every property that the conditions of the property be satis�ed in every possible restricted
protocol game G�j�s(L). For instance, rationality would mean that (1) (s�

p1j�s
; s�

p2j�s
) is a Nash

equilibrium, and (2) no other Nash equilibrium is strongly preferable to any of p1 and p2, in
every possible restricted protocol game G�j�s(L), where �s = (s�p3 ; st1 ; st2 ; st3 ; snet ; ssch), and
st1 , st2 , and st3 range over the allowed strategies of the timers t1, t2, and t3 of the protocol
participants, respectively, snet ranges over the strategies of the network, and ssch ranges
over the allowed strategies of the scheduler. (Recall that for the timers, only those strategies
are allowed that do not prescribe an in�nite sequence of idle actions, while for the scheduler
only those strategies are allowed that eventually let every active player move.)

Finally, since the properties require that the appropriate conditions are satis�ed in every
possible restricted game, the arguments of the proof of Proposition 4.1 remain true in every
possible restricted protocol game, and thus the statement that fairness implies rationality (as-
suming that the protocol satis�es the e�ectiveness, gain closed, and safe back out properties)
carries over to the asynchronous case. However, it is not clear if there is any asynchronous

4.7 Related work 79

fair exchange protocol that satis�es the e�ectiveness property as we de�ned it.

4.7 Related work

Formal de�nitions for fair exchange are given by Gaertner et al. in [GPV99, PG99]. They
adopt the formalism of concurrency theory and de�ne fairness based on safety and liveness
properties. Although their proposal certainly has a strong potential, it is somewhat limited to
fair exchange, and in particular to the concept of strong and weak fairness4 as it was de�ned
by Asokan in [Aso98]. They do not attempt to formalize the concept of rational exchange,
nor to investigate the relationship between rational exchange and fair exchange.

Kremer and Raskin describes a formal approach to the analysis of non-repudiation pro-
tocols (which are strongly related to fair exchange protocols) in [KR00]. They model non-
repudiation protocols as games in a similar way as we do. However, they use neither payo�s
nor the concept of equilibrium to specify properties of the protocol. Instead, they introduce
a game based alternating temporal logic for this purpose. We feel that by doing so they do
not fully exploit the power of game theory, and they essentially fall back to the well-known
model checking approach for protocol analysis. This, however, has some advantages: they
can use an automated model-checker. They do not try to formalize the concept of rational
exchange and to relate it to fair exchange.

In [San97], Sandholm proposes a method for managing an exchange between two agents {
a supplier and a demander { so that the gains from completing the exchange at any point are
larger for both agents than the gains from terminating it. The method consists in splitting the
exchange into small chunks in a way that the agents can avoid situations that motivate either
of them to defect. Sandholm calls this type of exchange unenforced exchange (since it does
not rely on enforcement from an external trusted party), and relates it to Nash equilibrium.
However, he does not formalize the concept of rational exchange in general (the proposed
method can be viewed as a particular rational exchange protocol), nor does he relate his
results to fair exchange.

In [ASW00], Asokan et al. de�ne a formal security model for fair signature exchange.
The model is described in terms of a \game", in which a correctly behaving party A and the
trusted third party act in a purely reactive fashion, while the actions of the misbehaving party
B� are restricted only by a few rules. B� wins the game if it can obtain the digital signature
of A on some message m without A obtaining the digital signature of B� on another message
m0. They de�ne fairness to mean that the probability that B� wins the game is negligible
(with respect to some security parameter). Although, at �rst sight, the formal model of
Asokan et al. might seem to be similar to our approach, it is indeed completely di�erent.
First of all, apart from using the terms game and player, their approach has nothing to do
with game theory. Most importantly, they do not use the notion of equilibrium. Their model
is much more similar to the standard models that are used in the cryptographic literature to
prove the security of cryptographic algorithms, where one explicitly states the assumptions
made about the power of the adversary and tries to prove that the system cannot be broken
without invalidating those assumptions. As opposed to this, we completely abstract away
cryptography in our model. While the formal model of Asokan et al. is probably the most
rigorous model that can be found in the literature regarding fairness, it is somewhat restricted
to signature exchange protocols. In addition, it does not seem to be appropriate to capture

4Strong and weak fairness have nothing to do with the distinction between fairness and rationality.

80 Chapter 4: Protocol games and a formal de�nition of rational exchange

the notion of rationality, which is not a limitation itself, since it was not the goal of the
authors to formalize the concept of rational exchange.

4.8 Summary

In this chapter, we introduced a formal model based on game theory, in which exchange
protocols can be modeled and their properties can be studied. We described in detail, how
exchange protocols can be represented as games in this model. We used the model to give
formal de�nitions for various properties of exchange protocols, including rationality and fair-
ness. One of our main results is to relate the rationality property to the concept of Nash
equilibrium in games. In addition, we used the model to study the relationship between
rational exchange and fair exchange. We proved that fairness implies rationality (assuming
that the protocol has some further, usual properties), but the reverse is not true in general.

All the above results were obtained by assuming that the network that is used by the
protocol participants is reliable (i.e., it delivers messages to their intended destinations within
a constant time interval). At the end of the chapter, we sketched how this assumption could
be relaxed and how asynchronous systems could be modeled as games. We briey described
how the de�nitions of rationality and fairness (and other properties of exchange protocols as
well) can be generalized, and why the statement that fairness implies rationality remains true
in the asynchronous model.

The formal model introduced in this chapter helped us to better understand what rational
exchange is and how it is related to fair exchange. This understanding is indispensable for
the design of rational exchange protocols. The formal model also serves as a basis for rigorous
veri�cation of rational exchange protocols. We will illustrate this through the analysis of two
protocols in Chapter 5.

Publication: [BH01a]

Chapter 5

Proving protocols to be rational

5.1 Introduction

In this chapter, we study two exchange protocols and formally prove that they satisfy our
de�nition of rational exchange. Our goal is to demonstrate how the model introduced in
Chapter 4 can be used in practice. The �rst protocol that we prove to be rational is the
example payment protocol of Section 3.2. The second one will be Syverson's rational exchange
protocol [Syv98].

5.2 Proof of the example rational payment protocol

In Section 3.2, we presented the following payment protocol:

The payment protocol of Section 3.2

U ! V : m1 = (U; V; tid ; val ; h(rnd); sig(k�1U ; (U; V; tid ; val ; h(rnd))))
V ! U : m2 = srv
U ! V : m3 = rnd
if V received m1 and m3:

V ! B : m4 = (m1; m3; sig(k
�1
V ; (m1;m3)))

if V received only m1:

V ! B : m04 = (m1; sig(k
�1
V ; (m1)))

where U , V , and B stand for the identi�ers of the user, the vendor, and the bank, respectively;
k�1U and k�1V denote the private keys of U and V , respectively; tid is a fresh transaction
identi�er for U and V ; val denotes the value of the payment that U is supposed to pay to V ;
srv denotes the service that V is supposed to provide to U in exchange for the payment; rnd
is a freshly generated random number; h is a publicly known cryptographic hash function;
and sig is a signature generation function that takes a private key k�1 and a message m,
and returns a digital signature on m generated with k�1. For the detailed description of the
protocol, see Section 3.2.

We will now prove formally that this payment protocol is a rational exchange protocol. In
order to do so, we construct the protocol game of the protocol using the framework that we in-

81

82 Chapter 5: Proving protocols to be rational

troduced in Section 4.3, and we prove that the protocol satis�es the de�nitions of termination,
e�ectiveness, and rationality given in Section 4.4.

Before we start, we introduce some further notation that we will use in the proof:

� the public keys of U and V are denoted by kU and kV , respectively;

� vfy is a signature veri�cation function that takes a public key k, a message m, and a
signature �, and returns true if � is a valid signature on m that can be veri�ed with k,
otherwise it returns false;

� the description of the service srv is denoted by dsc;

� �t is a function that takes a service s and a service description d and returns true if d
matches s, otherwise it returns false.

We assume that the service srv can be represented with a bit string (e.g., a music or a
video �le). In this case, one can imagine its description dsc as a hash value computed from
the bit string using a publicly known cryptographic hash function. The implementation of �t
is then straightforward.

5.2.1 The set of compatible messages

In order to determine the set of messages compatible with the protocol, we �rst re-construct
the programs of the protocol participants from the informal protocol description:

�(U; kU ; k
�1
U ; V; kV ; k

�1
V ; tid ; val ; rnd ; srv ; dsc) = f

�U (U; k
�1
U ; V; tid ; val ; rnd ; dsc),

�V (U; kU ; V; k
�1
V ; tid ; val ; srv),

�B(U; kU ; V; kV ; tid) g

where

�U (U; k
�1
U ; V; tid ; val ; rnd ; dsc) =

1. compute � = h(rnd)

2. compute � = sig(k�1U ; (U; V; tid ; val ; �))
3. send (U; V; tid ; val ; �; �) to V
4. wait until timeout or

a message m arrives such that �t(m; dsc) = true

5. if timeout then go to step 7
6. send rnd to V
7. exit

�V (U; kU ; V; k
�1
V ; tid ; val ; srv) =

1. wait until timeout or
a message m = (�1; �2; �; �; �; �) arrives such that

- �1 = U
- �2 = V
- � = tid
- � = val

5.2 Proof of the example rational payment protocol 83

- vfy(kU ; (�1; �2; �; �; �); �) = true

2. if timeout then go to step 11
3. send srv to U
4. wait until timeout or

a message m0 arrives such that h(m0) = �
5. if timeout then go to step 9

6. compute �0 = sig(k�1V ; (m;m0))
7. send (m;m0; �0) to B
8. go to step 11

9. compute �0 = sig(k�1V ;m)
10. send (m;�0) to B
11. exit

�B(U; kU ; V; kV ; tid) =
1. wait until either a message (�1; �2; �; �; �; �; �; �

0) arrives
such that

- �1 = U
- �2 = V
- � = tid
- h(�) = �
- vfy(kU ; (�1; �2; �; �; �); �) = true

- vfy(kV ; (�1; �2; �; �; �; �; �); �
0) = true

or a message (�1; �2; �; �; �; �; �
0) arrives such that

- �1 = U
- �2 = V
- � = tid
- vfy(kU ; (�1; �2; �; �; �); �) = true

- vfy(kV ; (�1; �2; �; �; �; �); �
0) = true

2. exit

In the above description, �U is the program of the user, �V is the program of the vendor,
and �B is the program of the bank. The programs are quite straightforward, however, three
issues need to be discussed before going on. First, note that the random number rnd is not
generated by the program �U of the user, but it is given to it as an input. We need to consider
the random number as an input, because we want to represent the program of the user with
a single strategy in the protocol game. If the program generated the random number, then
it should be represented by a set of strategies (where each element of the set belongs to a
possible value of the random number) and a probability distribution on this set. We prefer the
single strategy model, because it is simpler, and at the same time, it is not a real limitation,
because virtually there is no di�erence between generating a random number on-the-y, or
having it pre-generated and providing it as an input to the computation.

Second, note that the identi�ers U and V of the user and the vendor, respectively, as well
as the transaction identi�er tid are given to the program of the bank, although the bank has
no way to know in advance who will execute the protocol and which transaction identi�er
they will agree on. This seems to be contradictory, but in fact it is not, because actually �B
is not the full program of the bank, but only a part of it. Conceptually, one can think of
the full program of the bank as a set f�B(U

0; k�1U 0 ; V 0; k
�1
V 0 ; tid

0) : U 0 2 U ; V 0 2 V; tid 0 2 T g

84 Chapter 5: Proving protocols to be rational

of subprograms, where U and V are the sets of all user and vendor identi�ers, respectively,
and T is the set of all possible transaction identi�ers. When the bank begins its operation, it
starts all these subprograms concurrently. If a message m arrives, then the bank gives m to
every running subprogram. If m is a valid message that the bank should accept, then exactly
one of the subprograms will accept it, and then it exits. This ensures that the bank never
accepts two or more messages with the same user, vendor, and transaction identi�ers. Since
we are interested in the transaction tid between user U and vendor V , here we consider only
the subprogram �B(U; kU ; V; kV ; tid).

Third, note that �B(U; kU ; V; kV ; tid) does nothing else but waits for a message with a
certain structure and content and then stops. In particular, it does not describe what the
bank does when it receives a valid message from the vendor. It is su�cient for our purposes
to model only the reception of a valid message, because we will assume that the bank behaves
correctly and performs the appropriate operation (i.e., updates the accounts of the user and
the vendor) when the message is received.

Given the programs of the protocol participants, we can easily determine the set of mes-
sages compatible with the protocol:

M�(L) =M�(U; kU ; k
�1
U ; V; kV ; k

�1
V ; tid ; val ; rnd ; srv ; dsc) =M1 [M2 [M3 [M4 [M

0
4

where

M1 = f(�1; �2; �; �; �; �) :
�1 = U ,
�2 = V ,
� = tid ,
� = val ,
vfy(kU ; (�1; �2; �; �; �); �) = trueg

M2 = f& : �t(&; dsc) = trueg
M3 = f� : � is a random number (of a given size)g
M4 = f(�1; �2; �; �; �; �; �; �

0) :
�1 = U ,
�2 = V ,
� = tid ,
h(�) = �,
vfy(kU ; (�1; �2; �; �; �); �) = true,
vfy(kV ; (�1; �2; �; �; �; �; �); �

0) = trueg
M 04 = f(�1; �2; �; �; �; �; �

0) :
�1 = U ,
�2 = V ,
� = tid ,
vfy(kU ; (�1; �2; �; �; �); �) = true,
vfy(kV ; (�1; �2; �; �; �; �); �

0) = trueg

5.2.2 The protocol game

Once the set M�(L) of compatible messages is determined, we can construct the protocol
game G�(L) of the protocol by applying the framework of Section 4.3. The player set of the

5.2 Proof of the example rational payment protocol 85

protocol game is P = fU; V;B;netg, where U represents the user, V represents the vendor,
B represents the bank, and net represents the network, via which the protocol participants
communicate with each other. We assume that the network is reliable. The information
partition of each player i 2 P is determined by i's local state �i(q). In order to determine
the available actions of the players in P 0 = P n fnetg, we must tag each message m 2M�(L)
with a vector (�mi (�i(q)))i2P 0 of logical formulae, where each formula �mi (�i(q)) describes the
condition that must be satis�ed in order for i to be able to send message m in the information
set represented by the local state �i(q). For the above payment protocol, these vectors of
logical formulae are as follows:

� The user can always send any message m 2 M1. The vendor and the bank cannot
generate messages in M1, because they cannot generate valid digital signatures of the
user. Therefore, the vendor and the bank can send a message m 2 M1 only if they
received m, or a message that contained m earlier.

Formally, for any m 2M1:

�mU (�U (q)) = (�U (q) = true)
�mV (�V (q)) = (�V (q) = true) ^

((9r < rV (q) : (rcv(m); r) 2 HV (q)) _
(9r < rV (q);m

0 = (m; �; �) 2M4 : (rcv(m
0); r) 2 HV (q)) _

(9r < rV (q);m
0 = (m;�) 2M 04 : (rcv(m

0); r) 2 HV (q)))
�mB (�B(q)) = (�B(q) = true) ^

((9r < rB(q) : (rcv(m); r) 2 HB(q)) _
(9r < rB(q);m

0 = (m; �; �) 2M4 : (rcv(m
0); r) 2 HB(q)) _

(9r < rB(q);m
0 = (m;�) 2M 04 : (rcv(m

0); r) 2 HB(q)))

� The vendor can always send srv , but we assume that it cannot compute any other
& 2 M2. We also assume that the user and the bank cannot compute any & 2 M2.
These assumptions are reasonable, since we assumed that the description of the service
is a hash value computed using a cryptographic hash function, and cryptographic hash
functions are preimage resistant and collision resistant [MvOV97].

Formally, for any m 2M2:

{ if m = srv , then

�mU (�U (q)) = (�U (q) = true) ^
(9r < rU (q) : (rcv(m); r) 2 HU (q))

�mV (�V (q)) = (�V (q) = true)
�mB (�B(q)) = (�B(q) = true) ^

(9r < rB(q) : (rcv(m); r) 2 HB(q))

{ if m 6= srv , then

�mU (�U (q)) = (�U (q) = true) ^
(9r < rU (q) : (rcv(m); r) 2 HU (q))

�mV (�V (q)) = (�V (q) = true) ^
(9r < rV (q) : (rcv(m); r) 2 HV (q))

�mB (�B(q)) = (�B(q) = true) ^
(9r < rB(q) : (rcv(m); r) 2 HB(q))

86 Chapter 5: Proving protocols to be rational

� The user can send any random number in M3, but we assume that the vendor and the
bank cannot generate a random number that hashes into h(rnd).

Formally, for any m 2M3:

{ if h(m) = h(rnd), then

�mU (�U (q)) = (�U (q) = true)
�mV (�V (q)) = (�V (q) = true) ^

((9r < rV (q) : (rcv(m); r) 2 HV (q)) _
(9r < rV (q);m

0 = (�;m; �) 2M4 : (rcv(m
0); r) 2 HV (q)))

�mB (�B(q)) = (�B(q) = true) ^
((9r < rB(q) : (rcv(m); r) 2 HB(q)) _
(9r < rB(q);m

0 = (�;m; �) 2M4 : (rcv(m
0); r) 2 HB(q)))

{ if h(m) 6= h(rnd), then

�mU (�U (q)) = (�U (q) = true)
�mV (�V (q)) = (�V (q) = true)
�mB (�B(q)) = (�B(q) = true)

� The user and the bank can send a message m 2 M4 only if they received m before,
since they cannot generate valid digital signatures of the vendor. The vendor can send
a message m = (�; �; �) 2 M4 only if it received � before, since it cannot generate
valid digital signatures of the user. In addition, if h(�) = h(rnd), then the vendor must
also receive � before, since as we assumed earlier, the vendor cannot generate a random
number that hashes into h(rnd).

Formally, for any m = (�; �; �) 2M4:

{ If h(�) 6= h(rnd), then

�mU (�U (q)) = (�U (q) = true) ^
(9r < rU (q) : (rcv(m); r) 2 HU (q))

�mV (�V (q)) = (�V (q) = true) ^ '1
�mB (�B(q)) = (�B(q) = true) ^

(9r < rB(q) : (rcv(m); r) 2 HB(q))

{ if h(�) = h(rnd), then

�mU (�U (q)) = (�U (q) = true) ^
(9r < rU (q) : (rcv(m); r) 2 HU (q))

�mV (�V (q)) = (�V (q) = true) ^ '1 ^ '2
�mB (�B(q)) = (�B(q) = true) ^

(9r < rB(q) : (rcv(m); r) 2 HB(q))

where

'1 = ((9r < rV (q) : (rcv(�); r) 2 HV (q)) _
(9r < rV (q);m

0 = (�; �0; �0) 2M4 : (rcv(m
0); r) 2 HV (q)) _

(9r < rV (q);m
0 = (�; �0) 2M 04 : (rcv(m

0); r) 2 HV (q)))
'2 = ((9r < rV (q) : (rcv(�); r) 2 HV (q)) _

(9r < rV (q);m
0 = (�0; �; �0) 2M4 : (rcv(m

0); r) 2 HV (q)))

5.2 Proof of the example rational payment protocol 87

� The user and the bank can send a message m 2 M 04 only if they received m before,
since they cannot generate valid digital signatures of the vendor. The vendor can send
a message m = (�; �) 2 M 04 only if it received � before, since it cannot generate valid
digital signatures of the user.

Formally, for any m = (�; �) 2M 04:

�mU (�U (q)) = (�U (q) = true) ^
(9r < rU (q) : (rcv(m); r) 2 HU (q))

�mV (�V (q)) = (�V (q) = true) ^
((9r < rV (q) : (rcv(�); r) 2 HV (q)) _
(9r < rV (q);m

0 = (�; �; �0) 2M4 : (rcv(m
0); r) 2 HV (q)) _

(9r < rV (q) : (rcv(m); r) 2 HV (q)))
�mB (�B(q)) = (�B(q) = true) ^

(9r < rB(q) : (rcv(m); r) 2 HB(q))

The above logical formulae determine the sets of available actions of the players. The
sets of available actions, in turn, allow us to determine the set Q of action sequences, and to
complete the construction of the protocol game G�(L) using the framework of Section 4.3.
What remains is to de�ne the payo�s of the players, but we defer this until Subsection 5.2.4.
The reason is that we want to de�ne the payo�s only in the restricted protocol game that we
obtain from the protocol game by restricting B to follow the strategy that corresponds to the
program �B of the bank. Therefore, in the next subsection, we describe the strategies of the
players that correspond to the programs of the protocol participants.

5.2.3 Strategies

Now, we de�ne the strategies s�U , s
�
V , and s�B that belong to the programs �U , �V , and

�B of the protocol participants, respectively. For technical reasons, we must introduce an
ordering relation on the messages in M�(L) that we will denote by �. Actually, any kind
of total ordering is appropriate for our purposes. One can take, for instance, the bit string
representation of the messages inM�(L), and de�ne � as a lexical ordering on bit strings. We
need this relation to de�ne the strategy that corresponds to the program of V unambiguously.
Note that V must send a message to B that includes a message in M1 previously received
from U . However, if U misbehaves, then she can send several di�erent messages in M1 to
V (even in a single round). We will require V to use the � relation to select the \smallest"
(according to �) of those messages.

Strategy s�U

� If �U (q) = true and rU (q) = 1, then perform the action sendU (f(m1; V)g), where
m1 = (U; V; tid ; val ; h(rnd); sig(k�1U ; (U; V; tid ; val ; h(rnd)))).

� If �U (q) = true and rU (q) = 2, then perform the action idleU .

� If �U (q) = true, rU (q) = 3, and there exist a round number r < 3 and a message m 2M2

such that (rcv(m); r) 2 HU (q), then perform the action sendU (f(rnd ; V)g).

� If �U (q) = true, rU (q) = 3, and there exist no round number r < 3 and message m 2M2

such that (rcv(m); r) 2 HU (q), then perform the action quitU .

88 Chapter 5: Proving protocols to be rational

� If �U (q) = true and rU (q) = 4 then perform the action quitU .

Strategy s�V

� If �V (q) = true and rV (q) = 1, then perform the action idleV .

� If �V (q) = true, rV (q) = 2, and there exist a round number r < 2 and a message
m 2M1 such that (rcv(m); r) 2 HV (q), then perform the action sendV (f(srv ; U)g).

� If �V (q) = true, rV (q) = 2, and there exist no round number r < 2 and message m 2M1

such that (rcv(m); r) 2 HV (q), then perform the action quitV .

� If �V (q) = true and rV (q) = 3, then perform the action idleV .

� If �V (q) = true and rV (q) = 4, then let M be the set of those message pairs (m;m0)
for which m = (�1; �2; �; �; �; �) 2 M1, m

0 = � 2 M3, h(�) = �, and there exist round
numbers r; r0 < 4 such that (rcv(m); r) 2 HV (q) and (rcv(m

0); r0) 2 HV (q). In addition,
let M 0 be the set of messages m00 2 M1 for which there exist a round number r00 < 4
such that (rcv(m00); r00) 2 HV (q). Note that M 0 cannot be empty, since otherwise V
would have already quitted in round 2, and thus �V (q) could not be true in round 4.

{ If M 6= ;, then choose the message pair (m;m0) from M for which
(m;m0; sig(k�1V ; (m;m0))) is the smallest (according to the ordering �), and per-
form the action sendV f((m;m

0; sig(k�1V ; (m;m0))); B)g.

{ IfM = ;, then choose the smallest message m00 fromM 0 (according to the ordering
�), and perform the action sendV f((m

00; sig(k�1V ;m00)); B)g.

� If �V (q) = true and rV (q) = 5, then perform the action quitV .

Strategy s�B

� If �B = true and there exist a round number r and a message m 2M4 [M
0
4 such that

(rcv(m); r) 2 HB(q)), then perform the action quitB .

� If �B = true and there exist no round number r and message m 2 M4 [M
0
4 such that

(rcv(m); r) 2 HB(q)), then perform the action idleB .

From this point on, we will be concerned with the restricted protocol game G�j�s(L), where
�s = (s�B ; s

�
net) and s

�
net is the single strategy of the network. Without de�ning any payo�s,

we can already make the following simple statements about this restricted protocol game:

Lemma 5.1 Let us consider the restricted protocol game G�j�s(L), where �s = (s�B; s
�
net). If

(rcv(m); r) 2 HB(q) for some message m = (�; �; �) 2M4, round number r 2 N , and action
sequence q 2 Qj�s, then (rcv(�); r0) 2 HV (q) for some r0 < r.

Lemma 5.2 Let us consider the restricted protocol game G�j�s(L), where �s = (s�B; s
�
net). If

(rcv(m); r) 2 HB(q) for some message m = (�; �; �) 2M4, round number r 2 N , and action
sequence q 2 Qj�s, and h(�) = h(rnd), then (rcv(�); r0) 2 HV (q) for some r0 < r.

5.2 Proof of the example rational payment protocol 89

Lemma 5.3 Let us consider the restricted protocol game G�j�s(L), where �s = (s�B; s
�
net). If

(rcv(m); r) 2 HB(q) for some message m = (�; �) 2 M 04, round number r 2 N , and action
sequence q 2 Qj�s, then (rcv(�); r0) 2 HV (q) for some r0 < r.

Lemma 5.4 Let m be a message in M2 such that m 6= srv. There is no player i 2 P 0, round
number r 2 N , and action sequence q 2 Q such that (rcv(m); r) 2 Hi(q).

Lemma 5.1 states that if B receives a message m = (�; �; �) 2 M4 in some round r,
then V must receive � before round r. Lemma 5.2 states that if in addition h(�) = h(rnd),
then V must also receive � before round r. Lemma 5.3 states that if B receives a message
m = (�; �) 2M 04 in some round r, then V must receive � before round r. Finally, Lemma 5.4
states that no player can ever receive a message m 2M2 such that m 6= srv . Although these
statements are intuitively clear from the logical formulae with which we tagged the messages
in M�(L), we present a formal proof of each of them in Appendix B.

5.2.4 Payo�s

Since the de�nitions of termination, e�ectiveness, and rationality involve only the restricted
protocol game G�j�s(L), where �s = (s�B ; s

�
net), we de�ne the payo�s for U and V only in this

restricted game.
Let us consider a terminal action sequence q in G�j�s(L). The payo� of i 2 fU; V g in q is

yi(q) = y+i (q) � y�i (q), where y
+
i (q) is the gain of i, and y�i (q) represents the loss of i in q.

Let us denote the value that the agreed service srv is worth for U and V by usrvU and usrvV ,
respectively. We assume that usrvU > val > usrvV > 0.

The gain of U is usrvU if U received srv in q, otherwise it is 0. The loss of U depends
on the message that B received in q: if B received a message (�1; �2; �; �; �; �; �; �

0) 2 M4 or
a message (�1; �2; �; �; �; �; �

0) 2 M 04 in q, then the loss of U is �. If B did not receive any
message m 2M4 [M

0
4, then the loss of U is 0. Similarly, the gain of V in q is � if B received

a message (�1; �2; �; �; �; �; �; �
0) 2M4 in q, otherwise it is 0, and the loss of V is usrvV if V sent

srv in q, and 0 otherwise.
Note that, in principle, the bank has no information about the agreed value val of the

service, and therefore, it accepts any message m 2 M4 [M
0
4 regardless of the value � of the

payment inside the message. This means that, seemingly, the loss of U and the gain of V
could take other values than 0 and the agreed value val of the payment. However, we prove
that this is never the case:

Lemma 5.5 For every terminal action sequence q of the restricted protocol game G�j�s(L),
where �s = (s�B ; s

�
net), if B received a message (�1; �2; �; �; �; �; �; �

0) 2 M4 or a message
(�1; �2; �; �; �; �; �

0) 2M 04 in q, then � = val .

Proof: Let us consider a message m = (�1; �2; �; �; �; �; �; �
0) 2 M4, where � 6= val , and let

us assume that B received m in q. According to Lemma 5.1, this means that V must have
received m0 = (�1; �2; �; �; �; �) in q. However, this is impossible, because m0 62M�(L).

In the same way, using Lemma 5.3, we can prove the case of a message
m = (�1; �2; �; �; �; �; �

0) 2M 04, where � 6= val . 2

Taking into account Lemma 5.5, we can de�ne the payo�s for U and V in G�j�s(L) formally
as follows:

90 Chapter 5: Proving protocols to be rational

y+U (q) =

�
usrvU if �+U (q) = true

0 otherwise

y�U (q) =

�
val if ��U (q) = true

0 otherwise

y+V (q) =

�
val if �+V (q) = true

0 otherwise

y�V (q) =

�
usrvV if ��V (q) = true

0 otherwise

where

�+U (q) = (9r 2 N : (rcv(srv); r) 2 HU (q))

��U (q) = ((9r 2 N;m 2M4 : (rcv(m); r) 2 HB(q)) _

(9r0 2 N;m0 2M 04 : (rcv(m
0); r0) 2 HB(q)))

�+V (q) = (9r 2 N;m 2M4 : (rcv(m); r) 2 HB(q))

��V (q) = (9r 2 N; i 2 fU;Bg : (snd(srv ; i); r) 2 HV (q))

5.2.5 The proof

We will now prove that the payment protocol of Section 3.2 is rational.

Lemma 5.6 (Gain closed property) The payment protocol of Section 3.2 is gain closed.

Proof: It is enough to show that (i) �+U (q) implies ��V (q) and (ii) �+V (q) implies ��U (q) for
every q 2 Qj�s. (i) follows from the fact that in the restricted game only two players U and V
send messages, and therefore, if U receives a message m, then V must sendm. (ii) is trivial. 2

Lemma 5.7 (Safe back out property) The payment protocol of Section 3.2 satis�es the
safe back out property.

Proof: If U does not send any messages, then according to Lemma 5.1 and Lemma 5.3, V
cannot send any message in M4 [M

0
4 to B, which means that the loss of U is 0. If V quits

at the beginning then it does not send srv to anybody, and therefore, its loss is 0. 2

Lemma 5.8 The strategy pro�le (s�
U j�s; s

�
V j�s) is a Nash equilibrium in the restricted protocol

game G�j�s(L), where �s = (s�B ; s
�
net).

Proof: We have to prove that (i) if U follows s�
U j�s, then the best response of V to this is to

follow s�
V j�s, and (ii) if V follows s�

V j�s, then the best response of U to this is to follow s�
U j�s.

(i) Let q� be the outcome of the game G�j�s(L) when U and V follow s�
U j�s and s�

V j�s,

respectively (i.e., q� = oj�s(s
�
U j�s; s

�
V j�s)). It is easy to verify that yU (q

�) = y+U (q
�) � y�U (q

�) =

usrvU � val > 0, and yV (q
�) = y+V (q

�)� y�V (q
�) = val � usrvV > 0.

5.2 Proof of the example rational payment protocol 91

Now, let us suppose that s�
V j�s is not the best response to s

�
U j�s. This means that V has a

strategy s0
V j�s such that if U follows s�

U j�s and V follows s0
V j�s, then V achieves a higher payo�

than val�usrvV . In other words, if q0 = oj�s(s
�
U j�s; s

0
V j�s), then yV (q

0) = y+V (q
0)�y�V (q

0) > val�usrvV .

This is possible only if y+V (q
0) = val and y�V (q

0) = 0.
From y�V (q

0) = 0, we get that ��V (q
0) must be false, which means that V does not send

srv in q0. This means that U does not receive srv in q0. In addition, because of Lemma 5.4,
U cannot receive any other message in M2 either. Thus, U does not receive any message in
M2 in q

0. Since U follows s�
U j�s, if she does not receive any message in M2, then she quits the

protocol in round 3. This means that the only message that U sends in q0 is m1. Since B
does not send any messages in the restricted game, this also means that the only message
that V receives in q0 is m1.

From y+V (q
0) = val , we get that �+V (q

0) must be true, which means that B receives a
message m0 = (�; �; �) 2M4 in q

0. According to Lemma 5.1, this is possible only if V receives
� in q0. Since the only message that V receives in q is m1, � = m1 must hold. But in this
case h(�) = h(rnd), and from Lemma 5.2, we get that V must also receive � in q0, which is a
contradiction.

(ii) Now, let us suppose that s�
U j�s is not the best response to s

�
V j�s. This means that U has

a strategy s0
U j�s such that if q0 = oj�s(s

0
U j�s; s

�
V j�s), then yU(q

0) = y+U (q
0) � y�U (q

0) > usrvU � val .

This is possible only if y+U (q
0) = usrvU and y�U (q

0) = 0.
From y+U (q

0) = usrvU , we get that �+U (q
0) must be true, which means that U receives srv in

q0. This means that V sends srv in q0. Since V follows s�
V j�s, she sends srv only if she receives

a message m 2M1 before round 2.
From y�U (q

0) = 0 we get that ��U (q
0) must be false, which means that B does not receive

any message m0 2M4, neither it receives any message m00 2M 04 in q
0. This is a contradiction,

because V follows s�
V j�s, and in round 4, she can send (m; sig(k�1V ;m)) 2M 04 to B. 2

Lemma 5.9 Both U and V prefer (s�
U j�s; s

�
V j�s) to any other Nash equilibrium (s0

U j�s; s
0
V j�s) in

G�j�s(L).

Proof: Let us suppose that there exists a Nash equilibrium (s0
U j�s; s

0
V j�s) in G�j�s(L) such that

yU (q
0) > yU (q

�) = usrvU � val , where q0 = oj�s(s
0
U j�s; s

0
V j�s) and q� = oj�s(s

�
U j�s; s

�
V j�s). This is

possible only if y+U (q
0) = usrvU and y�U (q

0) = 0. Since G�j�s(L) is gain closed, y+U (q
0) = usrvU > 0

implies y�V (q
0) > 0, and y�U (q

0) = 0 implies y+V (q
0) = 0. Therefore, if U follows s0

U j�s and V

follows s0
V j�s, then V 's payo� is yV (q

0) = y+V (q
0)�y�V (q

0) < 0. Note, however, that the protocol
satis�es the safe back out property, which means that if V quits at the beginning of the game
without doing anything else, then her payo� cannot be negative, whatever strategy is followed
by U . This means that s0

V j�s is not the best response to s
0
U j�s, and thus, (s0

U j�s; s
0
V j�s) cannot be

a Nash equilibrium.
In the same way, we can prove that V prefers (s�

U j�s; s
�
V j�s) to any other Nash equilibrium

in G�j�s(L). 2

From Lemma 5.8 and Lemma 5.9, we obtain the main result of this section:

Proposition 5.1 (Rationality) The payment protocol described in Section 3.2 is rational.

92 Chapter 5: Proving protocols to be rational

In addition, it is easy to prove that the protocol is also terminating and e�ective:

Lemma 5.10 (Termination) The payment protocol of Section 3.2 is terminating.

Proof: It is easy to see that no matter which strategy is followed by U , if V follows s�
V j�s, then

it will quit the game in round 5 at latest. Similarly, no matter which strategy is followed by
V , if U follows s�

U j�s, then she will quit the game in round 4 at latest. 2

Lemma 5.11 (E�ectiveness) The payment protocol of Section 3.2 is e�ective.

Proof: It is easy to see that if U follows s�
U j�s and V follows s�

V j�s, then U receives srv and B

receives m4 = (m1; rnd ; sig(k
�1
V ; (m1; rnd))) 2M4, where

m1 = (U; V; tid ; val ; h(rnd); sig(k�1U ; (U; V; tid ; val ; h(rnd)))). 2

5.3 Some limitations of the model

The analysis in the previous section also reveals some limitations of our model. First of
all, there is no feature of the model that deals with the limited communicating capabilities
of the players. A player can send as many messages as she wishes to send (from the set of
messages that she is able to send, of course, but this can be a very large set) in a single round.
Note, however, that if we can prove that the best response of A to the correct behavior of B
is correct behavior even if A is given more communicating power than she really has, then
correct behavior must also be A's best response when her communicating capabilities are
limited.

Similarly, there is no feature of the model that deals with the limited computing power of
the players. Therefore, we must explicitly deny the players to perform actions that are based
on computationally infeasible operations. For instance, a player cannot send a message that
contains a digital signature of another player unless the �rst player received the signature ear-
lier. Similarly, a player cannot send a message that contains a previously unknown preimage
of a given cryptographic hash value unless the player received such a preimage earlier (that is
why the vendor cannot send a message that matches the description dsc but does not equal
srv , unless it received such a message earlier).

A similar issue is the treatment of random secret values (e.g., the random number rnd)
in our model. No feature allows us to model that a player can generate random values (e.g.,
numbers, keys, etc.) but she is not lucky enough to guess a speci�c secret value (given that
the space from which this secret value has been chosen is large enough). Therefore, we must
explicitly deny a player to perform an action that is based on guessing a value that is supposed
to be a secret to the player. We admit that this may lead to somewhat counterintuitive models.
In the previous section, for instance, we allow the vendor to send any random number except
for random numbers that hash into h(rnd) (unless the vendor received such a number earlier).

Despite the limitations listed above, our model is still useful, since it allows us to draw in-
teresting conclusions about exchange protocols with reasonable e�ort. Although it is possible
to de�ne a model that addresses the above issues, it would certainly be more complex, and
thus, more di�cult to use than our model. A similar trade-o� is made in the Abadi-Tuttle
logic [AT91], where the analysis of a key transport protocol is restricted to \good" runs, in
which initially held beliefs about the secrecy of cryptographic keys remain true.

5.4 Proof of Syverson's rational exchange protocol 93

5.4 Proof of Syverson's rational exchange protocol

In [Syv98], Syverson describes the following rational exchange protocol:

The Syverson protocol

A! B : m1 = (dscA; enc(k; itmA); w(k); sig(k
�1
A ; (dscA; enc(k; itmA); w(k))))

B ! A : m2 = (itmB ; m1; sig(k
�1
B ; (itmB ;m1)))

A! B : m3 = (k; m2; sig(k
�1
A ; (k;m2)))

where A and B denote the two protocol participants; itmA and itmB denote the items that
they want to exchange; dscA denotes the descriptions of itmA; and k denotes a randomly
chosen secret key. In addition, enc is a symmetric-key encryption function that takes as
input a key � and a message �, and outputs the encryption of � with �; sig is a signature
generation function de�ned in the same way as in Section 5.2; and w is a temporarily secret
(bit) commitment function. Before going into the details of the protocol, we comment on the
concept of temporarily secret (bit) commitment, which was introduced in [Syv98].

5.4.1 Temporarily secret (bit) commitment

Bit commitment is a way to commit to a value without revealing that value. Actually, most
of the schemes proposed in the literature can be used to commit not only to a single bit, but
to a whole bit string; so \bit" commitment is a slight misnomer. The idea of temporarily
secret (bit) commitment is similar to that of (bit) commitment. The di�erence is that the
secrecy of the commitment is breakable within acceptable bounds on time (computation).
More precisely, if w is a temporarily secret (bit) commitment function, then given w(x), one
can determine the bit string x in time t, where t lies between acceptable lower and upper
bounds.

At �rst sight, encryption with a reduced length key seems to be an appropriate candidate
for a temporarily secret (bit) commitment function, since such an encryption can be broken
with reasonable e�ort. If the goal were simply to have some computational load involved in
breaking the commitment, then this would be �ne. The problem is that it is easy to break up
the key space, and execute a search for the key in each part of the key space concurrently. This
means that no lower bound can be guaranteed on the time needed to break the commitment:
the more processors one has, the faster one �nds the key. This observation suggests that a
temporarily secret (bit) commitment function should be based on an \inherently sequential"
computation.

One approach to implement temporarily secret (bit) commitment is based on the time-
lock puzzle of Rivest, Shamir, and Wagner [RSW96]. The idea is the following: We randomly
choose two large primes p and q and a number a, and we compute a2

t
(modn), where n = pq

and t is a parameter that determines the time bounds within which the commitment can
be broken. Knowing the factors of n allows us to compute a2

t
(modn) e�ciently. Then, the

temporarily secret (bit) commitment to x < n is de�ned as w(x) = (n; a; t; x+a2
t
(modn)).

If x � n, then we can �rst encrypt x with a randomly chosen secret key k < n, and compute
w(k) as described above.

Computing a2
t
(mod n) from n, a, and t does not seem to be parallelizable in any way.

Thus, someone who knows only w(x) (and does not know p and q) can only determine x

94 Chapter 5: Proving protocols to be rational

by performing t squaring operation sequentially. The only advantage could be gained by
computing a2

t
(modn) on a faster processor, but in practice, the range of available processor

speeds can be readily determined, and t can be adjusted appropriately.

5.4.2 Detailed protocol description

Now, we continue with the description of the Syverson protocol. In the �rst step, A gen-
erates a random secret key k; encrypts item itmA with k; computes the temporarily secret
(bit) commitment w(k); generates a digital signature on the description dscA of itmA, the
encryption of itmA, and the commitment w(k); and sends message m1 to B.

When B receives m1, she veri�es the digital signature and the description dscA of the
expected item. If B is satis�ed, then she sends message m2 to A. m2 contains item itmB , the
received message m1, and a digital signature of B on these elements.

When A receives m2, she veri�es the digital signature, checks if the received message
contains m1, and checks if the received item matches the expectations. If she is satis�ed, then
she sends the key k to B in message m3, which also contains the received message m2 and
the digital signature of A on the message content.

When B receives m3, she veri�es the digital signature, and checks if the received message
contains m2. Then, B decrypts the encrypted item in m1 (also received as part of m3) with
the key received in m3.

5.4.3 Brief informal analysis

When B receivesm1, she has something that either turns out to be what she wants or evidence
that A cheated, which can be used against A in a dispute. At this point, B might try to
break the commitment w(k) in order to obtain k and then itmA. However, this requires
time. If itmA does not lose its value in time, and the inconvenience of the delay (and the
computation) is not an issue for B, then breaking the commitment is indeed the best strategy
for B. The Syverson protocol should not be used in this case. So it is assumed that itmA

has a diminishing value in time (e.g., it could be a short term investment advice), and that
it is practically worth nothing by the time at which B can break the commitment [Syv98].
Therefore, B is interested in continuing the protocol by sending m2 to A.

When A receives m2, she might not send m3 at all or for a long time. If A does not lose
anything until B gets access to itmA, then this is indeed a good strategy for A. If this is the
case, then the Syverson protocol should not be used. So it is assumed that A loses control
over itmA by sending it to B in m1, even if she sends it only in an encrypted form. In this
case, A does not gain anything by not sending m3 to B promptly.

Note, however, that A may send some garbage instead of the encrypted item in m1. A
deterrent against this is that the commitment can be broken anyhow, which means that the
misbehavior of A can be discovered by B. In addition, since m1 is signed by A, it can be used
against A in a dispute. If some punishment (the value of which greatly exceeds the value of
the exchanged items) for the misbehavior can be enforced, then it is not in the interest of A
to cheat. Note that this punishment could be enforced externally (e.g., by law enforcement).

In the formal analysis of the Syverson protocol, we will take these observations into con-
sideration. The analysis will essentially follow the same steps as that in Section 5.2.

5.4 Proof of Syverson's rational exchange protocol 95

5.4.4 The set of compatible messages

In order to de�ne the set of messages that are compatible with the protocol, we must �rst
introduce some further notation:

� dscB will denote the description of itmB; and

� dec will denote the decryption function that belongs to enc, which takes a key � and a
ciphertext ", and returns the decryption of " with �.

Next, we reconstruct the programs of the protocol participants:

�(A; kA; k
�1
A ; B; kB ; k

�1
B ; itmA; dscA; itmB ; dscB; k) = f

�A(A; k
�1
A ; B; kB ; itmA; dscA; dscB; k),

�B(B; k
�1
B ; A; kA; itmB; dscA)g

where

�A(A; k
�1
A ; B; kB ; itmA; dscA; dscB ; k) =

1. compute " = enc(k; itmA)
2. compute ! = w(k)

3. compute � = sig(k�1A ; (dscA; "; !))
4. send (dscA; "; !; �) to B
5. wait until timeout or

a message m = (; �; �0) arrives such that
- � = (dscA; "; !; �)
- �t(; dscB) = true

- vfy(kB ; (; �); �
0) = true

6. if timeout then go to step 9

7. compute �00 = sig(k�1A ; (k;m))
8. send (k;m; �00) to B
9. exit

�B(B; k
�1
B ; A; kA; itmB ; dscA) =

1. wait until timeout or
a message m = (�; "; !; �) arrives such that

- � = dscA
- vfy(kA; (�; "; !); �) = true

2. if timeout then go to step 6

3. compute �0 = sig(k�1B ; (itmB;m))
4. send (itmB;m; �

0) to A
5. wait until timeout or

a message m0 = (�; �; �00) arrives such that
- � = (itmB;m; �

0)
- �t(dec(�; "); dscA) = true

- vfy(kA; (�; �); �
00) = true

6. exit

96 Chapter 5: Proving protocols to be rational

Once the programs of the protocol participants are given, we can easily determine the set
of compatible messages:

M�(L) =M�(A; kA; k
�1
A ; B; kB ; k

�1
B ; itmA; dscA; itmB ; dscB; k) =M1 [M2 [M3

where

M1 = f(�; "; !; �) : � = dscA,
vfy(kA; (�; "; !); �) = trueg

M2 = f(; �; �) : � 2M1,
�t(; dscB) = true,
vfy(kB ; (; �); �) = trueg

M3 = f(�; ; �; "; !; �; �0 ; �00) :
(; �; "; !; �; �0) 2M2,
�t(dec(�; "); dscA) = true,
vfy(kA; (�; ; �; "; !; �; �

0); �00) = trueg

5.4.5 The protocol game

As we saw in Section 5.2, the next step in the construction of the protocol game is to tag each
message m 2M�(L) with a vector (�mi (�i(q)))i2P 0 of logical formulae, where each �mi (�i(q))
describes the condition that must be satis�ed in order for player i to be able to send message
m in the information set represented by the local state �i(q). For the Syverson protocol,
these vectors of logical formulae are the following:

� Since B cannot generate valid digital signatures of A, B can send a message m 2 M1

only if she received m or a message that contained m earlier. In addition, we assume
that A cannot generate a fake item, di�erent from itmA, that matches the description
dscA of itmA. Similarly, we assume that A cannot randomly generate a ciphertext ",
and a key � or a commitment ! = w(�) such that dec(�; ") matches dscA. In other
words, if for some message m = (�; "; !; �) 2 M1, �t(dec(w

�1(!); "); dscA) = true and
dec(w�1(!); ") 6= itmA, then A can send m only if she received m or a message that
contains m earlier.

Formally, for any m = (�; "; !; �) 2M1:

{ if �t(dec(w�1(!); "); dscA) = false or dec(w�1(!); ") = itmA:

�mA (�A(q)) = (�A(q) = true)
�mB (�B(q)) = (�B(q) = true) ^

((9r < rB(q) : (rcv(m); r) 2 HB(q)) _
(9r < rB(q);m

0 = (0;m; �0) 2M2 : (rcv(m
0); r) 2 HB(q)) _

(9r < rB(q);m
0 = (�0; 0;m; �0; �00) 2M3 : (rcv(m

0); r) 2 HB(q)))

{ otherwise (i.e., if �t(dec(w�1(!); "); dscA) = true and dec(w�1(!); ") 6= itmA):

5.4 Proof of Syverson's rational exchange protocol 97

�mA (�A(q)) = (�A(q) = true)
((9r < rA(q) : (rcv(m); r) 2 HA(q)) _
(9r < rA(q);m

0 = (0;m; �0) 2M2 : (rcv(m
0); r) 2 HA(q)) _

(9r < rA(q);m
0 = (�0; 0;m; �0; �00) 2M3 : (rcv(m

0); r) 2 HA(q)))
�mB (�B(q)) = (�B(q) = true) ^

((9r < rB(q) : (rcv(m); r) 2 HB(q)) _
(9r < rB(q);m

0 = (0;m; �0) 2M2 : (rcv(m
0); r) 2 HB(q)) _

(9r < rB(q);m
0 = (�0; 0;m; �0; �00) 2M3 : (rcv(m

0); r) 2 HB(q)))

� Since A cannot generate valid digital signatures of B, A can send a message m 2 M2

only if she received m or a message that contains m earlier. For similar reasons, B
can send a message m = (; �; �) 2 M2 only if she received � 2 M1 or a message that
contains � earlier. In addition, we assume that B cannot generate a fake item, di�erent
from itmB , that matches the description dscB of itmB. This means that if 6= itmB ,
then B can send m only if she received or a message that contains earlier.

Formally, for any m = (; �; �) 2M2:

{ if = itmB :

�mA (�A(q)) = (�A(q) = true) ^
((9r < rA(q) : (rcv(m); r) 2 HA(q)) _
(9r < rA(q);m

0 = (�0;m; �0) 2M3 : (rcv(m
0); r) 2 HA(q)))

�mB (�B(q)) = (�B(q) = true) ^
((9r < rB(q) : (rcv(�); r) 2 HB(q)) _
(9r < rB(q);m

0 = (0; �; �0) 2M2 : (rcv(m
0); r) 2 HB(q)) _

(9r < rB(q);m
0 = (�0; 0; �; �0; �00) 2M3 : (rcv(m

0); r) 2 HB(q)))

{ if 6= itemB :

�mA (�A(q)) = (�A(q) = true) ^
((9r < rA(q) : (rcv(m); r) 2 HA(q)) _
(9r < rA(q);m

0 = (�0;m; �0) 2M3 : (rcv(m
0); r) 2 HA(q)))

�mB (�B(q)) = (�B(q) = true) ^ '1 ^ '2

where

'1 = (9r < rB(q) : (rcv(�); r) 2 HB(q)) _
(9r < rB(q);m

0 = (0; �; �0) 2M2 : (rcv(m
0); r) 2 HB(q)) _

(9r < rB(q);m
0 = (�0; 0; �; �0; �00) 2M3 : (rcv(m

0); r) 2 HB(q))
'2 = (9r < rB(q);m

0 = (; �0; �0) 2M2 : (rcv(m
0); r) 2 HB(q)) _

(9r < rB(q);m
0 = (�0; ; �0; �0; �00) 2M3 : (rcv(m

0); r) 2 HB(q))

� Since B cannot generate valid digital signatures of A, B can send a message m 2 M3

only if she received m earlier (there cannot be another message that contains m in this
case). For similar reasons, A can send a message m = (�; �; �) 2M3 only if she received
� 2 M2 or a message that contains � earlier. Note, however, that in general, receiving
� is not su�cient for A to be able to send m = (�; �; �), because if the ciphertext "
within � was not computed by A using the key � (e.g., if A generated " randomly), then

98 Chapter 5: Proving protocols to be rational

A may not be able to guess �. Nevertheless, since our proofs will rely only on the fact
that A must receive � before sending m = (�; �; �), we generously give A the power to
guess �, and we consider that receiving � is also su�cient for A to send m = (�; �; �).

Formally, for any m = (�; �; �) 2M3:

�mA (�A(q)) = (�A(q) = true) ^
((9r < rA(q) : (rcv(�); r) 2 HA(q)) _
(9r < rA(q);m

0 = (�0; �; �0) 2M3 : (rcv(m
0); r) 2 HA(q)))

�mB (�B(q)) = (�B(q) = true) ^
(9r < rB(q) : (rcv(m); r) 2 HB(q))

The above logical formulae allow us to complete the construction of the protocol game.
Before determining the payo�s and describing the strategies that correspond to the programs
of the protocol participants, we can already make a few simple statements about the protocol
game:

Lemma 5.12 If (snd(m;B); r) 2 HA(q) for some message m = (�; �; �) 2 M3, round num-
ber r 2 N , and action sequence q 2 Q, then there exists r0 < r such that (rcv(�); r0) 2 HA(q).

Lemma 5.13 If (snd(m;A); r) 2 HB(q) for some messagem = (; �; �) 2M2, round number
r 2 N , and action sequence q 2 Q, then there exists r0 < r such that (rcv(�); r0) 2 HB(q).

Lemma 5.14 Let m be a message in M3. There is no round number r < 3 and action
sequence q 2 Q such that (rcv(m); r) 2 HB(q).

Lemma 5.15 Let m = (�; "; !; �) be a message in M1 such that �t(dec(w�1(!); "); dscA) =
true and dec(w�1(!); ") 6= itmA. There is no player i 2 P 0, round number r 2 N , and action
sequence q 2 Q such that (rcv(m); r) 2 Hi(q).

Lemma 5.16 Let m = (; �; �) be a message in M2 such that 6= itmB. There is no player
i 2 P 0, round number r 2 N , and action sequence q 2 Q such that (rcv(m); r) 2 Hi(q).

Lemma 5.12 states that if A sends a message m = (�; �; �) 2 M3 in round r in q, then
she must receive � in an earlier round r0 < r in q. Similarly, Lemma 5.13 states that if B
sends a message m = (; �; �) 2 M2 in round r in q, then she must receive � in an earlier
round r0 < r in q. Lemma 5.14 is a corollary of the �rst two lemmas that states that B
cannot receive a message m 2M3 before round 3. Finally, Lemma 5.15 states that no player
can ever receive a message m = (�; "; !; �) 2 M1 such that �t(dec(w�1(!); "); dscA) = true

and dec(w�1(!); ") 6= itmA, and Lemma 5.16 states that no player can ever receive a message
m = (; �; �) 2M2 such that 6= itmB. The proofs of these lemmas are given in Appendix C.

5.4.6 Strategies

Like in Section 5.2, we introduce an ordering relation on the messages in M�(L) that we
denote by �. We need this ordering in order to be able to de�ne the strategies of the players
unambiguously. The strategies that correspond to the programs �A and �B of the protocol
participants are then de�ned as follows:

5.4 Proof of Syverson's rational exchange protocol 99

Strategy s�A

� If �A(q) = true and rA(q) = 1, then perform the action sendA(f(m1; B)g), where
m1 = (dscA; enc(k; itmA); w(k); sig(k

�1
A ; (dscA; enc(k; itmA); w(k)))).

� If �A(q) = true and rA(q) = 2, then perform the action idleA.

� If �A(q) = true and rA(q) = 3, then let M be the set of those messages m = (; �; �) 2
M2 for which � = m1 and there exists a round number r < 3 such that (rcv(m); r) 2
HA(q).

{ If M = ;, then perform the action quitA.

{ If M 6= ;, then choose the smallest message m from M (according to �), and
perform the action sendA(f((k;m; sig(k

�1
A ; (k;m))); B)g).

� If �A(q) = true and rA(q) = 4, then perform the action quitA.

Strategy s�B

� If �B(q) = true and rB(q) = 1, then perform the action idleB.

� If �B(q) = true and rB(q) = 2, then let M be the set of those messages m 2 M1 for
which there exists a round number r < 2 such that (rcv(m); r) 2 HB(q).

{ If M = ;, then perform the action quitB .

{ If M 6= ;, then choose the smallest message m from M (according to �), and
perform the action sendB(f((itmB ;m; sig(k

�1
B ; (itmB;m))); A)g)

� If �B(q) = true and rB(q) = 3, then perform the action idleB.

� If �B(q) = true and rB(q) = 4, then perform the action quitB .

5.4.7 Payo�s

In this subsection we de�ne the payo�s for the players. We must slightly modify the payo�
framework introduced in Subsection 4.3.7, in order to take into account that the value of
itmA diminishes in time. We also have to consider the potential punishment for A if she
sends garbage in the �rst message of the protocol. Taking these into consideration, we de�ne
the payo�s of the players as follows.

Let us consider a terminal action sequence q in the protocol game. The payo� of A in q is
yA(q) = y+A(q)� y�A(q), where y

+
A(q) is the gain and y�A(q) is the loss of A in q. Furthermore,

the loss of A is de�ned as y�A(q) = y�A(q) + y��A (q), where y�A(q) is the loss that stems from
losing control over itmA, and y

��
A (q) is the loss that stems from the punishment. The payo�

of B in q is yB(q) = y+B(q)� y�B(q), where y
+
B(q) is the gain and y�B(q) is the loss of B in q.

We denote the values that itmA and itmB are worth to A by u�A and u+A, respectively.
Similarly, we denote the value that itmB is worth to B by u�B . The diminishing value of itmA

for B is modeled as a function u+B(r), which decreases as the round number r increases (see
part (a) of Figure 5.1). We assume that there exists a round number R such that u+B(r) = 0
for every r � R, and that breaking a commitment requires more than R rounds. Finally,

100 Chapter 5: Proving protocols to be rational

B
+u (r)

rR

(a)

B
+u (r)

rR3

B
_

u

r0

(b)

Figure 5.1: The diminishing value of itmA for B is represented by a decreasing function u+B(r).
We assume that there exists a round number R such that u+B(r) = 0 for every r � R, and that
breaking a commitment requires more than R rounds. We also assume that u+B(3) > u�B > 0.
Finally, we de�ne r0 as the smallest round number such that u+B(r0) � u+B(3)� u�B .

the value of the punishment is denoted by F . We assume that F is much greater than u+A,
u+A > u�A > 0, and u+B(3) > u�B > 0 (see also part (b) of Figure 5.1).

The gain of A is u+A if A receives a message in M2 that contains itmB, otherwise it is 0.
The value of y�A(q) is u

�
A if A sends a message in M1 that contains itmA (in an encrypted

form), or if A sends a message in M3 that contains itmA (in an encrypted form), otherwise
it is 0. In addition, the punishment y��A (q) of A is F if she sends an incorrect message in M1

that, after breaking the commitment and decrypting the ciphertext in the message, yields an
item that does not match the description dscA; otherwise the punishment is 0.

The gain of B is u+B(r) if B receives a message in M3 in round r that contains itmA and
no such message is received before round r. Note that receiving only a message in M1 yields
no gain for B, because we assume that by the time at which the commitment can be broken,
itmA loses its value for B. The loss of B is u�B if B sends a message in M2 that contains
itmB, otherwise it is 0.

The formal de�nitions are given below:

y+A(q) =

�
u+A if �+A(q) = true

0 otherwise

y�A(q) =

�
u�A if ��A(q) = true

0 otherwise

y��A (q) =

�
F if ���A (q) = true

0 otherwise

y+B(q) =

8>>>><
>>>>:

u+B(1) if �+B(q; 1) = true

u+B(2) if �+B(q; 2) = true

: : :
u+B(R� 1) if �+B(q;R � 1) = true

0 otherwise

5.4 Proof of Syverson's rational exchange protocol 101

y�B(q) =

�
u�B if ��B(q) = true

0 otherwise

where

�+A(q) = (9r 2 N;m = (; �; �) 2M2 :

(= itmB) ^ ((rcv(m); r) 2 HA(q)))

��A(q) = (9r 2 N;m = (�; "; !; �) 2M1 :

(dec(w�1(!); ") = itmA) ^ ((snd(m;B); r) 2 HA(q))) _

(9r 2 N;m = (�; ; �; "; !; �; �0 ; �00) 2M3 :

(dec(�; ") = itmA) ^ ((snd(m;B); r) 2 HA(q)))

���A (q) = (9r 2 N;m = (�; "; !; �) 2M1 :

(�t(dec(w�1(!); "); dscA) = false) ^ ((snd(m;B); r) 2 HA(q)))

�+B(q; r) = ((9m = (�; ; �; "; !; �; �0 ; �00) 2M3 :

(dec(�; ") = itmA) ^ ((rcv(m); r) 2 HB(q))) ^

(@r0 < r;m = (�; ; �; "; !; �; �0 ; �00) 2M3 :

(dec(�; ") = itmA) ^ ((rcv(m); r0) 2 HB(q))))

��B(q) = (9r 2 N;m = (; �; �) 2M2 :

(= itmB) ^ ((snd(m;A); r) 2 HB(q)))

Note that, by de�nition, �+B(q; r) = true holds for exactly one r, so y+B(q) is well de�ned.

5.4.8 The proof

We will now prove that the Syverson protocol is rational.

Lemma 5.17 (Gain closed property) The Syverson protocol is closed for gains.

Proof: It is enough to prove that for every terminal action sequence q in G�j�s(L), (i) �
+
A(q)

implies ��B(q) and (ii) for every r, �+B(q; r) implies ��A(q). Both (i) and (ii) follow from the
fact that there are only two players A and B who send messages, which means that if player
i 2 fA;Bg receives a message m, then the other player j 2 fA;Bg, j 6= i must send m. 2

Lemma 5.18 (Safe back out property) The Syverson protocol satis�es the safe back out
property.

Proof: If A does not send any messages in an action sequence q, then ��A(q) = false and
���A (q) = false, and thus y�A(q) = 0. If B does not send any messages in an action sequence q,
then ��B(q) = false, and thus y�B(q) = 0. 2

Lemma 5.19 The strategy pro�le (s�
Aj�s; s

�
Bj�s) is a Nash equilibrium in the restricted protocol

game G�j�s(L), where �s = (s�net).

102 Chapter 5: Proving protocols to be rational

Proof: We have to prove that (i) s�
Aj�s is the best response to s

�
Bj�s, and (ii) s�

Bj�s is the best
response to s�

Aj�s.

(i) Suppose that there is a strategy s0
Aj�s for A such that the payo� of A is higher if

she plays s0
Aj�s than if she plays s�

Aj�s against s
�
Bj�s. This means that yA(q

0) > yA(q
�), where

q� = oj�s(s
�
Aj�s; s

�
Bj�s) and q

0 = oj�s(s
0
Aj�s; s

�
Bj�s). It is easy to verify that yA(q

�) = u+A � u�A. Thus,

yA(q
0) > yA(q

�) is possible only if y+A(q
0) = u+A, y

�
A(q
0) = 0, and y��A (q0) = 0.

From y+A(q
0) = u+A, it follows that A received a message m = (; �; "; !; �; �0) 2 M2 in q0

such that = itmB . This means that B sent m in q0. It follows from Lemma 5.13 that B
can send m only if it received (�; "; !; �) 2M1 from A earlier. Thus, A sent (�; "; !; �) 2M1.
Since y��A (q0) = 0, �t(dec(w�1(!); "); dscA) must be true. Furthermore, from Lemma 5.15, we
get that dec(w�1(!); ") = itmA. This means that y�A(q

0) cannot be 0.
(ii) Suppose that there is a strategy s0

Bj�s for B such that the payo� of B is higher if

she plays s0
Bj�s than if she plays s�

Bj�s against s
�
Aj�s. This means that yB(q

0) > yB(q
�), where

q� = oj�s(s
�
Aj�s; s

�
Bj�s) and q

0 = oj�s(s
�
Aj�s; s

0
Bj�s). It is easy to verify that yB(q

�) = u+B(3)� u�B . Let

r0 be the smallest round number such that u+B(r0) � u+B(3)� u
�
B (see part (b) of Figure 5.1).

Then, yB(q
0) > yB(q

�) is possible only in two cases: (a) y+B(q
0) = u+B(r), where r < r0, and

y�B(q
0) = 0, or (b) y+B(q

0) = u+B(r), where r < 3. However, case (b) can never occur, because
of Lemma 5.14. Therefore, we have to consider only case (a).

From y+B(q
0) = u+B(r), it follows that B received a messagem = (�; ; �; "; !; �; �0 ; �00) 2M3

such that dec(�; ") = itmA in round r in q0. This means that A sent m in q0. It follows from
Lemma 5.12 that A can send m only if it received (; �; "; !; �; �0) 2M2 from B earlier. Thus,
B sent (; �; "; !; �; �0) 2 M2. From Lemma 5.16, we get that = itmB . This means that
y�B(q

0) cannot be 0. 2

Lemma 5.20 Both A and B prefer (s�
Aj�s; s

�
Bj�s) to any other Nash equilibrium (s0

Aj�s; s
0
Bj�s) in

G�j�s(L), where �s = (s�net).

Proof: Let us suppose that there exists a Nash equilibrium (s0
Aj�s; s

0
Bj�s) in G�j�s(L) such that

yA(q
0) > yA(q

�) = u+A � u�A, where q
0 = oj�s(s

0
Aj�s; s

0
Bj�s) and q� = oj�s(s

�
Aj�s; s

�
Bj�s). This is

possible only if y+A(q
0) = u+A and y�A(q

0) = y��A (q0) = 0. Since the protocol is closed for gains,
y+A(q

0) = u+A > 0 implies y�B(q
0) > 0, and y�A(q

0) = 0 implies y+B(q
0) = 0. Therefore, if A follows

s0
Aj�s and B follows s0

Bj�s, then B's payo� is yB(q
0) = y+B(q

0)� y�B(q
0) < 0. Note, however, that

because of the safe back out property, if B quits at the beginning of the game without doing
anything else, then her payo� cannot be negative, whatever strategy is followed by A. This
means that s0

Bj�s is not the best response to s0
Aj�s, and thus, (s0

Aj�s; s
0
Bj�s) cannot be a Nash

equilibrium.
Now let us suppose that there exists a Nash equilibrium (s0

Aj�s; s
0
Bj�s) in G�j�s(L) such that

yB(q
0) > yB(q

�) = u+B(3) � u�B. This is possible only in two cases: (a) if y+p2(q
0) = u+B(r),

where r < r0 (see part (b) of Figure 5.1), and y�B(q
0) = 0, or (b) if y+B(q

0) = u+B(r), where
r < 3. However, case (b) can never occur, because of Lemma 5.14. Case (a) can be proven
to be impossible using the same technique as in the �rst part of this proof. 2

From Lemma 5.19 and Lemma 5.20, we obtain the main result of this section:

Proposition 5.2 (Rationality) The Syverson protocol is rational.

5.5 Replacing the reliable network with an unreliable one 103

In addition, it is easy to prove the following:

Lemma 5.21 (Termination) The Syverson protocol is terminating.

Proof: According to the strategies s�A and s�B, both A and B quit in round 4 at latest. 2

Recall that in the protocol game of the Syverson protocol the possible gain u+B of player
B is not a constant, but it is a function of r. This means that we have to modify the
de�nition of e�ectiveness in order to take this into account1. Requiring that y+B(q

�) (where
q� = oj�s(s

�
Aj�s; s

�
Bj�s)) be u

+
B(3) is somewhat speci�c to the Syverson protocol and not general

enough. Intuitively, what we expect from an e�ective protocol is that the payo�s of both
players are positive if they both follow the protocol faithfully. Therefore, e�ectiveness in
the Syverson protocol means that yA(q

�) > 0 and yB(q
�) > 0. Now, it is easy to prove the

following:

Lemma 5.22 (E�ectiveness) The Syverson protocol is e�ective.

Proof: It is easy to verify that yA(q
�) = u+A � u�A, and yB(q

�) = u+B(3)� u�B. The statement
from the lemma follows from the fact that we have assumed that u+A > u�A and u+B(3) > u�B . 2

5.5 Replacing the reliable network with an unreliable one

In the previous sections, we proved that the payment protocol of Section 3.2 and Syverson's
exchange protocol [Syv98] are rational exchange protocols. However, the proofs have been
carried out in a model where the network is assumed to be reliable. In this section, we assume
that the network is not reliable (i.e., there are no bounds on message delivery delays), and
discuss how this assumption a�ects the properties of the above mentioned protocols.

Our main observation is that none of the protocols will be e�ective and rational. Let us
consider �rst the payment protocol of Section 3.2, and let us assume that both players follow
the strategy that corresponds to the correct execution of the protocol. Furthermore, let us
assume that the players use timers, and when they receive a timeout signal, they continue
with the next step of the protocol. In case of V not receiving rnd in time, this means that
V sends m04 to B; in all other cases it means that the player quits the protocol. Now it is
easy to see that the network may follow a strategy in which rnd is delayed, so that V �nally
timeouts and sends m04 to B. This means that there exists a a strategy vector �s and thus
a restricted protocol game G�j�s(L) such that y+V (q

�) = 0 and y�V (q
�) = u�V (since srv has

been sent), where q� = oj�s(s
�
U j�s; s

�
V j�s). y

+
V (q
�) = 0 means that the protocol is not e�ective. In

addition, it can be seen that the total payo� of V in q� is negative, so V would be better o�
if she did not participate in the exchange at all. In other words, s�

V j�s is not the best response

to s�
U j�s in G�j�s(L), and so (s�

U j�s; s
�
V j�s) cannot be a Nash equilibrium in G�j�s(L). This implies

that the protocol is not rational.
Let us consider now the Syverson protocol. Let us assume again that both players follow

the strategy that corresponds to the correct execution of the protocol, and that the players
use timers in a similar way as in the previous case. Now the network may follow a strategy in

1If we were interested in fairness, then we would need to modify the de�nition of fairness as well, since it
also involves u+B.

104 Chapter 5: Proving protocols to be rational

whichm3 is delayed, so that B �nally timeouts and quits the protocol. This means that there
exists a strategy vector �s and thus a restricted protocol game G�j�s(L) such that y+B(q

�) = 0

and y�B(q
�) = u�B (since m2 has been sent), where q� = oj�s(s

�
Aj�s; s

�
Bj�s). Similarly to the

previous case, this leads to the conclusion that the protocol is not e�ective and not rational.
If we assume that the network does not lose messages (i.e., eventually every submitted

message is delivered), then we can retain e�ectiveness in the payment protocol of Section 3.2
by not using timers2: If the players follow the correct strategies and wait long enough for
messages, then eventually they receive what they want to receive. However, not using timers
is impractical. In addition, it does not help us to retain rationality. The reason is that
if V behaves correctly and ignores timeouts then the best response of U to this is to quit
after receiving srv without sending rnd , since in this case V will wait for rnd forever and
will never contact B. With this strategy U 's payo� will be usrvU , which is higher than the
payo� usrvU � val that she obtains if she follows the correct strategy. This means that the
strategies that correspond to the correct behavior cannot form a Nash equilibrium in every
restricted protocol game. In addition, the termination property is not satis�ed either for
obvious reasons.

2Note that this is not the case in the Syverson protocol, because even if the network eventually delivers
m3, it can still delay it for long enough a time so that itmA loses its value for B.

Part III

Incentives to cooperate in ad hoc

networks

105

Chapter 6

Stimulation for packet forwarding

in ad hoc networks

6.1 Introduction

In this chapter, we describe how ideas similar to the concept of rational exchange could be
used in a di�erent context, namely, to stimulate cooperation in ad hoc networks. First, we
motivate the problem by showing why cooperation is essential for the network as a whole,
and why it is not in the interest of the nodes as individuals. Then, we propose a mechanism
to stimulate cooperation. Our design shows strong similarities to rational exchange protocols
in the sense that we do not prevent a node from denying cooperation or deviating from the
proposed protocols, but we do ensure that the node cannot gain any advantages by doing so.
Therefore, we expect that rational (self-interested) nodes will cooperate and deviations will
happen only rarely. Finally, we study the behavior of the proposed mechanism by means of
simulation.

An ad hoc network is a wireless multi-hop network formed by a set of potentially mobile
nodes in a self-organizing way without relying on any established infrastructure. Due to the
absence of infrastructure, in an ad hoc network, all networking functions must be performed
by the nodes themselves. For instance, packets sent between two distant nodes are expected
to be forwarded by intermediate nodes [CFS99, Per01].

The above mentioned operating principle renders cooperation among nodes an essential
requirement in ad hoc networks. By cooperation, we mean that the nodes perform networking
functions for the bene�t of other nodes. Lack of cooperation may have fatal e�ects on the
performance of the network. As an example, let us consider Figure 6.1, which illustrates that
the cumulative throughput1 of the network decreases dramatically as the fraction of the nodes
that deny packet forwarding increases. The di�erent curves belong to networks of di�erent
sizes (100, 200, 300, and 400 nodes) but with the same node density. The �gure also shows
that larger networks are more sensitive to this kind of non-cooperative behavior of the nodes.
These results are based on our own simulations described in detail in Section 6.4, but similar
results have been presented in [MGLB00] as well.

So far, applications of ad hoc networks have been envisioned mainly for crisis situations
(e.g., in the battle�eld or in rescue operations). In these applications, all the nodes of the

1Cumulative throughput is de�ned as the ratio of the total number of packets delivered to the total number
of packets sent in the network in a given time.

107

108 Chapter 6: Stimulation for packet forwarding in ad hoc networks

Figure 6.1: The e�ect of non-cooperating nodes on the throughput of the network

network belong to a single authority (e.g., a single military unit or rescue team) and have a
common goal. For this reason, the nodes are naturally motivated to cooperate.

However, with the progress of technology, it will soon be possible to deploy ad hoc net-
works for civilian applications as well. Examples include networks of cars and provision of
communication facilities in remote areas. In these networks, the nodes typically do not belong
to a single authority and they do not pursue a common goal. In addition, these networks
could be larger and could have a longer lifetime, and they could be completely self-organizing,
meaning that the network would run solely by the operation of the end-users. In such net-
works, there is no good reason to assume that the nodes cooperate. Instead, in order to save
resources (e.g., battery power, CPU, memory), the nodes tend to be \sel�sh".

As a motivating example, let us consider packet forwarding again: Even in a small ad
hoc network, most of the energy of a given node is likely to be devoted to forwarding packets
for the bene�t of other nodes. For instance, if the average number of hops from source to
destination is around 5, then approximately 80% of the energy devoted to sending packets
will be consumed by packet forwarding. Hence, turning the forwarding function o� would
very noticeably extend the battery life of a node, and increase its overall availability for its
user.

In the rest of this chapter, we assume that each node belongs to a di�erent authority, its
user, who may try to tamper with the software and the hardware of the node, and modify
its behavior in order to better adapt it to her own goals (e.g., to save battery power). We
understand that most of the users do not have the required level of knowledge and skills
to modify their nodes. Nevertheless, our assumption is still reasonable, because criminal
organizations can have enough interest and resources to reverse engineer a node and sell
tampered nodes with modi�ed behavior on a large scale. The experience of cellular networks
shows that as soon as the nodes are under the control of the end-users, there is a strong
temptation to alter their behavior in one way or another.

One approach to solve this problem would be to make the nodes tamper resistant, so that

6.2 Stimulation mechanism 109

their behavior cannot be modi�ed. However, this approach does not seem to be very realistic,
since ensuring that the whole node is tamper resistant may be very di�cult, if not impossible.
Therefore, we propose another approach which requires only a tamper resistant hardware
module, called security module, in each node, and cryptographic protection of packets. One
can think of the security module as a smart card (similar to the SIM card in GSM phones)
or as a tamper resistant security co-processor [IBM97]. Under the assumption that the user
can possibly modify the behavior of the node, but never that of the security module, our
design ensures that tampering with the node is not advantageous for the user, and therefore,
it should happen only rarely.

We focus on the stimulation of packet forwarding, which is a fundamental networking
function that the nodes should perform in ad hoc networks. In a nutshell, we propose a pro-
tocol that requires the node to pass each packet (generated as well as received for forwarding)
to its security module. The security module maintains a counter, which is decreased when the
node wants to send a packet as originator, and increased when the node forwards a packet.
The value of the counter must remain positive, which means that if the node wants to send
its own packets, then it must forward packets for the bene�t of other nodes. The counter is
protected from illegitimate manipulation by the tamper resistance of the security module.

Besides stimulating packet forwarding, our mechanism encourages the users to keep their
nodes turned on and to refrain from sending a large amount of packets to distant destinations.
The latter property is particularly desirable, because, as mentioned in [GK00], the available
bandwidth per node declines as the number of nodes increases (assuming that the tra�c does
not exhibit locality properties).

The present proposal was developed in the framework of the Terminodes Project [BBC+01,
HGLV01]. However, it is generic; in particular, it could work in conjunction with any routing
algorithm. We should also note that our scheme works only for unicast packets; the multicast
case is left for future study.

The outline of this chapter is the following: In Section 6.2, we describe the proposed
mechanism to stimulate packet forwarding, and study its behavior through the analysis of a
simple model. In Section 6.3, we detail the ways in which the proposed mechanism could be
protected against misuse. In Section 6.4, we describe our simulation settings, and the results
that we obtained. Finally, in Section 6.5, we report on some related work and in Section 6.6,
we sketch some possible directions for further research on this topic.

6.2 Stimulation mechanism

We assume that each node has a counter, called credit counter, and the following rules are
enforced:

1. When the node wants to send one of its own packets, the number n of intermediate
nodes that are needed to reach the destination is estimated. If the credit counter of the
node is greater than or equal to n, then the node can send its packet, and the credit
counter is decreased by n. Otherwise, the node cannot send its packet, and the credit
counter is not modi�ed.

2. When the node forwards a packet for the bene�t of other nodes, the credit counter is
increased by one.

110 Chapter 6: Stimulation for packet forwarding in ad hoc networks

Let us consider now the following model, the analysis of which will give an insight into the
operation of the above mechanism. A node has two incoming and two outgoing ows of packets
(Figure 6.2). The incoming ow IN o represents the packets that are generated by the node
itself. We call these packets own packets. The other incoming ow IN f represents the packets
that are received for forwarding. We call these packets forwarding packets. The packets that
the node receives as destination are not represented in the model. Each incoming packet
(own as well as forwarding) is either sent or dropped. The outgoing ow OUT represents the
packets that are sent by the node. This ow consists of two components OUT o and OUT f ,
where OUT o represents the own packets that are sent and OUT f stands for the forwarded
packets. The other outgoing ow DRP represents the packets that are dropped. Similarly
to OUT , this ow consists of two components too: DRPo and DRPf , representing dropped
own and forwarding packets, respectively.

B, C, N
oIN

INf

=OUT oOUT OUTf+

=DRP + fDRPoDRP

Figure 6.2: Model of a single node

The current state of the node is described by two variables b and c, where b is the remaining
battery of the node and c stands for the value of its credit counter. More precisely, we interpret
b as the number of packets that the node can send using its remaining energy. The initial
values of b and c are denoted by B and C, respectively. To keep the model simple, we assume
that when the node sends an own packet, c is decreased by an integer constant N > 1,
which represents the estimated number of intermediate nodes that are needed to reach the
destination. Since c must remain positive, the node can send its own packet only if c � N
holds. When the node sends a packet that was received for forwarding, c is increased by one.
In addition, each time the node sends a packet (own as well as forwarding), b is decreased by
one. When b reaches 0 (i.e., when the battery is drained out), the node stops its operation.
We assume that the initial number C of credits is not enough to drain the battery out by
sending only own packets (i.e., C=N < B).

Let us denote the number of own and forwarding packets sent during the whole lifetime
of the node by outo and outf , respectively. Sel�shness of the node could be represented by
the goal of maximizing outo subject to the following conditions:

outo; outf � 0 (6.1)

Nouto � outf � C (6.2)

outo + outf = B (6.3)

Condition (6.1) is trivial. Condition (6.2) describes the requirement that the number
Nouto of credits spent by the node cannot exceed the number outf of credits earned plus
the initial value C of the credit counter. Finally, Condition (6.3) represents the fact that the
initial energy of the node must be shared between sending own packets and sending forwarding
packets.

6.2 Stimulation mechanism 111

outoBB + C
N + 1

outf

B

NB - C
N + 1

- C

outo= B -outf

outo - C= Noutf

Figure 6.3: Maximizing outo

Figure 6.3 illustrates the conditions graphically. It is easy to see that the maximum of
outo is

B+C
N+1 . It can also be seen that in order to reach this maximum outf must be NB�C

N+1 .
Thus, the node must forward this number of packets for the bene�t of other nodes if it wants
to maximize its own bene�t. If there was no credit counter and an enforcing mechanism that
does not allow the node to send an own packet when it does not have enough credits, then
Condition (6.2) would be missing, and the maximum of outo would be B. This means that
the node would maximize its own bene�t by dropping all packets received for forwarding.

In principle, the node can always reach outo =
B+C
N+1 : When it runs out of credits, it can

simply bu�er its own packets until it forwards enough packets and earns enough credits to
send them. However, this works only if the bu�er is large enough and no delay constraint is
imposed on the packets. In real-time applications, sending a packet that has spent too much
time in the bu�er may be useless, which means that the node must drop some of its own
packets. It can still reach outo =

B+C
N+1 , but it is now important how many own packets it

must drop meanwhile.
In order to study this situation, we extend our model in the following way: We assume

that the node generates own packets with a constant average rate ro, and receives packets for
forwarding with a constant average rate rf . We denote the time when the battery is drained
out by tend . Note that tend is not a constant, since the time when the battery is drained out
depends on the behavior of the node. Furthermore, we assume that there is no bu�ering of
own packets, which means that an own packet that cannot be sent immediately (due to the
low value of the credit counter) must be dropped.

Sel�shness of the node could now be represented by the goal of maximizing outo and, at
the same time, maximizing zo =

outo
rotend

(which is equivalent to minimizing the number of own
packets dropped) subject to the following conditions:

outo; outf � 0 (6.4)

outo � rotend (6.5)

outf � rf tend (6.6)

Nouto � outf � C (6.7)

outo + outf = B (6.8)

112 Chapter 6: Stimulation for packet forwarding in ad hoc networks

Using outf = B� outo from Condition (6.8), we can reduce the number of unknowns and
obtain the following set of conditions:

outo � 0 (6.9)

outo � B (6.10)

tend �
outo
ro

(6.11)

tend � �
outo
rf

+
B

rf
(6.12)

outo �
B + C

N + 1
(6.13)

Conditions (6.9-6.13) determine the feasible region, on which we have to maximize outo
and zo. This is illustrated in Figure 6.4. As we have already seen, the maximum of outo is
B+C
N+1 . Note that

B+C
N+1 is always less than B, because we assumed that C=N < B. Di�erent

values of zo are represented by lines with di�erent slopes all going through the (0,0) point.
In order to �nd the maximum of zo, we have to �nd the line with the smallest slope that still
intersects the feasible region.

outoB
ro rf+

ro B
B + C
N + 1

feasible region

(a)

z =
 1

o
outo
ro

endt =

outo
rf

+
B
rf

_
endt =

endt

outoB
ro rf+

ro B
B + C
N + 1

fe
as

ib
le

 r
eg

io
n

(b)

z =
 1

o

z
< 1

o
outo

rf
+

B
rf

_
endt =

outo
ro

endt =

endt

Figure 6.4: Maximizing outo and zo =
outo
rotend

Depending on the ratio rf=ro of the rates, we can distinguish the following two cases
(Figure 6.4 parts (a) and (b)):

1. If
rf
ro
� NB�C

B+C (i.e., B+C
N+1 �

ro
ro+rf

B) then the maximum of zo is 1. Because of Condi-

tion (6.11), this is the best that can be achieved. This means that in this case, the node
does not have to drop any of its own packets.

2. If
rf
ro
< NB�C

B+C (i.e., B+C
N+1 < ro

ro+rf
B), then the maximum of zo is

rf
ro

B+C
NB�C < 1. This

means that in this case, the node must drop some of its own packets.

Intuitively, the di�erence between the two cases above can be explained as follows: In
case 1, packets for forwarding arrive with high enough a rate to cover the expenses of sending
own packets. On the other hand, in case 2, the arrival rate of forwarding packets is too low,

6.2 Stimulation mechanism 113

and the node cannot earn enough credits to send all of its own packets even if it forwards all
packets received for forwarding.

The above analysis shows what the node can achieve in terms of maximizing its own
bene�t. However, it does not shed light on how the node should actually behave in order to
reach this theoretical optimum. It seems reasonable that the node should always send its own
packets whenever this is possible (i.e., whenever it has enough credits to do so). But how
should the node decide whether to forward or to drop a packet received for forwarding?

In order to get an insight into this question, let us consider the following four forwarding
rules, where f denotes the number of forwarding packets sent so far:

Rule 1: if f < NB�C
N+1 then forward

else drop

Rule 2: if f < NB�C
N+1 then

if c � C then forward
else forward with probability C=c or drop with probability 1� C=c

else drop

Rule 3: if f < NB�C
N+1 then

if c � C then forward
else drop

else drop

Rule 4: if f < NB�C
N+1 then

if c � C then forward with probability 1� c=C or drop with probability c=C
else drop

else drop

In all four rules, packets are dropped after the threshold f = NB�C
N+1 has been reached. The

reason is that in this case, it is not necessary to forward more packets, because the node has
enough credits to drain its battery out by sending only its own packets. The four rules di�er
in what happens before this threshold is reached. In Rule 1, packets are always forwarded. In
the other rules, the forwarding decision depends on the current value c of the credit counter.
In Rule 2, packets are forwarded for sure if c � C, and with decreasing probability as c
increases if c > C. In Rule 3, packets are forwarded for sure if c � C, and they are always
dropped if c > C. In Rule 4, packets are forwarded with decreasing probability as c increases
if c � C, and they are always dropped if c > C. Clearly, the most cooperative rule is Rule 1.
Rules 2, 3, and 4 are less cooperative, in this order.

We studied the performance of the rules by means of simulation. We implemented the
above described model of a single node in plain C++ language. In our simulations, we set
the values of the parameters as follows: B = 100000, C = 100, N = 5. Both the own packets
and the packets for forwarding were generated according to a Poisson process. The average
generation rate of the own packets were 0.2 packets per second, and we varied the average
generation rate of forwarding packets between 0.6 and 1.6 packets per second with a step size
of 0.2 (i.e., we varied rf=ro between 3 and 8 with a step size of 1, in order to obtain some
results for the

rf
ro
< NB�C

B+C � 5 case as well as for the
rf
ro
� NB�C

B+C case). The simulations
lasted until the node drained its battery out (i.e., 100000 packets were sent). We run the
simulation 8 times for every con�guration and took the average of the results obtained. Each

114 Chapter 6: Stimulation for packet forwarding in ad hoc networks

rule reached outf = 16683 =
j
B+C
N+1

k
in every run of the simulation. The values obtained for

zo are depicted in Figure 6.5.

Figure 6.5: Comparison of the forwarding rules

It can be seen that Rule 4 achieves the worst performance as it is the furthest from the
theoretical optimum. The �rst three rules perform almost equally well when rf=ro < 5 and
rf=ro > 5. However, a remarkable di�erence appears among the rules when rf=ro = 5 = N .
Interestingly enough, the results show that the most cooperative the rule is the best the
performance that it achieves. This means that if the node wants to maximize outo and zo at
the same time, then the best forwarding rule is Rule 1 (i.e., to always forward).

Figure 6.6 is meant to provide an intuitive explanation for this phenomenon. Parts (a)
and (b) of the �gure illustrate the operation of Rules 1 and 3, respectively, when

rf
ro
� NB�C

B+C .
The �gure should be interpreted in the following way: Let us assume that time is divided into
small time slots. Each small grey rectangle in the �gure represents the set of possible points
that the node can potentially reach in a given time slot assuming that it is in the bottom-left
corner of the rectangle at the beginning of that time slot. Therefore, the ratio of the sides of
the rectangles is rf=ro. The arrows show which points are actually reached by the node when
Rules 1 and 3 are used. The dark vertical bars represent the amount of dropped forwarding
packets in the time slots.

It can be seen that by using Rule 1, the node tends to get further from the edge of
the feasible region that is represented by the outf = Nouto � C line. This means that the
node has usually more credits in reserve when Rule 1 is used. This property turns out to
be advantageous when the ratio rf=ro is close to N . The reason is that, due to the random
manner in which the packets arrive, there is always a small uctuation in the ratio of the
number of forwarding packets to the number of own packets. On average, this ratio is equal
to rf=ro, but sometimes it can be less. If this happens and rf=ro is close to N , then the node
does not receive enough forwarding packets to cover the cost of sending its own packets. In
this case, it must use the credits that it has in reserve. By increasing the credit reserve, Rule 1
decreases the probability of temporarily running out of credits and dropping own packets.

6.3 Protection 115

outoB

outf

B

- C

outo= B -outf

outo - C= Noutf

(a)

outoB

outf

B

- C

outo= B -outf

outo - C= Noutf

(b)

Figure 6.6: Operation of Rule 1 (a) and Rule 3 (b) when
rf
ro
� NB�C

B+C

6.3 Protection

Clearly, the stimulating mechanism described in the previous section must be secured and
protected against various attacks. For instance, one has to prevent the user of the node from
manipulating (typically increasing) her credit counter in an illegitimate way. In addition, one
has to ensure that the credit counter is increased only if a forwarding packet has indeed been
forwarded. We address these and similar issues in this section.

6.3.1 Tamper resistant security module

In order to prevent the user from illegitimately increasing its own credit counter, we require
that the credit counter is maintained by a trusted and tamper resistant hardware module in
each node. We call this module security module. One can imagine a security module as a smart
card (similar to the SIM card in GSM phones) or as a tamper resistant security co-processor
[IBM97]. For more information on tamper resistant modules, we refer to [PPW97, AK96].

We assume that the security modules are manufactured by a limited number of trusted
manufacturers. Furthermore, since the security module is tamper resistant, its behavior
cannot be modi�ed. Therefore, security modules are trusted for always functioning correctly.

Our design approach is to put the critical functions in the security module, and the
rest of the functions in the node itself. Of course, the functions that are not placed in
the security module can be tampered with, and thus, the behavior of the node can still be
modi�ed. However, our design ensures that no advantages can be gained by tampering with
the unprotected functions, and therefore, the user of the node will not be interested in this
activity.

6.3.2 Public-key infrastructure

We assume that each security module has a private key and a corresponding public key. The
private key is stored in the security module and kept secret. The public key is certi�ed by
the manufacturer of the security module and the certi�cate is stored in the security module

116 Chapter 6: Stimulation for packet forwarding in ad hoc networks

(Figure 6.7). In addition, we assume that the manufacturers cross-certify the public keys of
each other, and each security module stores the public-key certi�cates of all manufacturers
issued by the manufacturer of the security module. Finally, we assume that each security
module stores an authentic copy of the public key of its manufacturer, which is loaded in the
module securely at manufacturing time. Note that storing all these certi�cates is feasible,
because we limit the number of manufacturers.

...

...

...

...

Manufacturer

Security Module

Certificate

Figure 6.7: Certi�cation structure

In this system, each security module can easily obtain the authentic public key of any
other security module in the network. Let us suppose, for instance, that A wants to obtain
the public key of B. B can simply send its public-key certi�cate to A, who can verify it
with the public key of the manufacturer of B. A possesses an authentic copy of this public
key, since it stores the authentic public-key certi�cates of all manufacturers issued by its own
manufacturer.

Our system is a rather pragmatic solution for the reliable distribution of public keys, and
we had to limit the number of manufacturers in order for it to work. The design of a general
purpose public-key infrastructure for large, self-organizing ad hoc networks is a challenging
problem that is beyond the scope of this thesis. An approach towards the solution of this
problem is described in [HBC01].

6.3.3 Security associations

When two nodes become neighbors, their security modules establish a security association. If
this fails, the security modules do not consider each other neighbors.

A security association between two neighboring security modules A and B is represented,
at A's side, by

� the unique identi�er of B;

� the unique identi�er of the node that hosts B,

� a symmetric session key kAB ;

6.3 Protection 117

� two sequence numbers cA!B and cA B, which are called sending and receiving sequence
numbers, respectively; and

� a counter pcB@A, which is called pending credit counter.

At B's side, the same association is represented by

� the unique identi�er of A;

� the unique identi�er of the node that hosts A;

� the session key kAB;

� a sending sequence number cB!A and a receiving sequence number cB A, such that
initially, cB!A > cA B and cB A < cA!B; and

� a pending credit counter pcA@B.

The session key kAB is used to compute a message authentication code, which protects
the integrity and ensures the authenticity of the packets sent between the nodes of A and B,
but kAB can also be used to provide other security functions (e.g., link-by-link encryption of
the content of the packets). The sequence numbers are used to detect replayed packets. The
pending credit counter pcB@A is used to accumulate credits at A that are due to B. Similarly,
pcA@B counts the credits at B that are due to A. The way in which the session key, the
sequence numbers, and the pending credit counters are used will be explained in more detail
in the next subsection, where we present the envisioned packet forwarding protocol.

The security associations between the security modules are established using some public-
key cryptographic protocol, which is executed through the nodes that host the security mod-
ules. The security modules obtain each other's public key according to the model of the above
described public-key infrastructure.

6.3.4 Packet forwarding protocol

The packet forwarding protocol described in this subsection assumes that the security module
runs the routing algorithm used in the network.

If a node P has an own packet to send, it must �rst pass the packet to its security module
A. A estimates the number n of intermediate nodes needed to reach the destination. Precise
estimation of this number is not so critical. If the value of the credit counter maintained by
A is less than n, then A rejects the packet. Otherwise the credit counter is decreased by n,
and the protocol continues.

Using the routing algorithm, A determines the next intermediate node Q toward the
destination, and retrieves the security association that corresponds to the security moduleB of
nodeQ from its internal database. Then, it takes the session key kAB and the sending sequence
number cA!B, and generates a security header (see also Figure 6.8) for the packet, which
contains A, B, cA!B , and the message authentication code mackAB (A; B; cA!B ; packet),
where mac is a publicly known MAC function. After this computation, cA!B is increased by
one.

Finally, A outputs the security header and the identi�er of the next intermediate node Q,
and P can send the packet together with the security header to Q.

118 Chapter 6: Stimulation for packet forwarding in ad hoc networks

MAC Layer
Header

Network Layer
Header

Security
Header Additional headers and payload

packet

A B MACcA-->B

A - identifier of the security module of the forwarding (sending) node
B - identifier of the security module of the intended next hop

MAC = mac (A, B, c , packet)A-->BAB

c - A's sending sequence number associated with BA-->B

k

Figure 6.8: Security Header

Now, let us assume that node Q received a packet with a security header for forwarding
from node P . If Q wants to forward the packet in order to earn a credit, then Q must pass the
packet with the attached security header to its security module B. B takes the identi�er of the
security module A that generated the security header from the header itself, and retrieves the
corresponding security association from its internal database. Then, it veri�es if the sending
sequence number in the security header is greater than its receiving sequence number cB A.
If this is the case, then the packet is not a replay. Then, it veri�es the received message
authentication code. If it is correct, then it accepts the packet, and updates cB A to the
value of the sequence number received in the security header.

If the node that hosts A (known to B from the data that represents the security association
between B and A) is not the originator of the packet (i.e., if it is an intermediate node),
then B increases the pending credit counter pcA@B by one. Finally, B determines the next
intermediate security module towards the destination, and generates a new security header
for the packet, much in the same way as described earlier, using the security association that
corresponds to the next intermediate security module.

6.3.5 Credit synchronization protocol

As it can be seen from the description of the packet forwarding protocol, when an intermediate
node forwards a packet, its credit counter is not increased immediately. Instead, the security
module of the next node increases the pending credit counter that it maintains for the �rst
node. For clearing, the security modules regularly run a credit synchronization protocol, in
which they transfer the pending credits, and reset the pending credit counters to 0. This
mechanism ensures that the node is rewarded for the packet forwarding only if it really
forwarded the packet.

It may happen, however, that the nodes move out of each other's power range by the next
time their security modules want to run the credit synchronization protocol. If this happens,
the pending credit counters are reset to 0, and the pending credits are lost. Therefore, the
mechanism does not guarantee that the node receives its credit for every forwarded packet.
We will study the consequences of this in the next section.

6.3 Protection 119

6.3.6 Robustness

The protection mechanism described above is robust and resists against various attacks. The
credit counter is protected from illegitimate manipulations by the tamper resistance of the
security module. A security header is attached to each packet, which contains a message
authentication code that protects the integrity of the packet and the data in the security
header. This is important, because the security modules manipulate the credit counters
based on the data received in the security header. Replay of packets is prevented by the use
of ever increasing sequence numbers. Moreover, the node is rewarded for packet forwarding
only if it really forwarded a packet.

We should mention, however, that there is a subtle attack that our scheme may not always
prevent in its current form. It is possible to construct a fake node that has two or more security
modules. Such a node could bounce a packet back and forth between its security modules, and
earn credits without actually transmitting anything. The full understanding of this attack
and the design of the proper counter-measure are part of our future work. However, we
can already make the following observations: First, this attack would not always work, since
routing is performed by the security modules, which means that the next intermediate security
module is determined by the security module and not the node. In other words, the security
module may output a security header for the packet that will not be accepted by the other
security module(s) of the node. To avoid this, the node may falsify routing information that
is exchanged between the security modules, but this can be prevented by using appropriate
cryptographic techniques. Second, such a fake node would be more expensive than a normal
one, since it has two or more legitimate security modules. Whether the bene�t obtained by
using such a fake node is worth the increased cost is an open question.

6.3.7 Overhead

We must admit that our protection mechanism adds some computational overhead to the
system, which is mainly related to the use of cryptographic operations. This issue has two
aspects: cryptographic operations need energy and time to be performed. Regarding energy
consumption, we note that the energy required to perform computation is negligible when
compared to the energy required to perform transmission [PK00]. Therefore, we estimate that
the execution of our cryptographic operations have a negligible energy cost when compared
to the transmission cost.

Regarding time, we note that the only time critical operations are the generation and
the veri�cation of the security header for every packet and for every hop. However, these
require only cryptographic hash function computations, which can be done very e�ciently.
Moreover, the security header is processed by the security module; to some extent, this can
be accomplished in parallel with the processing performed by the main processor of the node.

Another issue is the communication overhead, which is due to the establishment of the
security associations, the size of the security header, and the periodic execution of the credit
synchronization protocol. In order to reduce this overhead, the establishment of the security
associations could be integrated with the neighbor discovery protocol that the nodes usually
have to run anyhow in mobile ad hoc networks, and the credit synchronization interval should
be appropriately chosen. Finally, assuming that the identi�ers of the security modules are
8 bytes long, the sequence numbers are 2 bytes long, and the output of the cryptographic
hash function used is 16 bytes long (e.g., if MD5 [MvOV97] is used), we get that the security

120 Chapter 6: Stimulation for packet forwarding in ad hoc networks

header is 34 bytes long. This seems to be an acceptable overhead.

6.4 Simulations

In Section 6.2, we studied the proposed stimulation mechanism through the analysis of a
simpli�ed model, and showed convincing arguments that it indeed stimulates packet forward-
ing in that model. In order to study the proposed stimulation mechanism in a more general
setting, which is closer to the reality of mobile ad hoc networks, we conducted simulations of
a full network written in plain C++ language. In this section, we describe our simulator, and
the results that we obtained.

6.4.1 Simulation description

The simulated networks are composed of 100 nodes that are placed randomly (uniformly)
on a 500 m � 500 m rectangle. Each node has the same power range of 120 m. The nodes
move according to the random waypoint mobility model [BMJ+98]. In this model, the node
randomly chooses a destination point in space and moves towards this point with a randomly
chosen constant speed. When it reaches the chosen destination, it stops and waits there for
a randomly chosen time. Then, it chooses a new destination and speed, and starts to move
again. These steps are repeated until the end of the simulation. In our simulations, the
nodes choose their speed between 1 m/s and 3 m/s uniformly. The pause time is generated
according to an exponential distribution. The average pause time is 60 s.

We do not use any particular MAC layer algorithm. Instead, we model the MAC layer by
randomly choosing the packet transmission time between neighbors for each packet and for
each hop. The average packet transmission time between neighbors is 10 ms. Packet trans-
mission errors occur with 0.1 probability. If an error occurred, the packet is re-transmitted
after a 1 s timeout. When the node is busy with packet transmission, it can still receive
packets, which are placed in a bu�er, and served when the previous packet transmission is
�nished.

For routing, we use a geodesic packet forwarding algorithm developed within the context of
the Terminodes Project, and described in [BGL00]. However, we considerably simpli�ed the
original algorithm in order to ease the implementation of its simulator. This does not a�ect
our results, since we are not interested in the performance of the packet forwarding algorithm
itself. The simpli�ed geodesic packet forwarding algorithm works in the following way: We
assume that each node knows its own geographic position and the geographic positions of its
neighbors. Furthermore, the source of a packet knows the current geographic position of the
destination. The way in which this information is obtained is not simulated. Before sending
the packet, the source puts the coordinates of the destination in the header of the packet.
Then, it determines which of its neighbors is the closest to the destination, and sends the
packet to this neighbor. When a node receives a packet for forwarding, it �rst veri�es if the
destination is its neighbor. If this is the case, then it forwards the packet to the destination.
Otherwise, it determines which of its neighbors is the closest to the destination, and sends
the packet to this neighbor. This is possible, because the packet header contains the believed
coordinates of the destination. If the forwarding node does not have any neighbor that is
closer to the destination than the node itself, then the packet is dropped2. In our simulations,

2This simpli�cation is true only in our simulation setting. The complete geodesic packet forwarding algo-

6.4 Simulations 121

Parameter Value

Space 500 m � 500 m
Number of nodes 100
Power range 120 m
Mobility model random waypoint
Speed 1 m/s { 3 m/s
Average pause time 60 s
Packet generation rate 0.2 (0.5, 0.8) pkt/s
Choice of destination random
Routing geodesic packet forwarding
Initial number of credits (C) 100
Credit synchronization interval 5 (10, 15, 20) s
Simulation time 7200 s

Table 6.1: Value of the main simulation parameters

because of the rather high density and the rather low speed mobility of the nodes, packet
drops of this kind almost never happened.

Energy consumption of the nodes is not simulated. For this reason, the size of the packets
is not important for us. Therefore, we assume that each packet has the same size, and we
focus only on the number of packets that are generated, sent, forwarded, and delivered.

Each node generates packets according to a Poisson process. The destination of each
packet is chosen randomly (uniformly). In our reference simulation, the average packet gen-
eration rate was 0.2 pkt/s, but we also ran simulations with average packet generation rates
of 0.5 and 0.8 pkt/s.

The initial value C of the credit counter of each node is 100. When a node i sends an
own packet to a node d that is not the neighbor of i, the credit counter of i is decreased by
n. Unlike in the simple model of Section 6.2, n is not a constant, but computed according to
the following formula:

n =

�
distance(i; d)

power range

�
� 1

This gives a lower bound on the number of intermediate nodes needed to reach the destination.
When a node forwards a packet, its pending credit counter at the next node is increased by
one. In our reference simulation, the credits of each node are synchronized in every 5 s, but
we also ran simulations with credit synchronization intervals of 10, 15, and 20 s.

We always ran 8 simulations for a given simulation setting, and considered the average
of the obtained values for each observed variable. In each run, 2 hours of network operation
were simulated.

We listed the values of the main simulation parameters for an overview in Table 6.1.

rithm described in [BGL00] can cope with such a situation.

122 Chapter 6: Stimulation for packet forwarding in ad hoc networks

6.4.2 Simulation results

Comparison of forwarding rules

In the �rst set of simulations, our goal was to determine which of Rule 1, Rule 2, or Rule 3 is
the most bene�cial for the nodes in terms of maximizing zo. We did not use Rule 4, because
it performed much worse than the other three rules in the single node model of Section 6.2.
Since battery usage is not taken into consideration in our simulations, we had to modify the
rules as follows:

Rule 1': always forward

Rule 2': if c � C then forward
else forward with probability C=c or drop with probability 1� C=c

Rule 3': if c � C then forward
else drop

Our approach to determine which of these rules is the best was the following: We set 90%
of the nodes to use a given rule (we call this the majority rule), and the remaining 10% of the
nodes to use �rst Rule 1', then Rule 2', and �nally Rule 3'. We observed the average value of
zo that the 10% of the nodes could achieve in each cases. We repeated the above experiment
for packet generation rates of 0.2, 0.5, and 0.8 pkt/s. The results are depicted in Figures 6.9,
6.10, and 6.11.

Figure 6.9: Comparison of the forwarding rules when the packet generation rate is 0.2 pkt/s

Remarkably, Rule 1' performed the best in every case. This means that the 10% deviating
nodes achieve the highest zo (i.e., drop the smallest portion of their own packets) when they use
Rule 1', no matter whether the 90% of the nodes use Rule 1', Rule 2', or Rule 3'. Furthermore,
this is true for every packet generation rate that we have simulated. Therefore, our conclusion
is that the proposed stimulation mechanism indeed stimulates packet forwarding, and not only
in the simple model of Section 6.2, but in a much more general setting too.

6.4 Simulations 123

Figure 6.10: Comparison of the forwarding rules when the packet generation rate is 0.5 pkt/s

The e�ect of less cooperative nodes on the throughput of the network

In the second set of simulations, our goal was to study the e�ect of less cooperative nodes on
the throughput of the network when the proposed stimulation mechanism is used. As opposed
to the simulation that yielded Figure 6.1, in which we assumed that some nodes fully deny
packet forwarding, here we assumed that some nodes use the least cooperative forwarding
rule (i.e., Rule 3'). The rational is that full denial of packet forwarding quickly results in
running out of credits, and thus, dropping own packets, and therefore, it is not bene�cial at
all for the nodes. On the other hand, Rule 3' can be viewed as a trade-o�, where the node
can send a large portion of its own packets, and it forwards only a small number of packets
that is necessary to cover its expenses.

In this experiment, our approach was the following: We �rst set all the nodes to cooperate
(i.e., to use Rule 1'), and then progressively increased the fraction of less cooperative nodes
(i.e., the fraction of nodes that use Rule 3'). In order for the results to be comparable with the
results shown in Figure 6.1, we ran simulations with networks of 100, 200, 300, and 400 nodes
but with the same node density. We observed the cumulative throughput of the network,
which is de�ned as the ratio of the total number of packets delivered to the total number of
packets sent. The results are shown in Figure 6.12.

It can be seen that the throughput of the network decreases as the fraction of less coop-
erative nodes increases, but far less dramatically than in Figure 6.1. Even if all the nodes use
Rule 3', the throughput is around 0.9.

The value of this experiment is that it shows that the network can tolerate less cooperative
nodes quite well. A node may tend to be less cooperative, when it is about to run out of
battery. In this case, it may not be bene�cial to use Rule 1', and in this way, increase the
credit reserve, because those credits cannot be used if the battery becomes empty. Therefore,
the node may decide to use a less cooperative forwarding rule, or even to drop all forwarding
packets. However, we note that the battery can usually be reloaded, and the accumulated

124 Chapter 6: Stimulation for packet forwarding in ad hoc networks

Figure 6.11: Comparison of the forwarding rules when the packet generation rate is 0.8 pkt/s

credits can be used again. For this reason, it is not clear at all whether using a less cooperative
rule when running out of battery is a good strategy or not. Nevertheless, the results of the
above experiment show that the network would be able to cope with this situation.

Variation of the average credit level in the network

In a third set of simulations, our goal was to study how the average credit level in the network
is e�ected by the number of less cooperative nodes and by the size of the credit synchronization
interval. To this end, we observed how the average credit level in the network varies in time
as we increase the fraction of less cooperative nodes and as we increase the size of the credit
synchronization interval. The results are shown in Figures 6.13 and 6.14.

When most of the nodes are cooperative, the average credit level in the network shows
an increasing tendency. This is because the formula that we use to determine the number of
intermediate nodes needed to reach a given destination under-estimates the actual number.
This means that if a packet is delivered, then the joint credit income of the intermediate
nodes is usually higher than the expenses of the source of the packet. Furthermore, when
more nodes use Rule 1', packets are delivered with a higher probability, and thus, the average
credit level increases more rapidly.

When less cooperative nodes are in majority, the average credit level in the network
decreases. However, this decrease slows down, and after some time, it stops, and the average
credit level becomes constant. The intuitive explanation is the following: When the nodes
use Rule 3', their forwarding decisions depend on the current value of their credit counters.
At the beginning, the average credit level is high, and packets are often dropped before they
reach their destinations. This results in a decrease of the average credit level in the network.
At the same time, the probability of dropping a packet due to the usage of Rule 3' also
decreases, since the nodes have less credits in general, and they are more willing to forward.
Therefore, more and more packets are delivered, and the decrease of the average credit level

6.4 Simulations 125

Figure 6.12: E�ect of less cooperative nodes on the throughput of the network

slows down. After some time, the decreasing e�ect of using Rule 3' (i.e., dropping packets)
and the increasing e�ect of under-estimating the actual number of intermediate nodes needed
to reach a given destination equalize each other, and the system attains an equilibrium. The
fact that this equilibrium is below the initial value C = 100 of the credit counters explains why
the throughput of the network is around 0.9 even if all the nodes use Rule 3' (see Figure 6.12).
The reason is that in the equilibrium, most of the nodes have less than C credits (note that
none of the nodes has more than C credits because of Rule 3'), and therefore, most of the
nodes are willing to forward.

The e�ect of the credit synchronization interval on the average credit level in the network
is not surprising: The larger the credit synchronization interval is, the slower the increase of
the average credit level in the network is. Moreover, when the credit synchronization interval
is 20 s, the average credit level continuously decreases in time. The reason is that when the
credit synchronization interval is large, the probability that the neighbors of a node move
away by the time of the next run of the credit synchronization protocol is high, and thus, the
number of credits lost in the system is also high.

If mobility exhibits some locality properties, then this problem can be alleviated by slightly
modifying the credit synchronization protocol, and letting the security module keep the ac-
cumulated pending credits for a given neighboring node in memory (until this memory is not
needed for other purposes) even if that node has moved away and is not a neighbor anymore.
In this case, because of the locality of mobility, nodes that were neighbors in the past may
become neighbors again with a higher probability, which means that there are good chances
that the pending credits can be cleared some time in the near future.

In any case, the size of the credit synchronization interval must be carefully chosen. If
it is too small, then the credit synchronization protocol is run too often, which leads to a
considerable overhead. However, if it is too large, then the average credit level in the network
may become too low. Therefore, one has to �nd an appropriate trade-o�.

An approach to limit the variation of the average credit level in the network would be

126 Chapter 6: Stimulation for packet forwarding in ad hoc networks

Figure 6.13: The e�ect of less cooperative nodes on the average credit level in the network

to reset the credit counter to a reference value regularly. For instance, it could be reset
each time the battery is reloaded. However, the security module, which maintains the credit
counter, may not have reliable information about the battery reload events. On the other
hand, since it maintains the credit counter, it can pretty well estimate the number of packets
sent by the node by observing the credit incomes and expenses. Thus, it can reset the credit
counter after a given number of packets has been sent. This would eliminate the problem of
ever increasing or ever decreasing average credit level in the network. However, it is not yet
clear to us, what the consequences of this resetting mechanism are on the performance of the
di�erent forwarding rules. In particular, it seems, that in this case, the node's goal is not
only maximizing zo, but at the same time, it may want to minimize its credit loss due to the
resetting mechanism. It is an open question which forwarding rule would be the best with
respect to this new goal.

6.5 Related work

To the best of our knowledge, there are only two papers addressing the problem of non-
cooperating nodes in mobile ad hoc networks: [MGLB00] and our previous paper [BH00].
The authors of [MGLB00] consider the case in which some malicious nodes agree to forward
packets but fail to do so. In order to cope with this problem, they propose two mechanisms:
a watchdog, in charge of identifying the misbehaving nodes, and a pathrater, in charge of
de�ning the best route avoiding these nodes.

The paper shows that these two mechanisms make it possible to maintain the total
throughput of the network at an acceptable level, even in the presence of a high amount of
misbehaving nodes. However, the problem is that the sel�shness of the nodes does not seem
to be castigated; on the contrary, by the combination of the watchdog and the pathrater, the
misbehaving nodes will not be bothered by the transit tra�c while still enjoying the possi-
bility to send and to receive packets. The proposed mechanisms could be enriched in such a

6.5 Related work 127

Figure 6.14: The e�ect of the credit synchronization interval on the average credit level in
the network

way that a misbehaving node would be locked out by its neighbors. However, this possibility
could be exploited to mount denial of service attacks.

In [BH00], we addressed the same problem as in this chapter, and proposed a stimulation
mechanism that is based on a virtual currency, called nuglets. Nuglets are used to pay for
packet forwarding. We proposed two payment models for this purpose. In the Packet Purse
Model, the source of the packet pays by loading some nuglets in the packet before sending it.
Intermediate nodes acquire some nuglets from the packet when they forward it. If the packet
runs out of nuglets, then it is dropped. In the Packet Trade Model, the packet does not carry
nuglets, but it is traded for nuglets by intermediate nodes: Each intermediate node \buys" it
from the previous one for some nuglets, and \sells" it to the next one (or to the destination)
for more nuglets. In this way, each forwarding node earns some nuglets, and the total cost of
forwarding the packet is covered by the destination.

A serious disadvantage of the Packet Trade Model is that it allows overloading of the
network, since the sources do not have to pay. For this reason, mainly the Packet Purse
Model has been studied. However, the Packet Purse Model has a problem too: it seems to be
di�cult to estimate the number of nuglets that the source should put in the packet initially.
If the source under-estimates this number, then the packet will be discarded with a high
probability, and the source loses its investment. The source may over-estimate the number,
but this leads to a rapid decrease of the total number of nuglets in the system due to the
dropping of packets (for networking reasons) with many nuglets inside.

The mechanism proposed in this chapter overcomes this estimation problem, because the
packets do not need to carry credits. At the same time, the property of refraining users
from overloading the network is retained. Otherwise, the two mechanisms have a very similar
avor, just like their protection schemes.

128 Chapter 6: Stimulation for packet forwarding in ad hoc networks

6.6 Summary

In this chapter, we addressed the problem of stimulating cooperation in self-organizing ad
hoc networks for civilian applications, where the nodes are assumed to be \sel�sh", meaning
that they try to maximize the bene�ts that they get from the network, while minimizing their
contribution to it. We focused on a particular instance of this problem, namely, stimulating
packet forwarding. Our approach is based on a counter, called credit counter, in each node.
Besides stimulating packet forwarding, the proposed mechanism encourages the users to keep
their nodes turned on and to refrain from sending a large amount of packets to distant
destinations.

In order to protect the proposed mechanism against misuse, we presented a scheme based
on a trusted and tamper resistant hardware module, called security module, in each node,
which generates cryptographically protected security headers for packets and maintains the
credit counters of the nodes.

The philosophy of our design is similar to that of rational exchange protocols. In particu-
lar, the proposed stimulation mechanism and the proposed protection scheme are not intended
to make misbehavior of the nodes impossible. What we tried to ensure is that misbehavior is
not bene�cial for the nodes, and therefore, it should happen only rarely. For instance, nodes
can still deny packet forwarding, or they may bypass the security module, and send a packet
without a valid security header. However, if the node denies packet forwarding, then it runs
out of credits, and it cannot send its own packets. Furthermore, if the node sends a packet
without a valid security header, then intermediate nodes will be reluctant to forward it. This
is because an intermediate node can earn credits with packet forwarding only if it passes the
forwarding packet to its security module, but in the absence of a valid security header, the
security module will reject the packet.

We studied the behavior of the proposed mechanism analytically and by means of sim-
ulations. We showed convincing arguments that it indeed stimulates the nodes for packet
forwarding assuming that

� each node of the network generates packets continuously;

� generated packets cannot be bu�ered, which means that if they cannot be sent, then
they must be dropped; and

� sel�shness of the nodes is represented by the goal of dropping as few own packets as
possible.

A possible extension of this work would be to study the behavior of the proposed mech-
anism, when these assumptions are weakened. For instance, one could allow bu�ering of
packets, but limit the size of the bu�er and the time that the packets can spend in it. Or, one
could allow the nodes to generate packets in bursts instead of continuously. Finally, one could
study the e�ect of regularly resetting the credit counters to a reference value (see discussion
in Subsection 6.4.2), in which case the assumed goal of the nodes needs to be extended.

Publications: [BH00, BH01b]

Conclusion

Communication systems, such as the Internet and cellular networks, do and will play an
important role in society and economy by providing opportunities for new, sophisticated
services. However, in order for these services to be successful, they must be secure. In this
thesis, we studied two security mechanism, authenticated key transport and rational exchange
protocols, which are potential building blocks in the security architecture of a range of di�erent
services. We focused on the construction of formal models in which these mechanisms can be
represented and their properties can rigorously be studied. We believe that formal models are
useful in designing robust security mechanisms, because they help us to better understand
the mechanisms and the usual pitfalls of their design, and they can serve as the basis of
systematic veri�cation and design tools.

In the �rst part of the thesis, we proposed a formal model for authenticated key transport
protocols, in which protocols are represented as a set of formulae of a simple logic of belief.
Contrary to other formal models in the literature, our model is not aimed at formal protocol
veri�cation, but direct support of protocol construction. More precisely, based on the model,
we proposed a set of synthesis rules that can be used to construct key transport protocols in a
systematic way. We illustrated the use of the proposed logic and the synthesis rules through
a detailed example.

In our model, the messages of a protocol are idealized, which means that they contain
logical formulae that represent their intended meaning. In addition, messages are sent via
channels with various access properties, instead of being protected by cryptographic prim-
itives. These features allow us to design abstract protocols, which can be implemented in
several di�erent ways by replacing the logical formulae in the messages with bit strings, and
the channels with cryptographic primitives. While using idealized messages and channels may
be a drawback in protocol veri�cation (see e.g., [BM93]), they proved to be useful in protocol
construction, because they provide intuitive abstractions that help the designer to bridge the
gap between the (informal) speci�cation and the implementation of the protocol.

In the second part of the thesis, we proposed a formal model for exchange protocols that is
based on game theory. In this model, a protocol is represented as a set of strategies in a game
that is played by the protocol parties and the network that they use to communicate with
each other. We used this model to formally de�ne various properties of exchange protocols,
including rationality and fairness. This allowed us to study the relationship between rational
exchange and fair exchange within a single model, and to prove that fairness implies rationality
in this model, but the reverse is not true in general. In addition, we used the protocol game
model to formally verify two rational exchange protocols. We did not use computerized tools
in the veri�cation, but our model allows the construction and the usage of such tools.

The formal de�nitions and the comparison of rational exchange and fair exchange helped
us to better understand what rational exchange really is. First, we identi�ed that its essence

129

130 Conclusion

can be captured by the well-known notion of Nash equilibrium in game theory. Second,
by proving that fairness implies rationality but not vice versa, we suggested that rational
exchange protocols provide weaker guarantees, and therefore, one can expect that they are
less complex than fair exchange protocols. This means that rational exchange can be viewed as
a trade-o� between complexity and true fairness. We showed how such a trade-o� can provide
an elegant solution to the exchange problem in the context of micropayment schemes. More
precisely, we applied the concept of rational exchange to improve a family of micropayment
protocols with respect to fairness without substantial loss in e�ciency in most practical cases.
Other possible applications of rational exchange protocols include mobile commerce and pure
peer-to-peer systems.

It is, of course, possible to construct formal models for exchange protocols based on
principles that are di�erent from those of game theory. While some properties of exchange
protocols might be de�ned more conveniently in a di�erent model, we strongly believe that
game theory is the most elegant yet precise way to de�ne rationality.

Finally, in the third part of the thesis, we extended the concept of rational exchange, and
we proposed a mechanism based on a similar philosophy to stimulate packet forwarding in ad
hoc networks. Our mechanism does not try to guarantee that the nodes of the network will
always behave correctly and forward packets. Instead, the mechanism renders misbehavior
uninteresting by making packet forwarding the most advantageous strategy. We analyzed the
proposed mechanism through a simpli�ed analytical model and by means of simulation. Both
analyses indicated that the mechanism indeed stimulates packet forwarding.

Summary of contributions

The following is a list of the original contributions of the thesis:

� a simple logic of channels that provides an abstract model in which one can reason
about authenticated key transport protocols;

� an approach to construct authenticated key transport protocols in a systematic way
based on a set of synthesis rules derived from the logic of channels;

� analysis of an authenticated key transport protocol proposed in the literature, identi�-
cation of weaknesses, and discovery of three, previously unknown attacks;

� correction of the awed key transport protocol mentioned in the previous point by
redesigning it using the aforementioned systematic protocol construction approach;

� a formal model of exchange protocols based on game theory;

� a formal de�nition of rational exchange based on the concept of Nash equilibrium;

� formal de�nitions of various other properties of exchange protocols, including fairness;

� a proof that fairness implies rationality within the aforementioned game theoretic model,
but the reverse is not true in general;

� formal proofs of two exchange protocols to be rational;

Directions for future research 131

� an application of the concept of rational exchange to make misbehavior uninteresting
in a family of micropayment schemes without substantial loss in e�ciency;

� a mechanism to stimulate the nodes of a mobile ad hoc network for packet forwarding
based on an idea similar to rational exchange.

Directions for future research

As we mentioned earlier, there exist only a few rational exchange protocols proposed in the
literature. Now that we have obtained more understanding of the concept of rational ex-
change, it would be interesting to construct new rational exchange protocols. It would be
particularly interesting to design an exchange protocol that satis�es the de�nition of rational-
ity in a meaningful asynchronous model too. This, of course, requires the full development of
an asynchronous model, which could be done along the lines that we sketched in Section 4.6.
The ultimate goal would be to identify some general design principles for rational exchange
protocols, or eventually, to come up with a protocol construction tool similar to the one
described in the �rst part of this thesis.

Regarding the work presented in Chapter 6, a possible future work would be to study
the behavior of the proposed mechanism when the main assumptions listed in Section 6.6 are
weakened. It would also be interesting to study how the proposed mechanism can be applied
in hybrid networks (e.g., in cellular networks in which the nodes have ad hoc networking
capabilities), and what consequences of the presence of cellular operators have on the design.
Another interesting direction would be to generalize the proposed mechanism so that it can be
applied not only to packet forwarding, but to other functions as well (e.g., route discovery and
route repair in on-demand protocols). We could even stretch this up to the application layer:
In peer-to-peer computing [Ora01], there is a growing concern that some users might para-
sitically take advantage of resources provided by others (see e.g., [AH00]). Some researchers
have made early attempts to introduce a virtual currency to encourage \good citizenship"
(e.g., www.mojonation.net). It would be interesting to explore how mechanisms like the one
proposed in the last chapter could be used in that context.

132

Bibliography

[Aba97] M. Abadi. Explicit communication revisited: Two new attacks on authentication
protocols. IEEE Transactions on Software Engineering, 23(3), March 1997.

[ABKL92] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and dele-
gation with smart-cards. Technical Report SRC RR 67, Digital Equipment Cor-
poration, Systems Research Center, July 1992.

[AFG98] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel ab-
stractions. In Proceedings of the Thirteenth Annual IEEE Symposium on Logic
in Computer Science, pages 105{116, June 1998.

[AG98] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The Spi cal-
culus. Technical Report SRC RR 149, Digital Equipment Corporation, Systems
Research Center, January 1998.

[AH00] E. Adar and B. Huberman. Free riding on Gnutella. First Monday, 5(10), October
2000.

[AK96] R. Anderson and M. Kuhn. Tamper resistance { a cautionary note. In Proceedings
of the Second Usenix Workshop on Electronic Commerce, November 1996.

[AMS95] R. Anderson, C. Manifavas, and C. Sutherland. NetCard { a practical electronic
cash system. http://www.cl.cam.ac.uk/users/rja14/, 1995.

[AN95] R. Anderson and R. Needham. Robustness principles for public key protocols. In
Advances in Cryptology { CRYPTO'95, pages 236{247. Springer-Verlag, 1995.

[AN96] M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Transactions on Software Engineering, 22(1):6{15, January 1996.

[AS97] J. Alves-Foss and T. Soule. A weakest precondition calculus for analysis of cryp-
tographic protocols. In Proceedings of the DIMACS Workshop on Design and
Formal Veri�cation of Security Protocols, 1997.

[Aso98] N. Asokan. Fairness in Electronic Commerce. PhD thesis, University of Waterloo,
Ontario, Canada, May 1998.

[ASW97] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In Proceedings of the ACM Conference on Computer and Communications Secu-
rity, April 1997.

133

134

[ASW00] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4), April 2000.

[AT91] M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Proceedings
of the Tenth Annual ACM Symposium on Principles of Distributed Computing,
pages 201{216, 1991.

[BAN90a] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical
Report SRC RR 39, Digital Equipment Corporation, Systems Research Center,
February 1990.

[BAN90b] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8(1):18{36, February 1990.

[BB01] L. Butty�an and N. Ben Salem. A payment scheme for broadcast multimedia
streams. In Proceedings of the 6th IEEE Symposium on Computers and Commu-
nications, July 2001.

[BBC+01] L. Bla�zevi�c, L. Butty�an, S. �Capkun, S. Giordano, J.-P. Hubaux, and J.-Y. Le
Boudec. Self-organization in mobile ad hoc networks: The approach of Termin-
odes. IEEE Communications Magazine, June 2001.

[BDM98] F. Bao, R. Deng, and W. Mao. E�cient and practical fair exchange protocols
with o�-line TTP. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 77{85, 1998.

[BGH+93] R. Bird, I. Gopal, A. Heizberg, P. Janson, S. Kutten, R. Molva, and M. Yung.
Systematic design of a family of attack-resistant authentication protocols. IEEE
Journal on Selected Areas in Communications, 11(5):679{693, June 1993.

[BGL00] L. Bla�zevi�c, S. Giordano, and J.-Y. Le Boudec. Self-organizing wide-area routing.
In Proceedings of SCI 2000/ISAS 2000, July 2000.

[BGSW00] L. Butty�an, C. Gbaguidi, S. Staamann, and U. Wilhelm. Extensions to an authen-
tication technique proposed for the global mobility network. IEEE Transactions
on Communications, 48(3), March 2000.

[BH00] L. Butty�an and J.-P. Hubaux. Enforcing service availability in mobile ad-hoc
WANs. In Proceedings of the 1st IEEE/ACM Workshop on Mobile Ad Hoc Net-
working and Computing (MobiHOC), August 2000.

[BH01a] L. Butty�an and J.-P. Hubaux. Rational exchange { a formal model based on
game theory. In Proceedings of the 2nd International Workshop on Electronic
Commerce (WELCOM), November 2001.

[BH01b] L. Butty�an and J.-P. Hubaux. Stimulating cooperation in self-organizing mobile
ad hoc networks. Technical Report SSC/2001/046, Swiss Federal Institute of
Technology, August 2001.

[Bie90] P. Bieber. A logic of communication in a hostile environment. In Proceedings of
the IEEE Computer Security Foundations Workshop, pages 14{22, June 1990.

135

[BM93] C. Boyd and W. Mao. On a limitation of BAN logic. In Advances in Cryptology
{ EUROCRYPT'93, pages 240{247, 1993.

[BM94a] C. Boyd and W. Mao. Design and analysis of key exchange protocols via secure
channel identi�cation. In Advances in Cryptology { ASIACRYPT'94, 1994.

[BM94b] C. Boyd and W. Mao. Designing secure key exchange protocols. In Proceedings
of the European Symposium on Research in Computer Security, 1994.

[BMJ+98] J. Broch, D. Maltz, D. Johnson, Y. C. Hu, and J. Jetcheva. A performance com-
parison of multi-hop wireless ad hoc network routing protocols. In Proceedings of
the ACM/IEEE International Conference on Mobile Computing and Networking
(Mobicom), 1998.

[BP97] G. Bella and L. Paulson. Using Isabelle to prove properties of the Kerberos
authentication system. In Proceedings of the DIMACS Workshop on Design and
Formal Veri�cation of Security Protocols, 1997.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology { CRYPTO'93, 1993.

[BR95] M. Bellare and P. Rogaway. Provably secure session key distribution { the three
party case. In Proceedings of the 27th Annual ACM Symposium on the Theory of
Computing, 1995.

[BSW98] L. Butty�an, S. Staamann, and U. Wilhelm. A simple logic for authentication pro-
tocol design. In Proceedings of the IEEE Computer Security Foundations Work-
shop, 1998.

[But00] L. Butty�an. Removing the �nancial incentive to cheat in micropayment schemes.
IEE Electronics Letters, 36(2), January 2000.

[CFS99] S. Corson, J. Freebersyser, and A. Sastry, editors. Mobile Networks and Applica-
tions (MONET), Special Issue on Mobile Ad Hoc Networking, October 1999.

[CJ97] J. Clark and J. Jacob. A survey of authentication protocol literature.
htt://www.cs.york.ac.uk/ jac/, November 1997.

[Cle90] R. Cleve. Controlled gradual disclosure schemes for random bits and their appli-
cations. In Advances in Cryptology { CRYPTO'89, pages 573{588, 1990.

[CSNP92] E. Campbell, R. Safavi-Naini, and P. Pleasants. Partial belief and probabilistic
reasoning in the analysis of secure protocols. In Proceedings of the IEEE Computer
Security Foundations Workshop, 1992.

[DGLW96] R. Deng, L. Gong, A. Lazar, and W. Wang. Practical protocols for certi�ed
electronic mail. Journal of Network and Systems Management, 4(3):279{297,
1996.

[DS81] D. Denning and G. Sacco. Timestamps in key distribution protocols. Communi-
cations of the ACM, 24(8):198{208, 1981.

136

[DvOW92] W. Di�e, P. van Oorschot, and M. Wiener. Authentication and authenticated
key exchanges. Designs, Codes, and Cryptography, 2:107{125, 1992.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, IT-29(2):198{208, March 1983.

[Fed99] H. Federrath. Protection in mobile communications. In G. Mueller and K. Ran-
nenberg, editors, Multilateral Security in Communications, Volume 3: Technol-
ogy, Infrastructure, Economy, pages 349{364. Addison-Wesley, 1999.

[FR97] M. Franklin and M. Reiter. Fair exchange with a semi-trusted third party. In
Proceedings of the ACM Conference on Computer and Communications Security,
pages 1{6, April 1997.

[FT98] M. Franklin and G. Tsudik. Secure group barter: Multi-party fair exchange with
semi-trusted neutral parties. In Proceedings of Financial Cryptography'98, 1998.

[GK00] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions
on Information Theory, 46(2):388{404, March 2000.

[GMA+95] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro. The Mil-
licent protocol for inexpensive electronic commerce. In Proceedings of the 4th
International World Wide Web Conference, pages 603{618. O'Reilly and Asso-
ciates, Inc., December 1995.

[GNG97] S. Gritzalis, N. Nikitakos, and P. Georgiadis. Formal methods for the analysis
and design of cryptographic protocols: A state-of-the-art review. In Proceedings
of the IFIP Working Conference on Communications and Multimedia Security,
Vol. 3., pages 119{132, 1997.

[GNY90] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic
protocols. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 234{248, 1990.

[GPV99] F. Gaertner, H.-H. Pagnia, and H. Vogt. Approaching a formal de�nition of
fairness in electronic commerce. In Proceedings of the 18th IEEE Symposium on
Reliable Distributed Systems (Workshop on Electronic Commerce), pages 354{
359, October 1999.

[GS91] K. Gaarder and E. Snekkenes. Applying a formal analysis technique to the CCITT
X.509 strong two-way authentication protocol. Journal of Cryptology, 3(?):81{98,
1991.

[GS95] L. Gong and P. Syverson. Fail-stop protocols: A new approach to designing
secure protocols. In Proceedings of the 5th International Working Conference on
Dependable Computing for Critical Applications, pages 44{55, 1995.

[HBC01] J.-P. Hubaux, L. Butty�an, and S. �Capkun. The quest for security in mobile ad hoc
networks. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHOC), October 2001.

137

[HC96] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,
1996.

[HGLV01] J.-P. Hubaux, T. Gross, J.-Y. Le Boudec, and M. Vetterli. Towards self-organized
mobile ad hoc networks: The Terminodes Project. IEEE Communications Mag-
azine, January 2001.

[HM90] J. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549{587, 1990.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HSW96] R. Hauser, M. Steiner, and M. Waidner. Micropayments based on iKP. Technical
Report RZ 2791, IBM Zurich Research Lab, February 1996.

[HT96] N. Heintze and J. D. Tygar. A model for secure protocols and their compositions.
IEEE Transactions on Software Engineering, 22(1):16{30, January 1996.

[IBM97] IBM. IBM 4758 PCI cryptographic coprocessor. Secure Way Cryptographic
Products, June 1997.

[Jak95] M. Jakobsson. Ripping coins for a fair exchange. In Advances in Cryptology {
EUROCRYPT'95, pages 220{230, 1995.

[Kem89] R. Kemmerer. Analyzing encryption protocols using formal veri�cation tech-
niques. IEEE Journal on Selected Areas in Communications, 7(4):448{457, Oc-
tober 1989.

[Ket95] S. Ketchpel. Transaction protection for information buyers and sellers. In Pro-
ceedings of DAGS'95: Electronic Publishing and the Information Superhighway,
June 1995.

[KMM94] R. Kemmerer, C. Meadows, and J. Millan. Three systems for cryptographic
protocol analysis. Journal of Cryptology, 7(2):79{130, 1994.

[KR00] S. Kremer and J.-F. Raskin. Formal veri�cation of non-repudiation protocols { a
game approach. In Proceedings of Formal Methods for Computer Security (FMCS
2000), July 2000.

[KS96] A. Keromytis and J. Smith. Creating e�cient fail-stop cryptographic protocols.
Technical Report MS-CIS-96-32, University of Pennsylvania, December 1996.

[LABW92] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265{310, November 1992.

[LHB96] R. Lichota, G. Hammonds, and S. Brackin. Verifying the correctness of cryp-
tographic protcols using Convince. In Proceedings of the 12th IEEE Computer
Security Applications Conference, pages 117{128, 1996.

[Low95] G. Lowe. An attack on the Needham-Schroeder public-key authentication proto-
col. Information Processing Letters, 56(3):131{133, 1995.

138

[Low96] G. Lowe. Breaking and �xing the Needham-Schroeder public key protocol using
FDR. In Proceedings of the TACAS, pages 147{166, 1996.

[LR92] D. Longley and S. Rigby. An automatic search for security aws in key manage-
ment schemes. Computers and Security, 11(1):75{89, January 1992.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MB93] W. Mao and C. Boyd. Towards formal analysis of security protocols. In Pro-
ceedings of the IEEE Computer Security Foundations Workshop, pages 147{158,
1993.

[MCF87] J. Millen, S. Clark, and S. Freedman. The Interrogator: Protocol security analysis.
IEEE Transactions on Software Engineering, SE-13(2):274{288, February 1987.

[Mea91] C. Meadows. A system for the speci�cation and analysis of key management
protocols. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 182{195, 1991.

[Mea92] C. Meadows. Applying formal methods to the analysis of a key management
protocol. Journal of Computer Security, 1(1):5{35, 1992.

[Mea95] C. Meadows. Formal veri�cation of cryptographic protocols: A survey. In Ad-
vances in Cryptology - ASIACRYPT'94, pages 135{150. Springer-Verlag, 1995.

[Mer83] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of Technology,
1983.

[MG98] A. Mehrotra and L. Golding. Mobility and security management in the GSM
system and some proposed future improvements. Proceedings of the IEEE,
86(7):1480{1496, 1998.

[MGLB00] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile
ad hoc networks. In Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Networking (Mobicom), August 2000.

[Mil99] R. Milner. Communicating and Mobile Systems: the �-Calculus. Cambridge
University Press, 1999.

[Mos89] L. Moser. A logic of knowledge and belief for reasoning about computer security.
In Proceedings of the IEEE Computer Security Foundations Workshop, pages 57{
63, 1989.

[MPM+98] K. Martin, B. Preneel, C. Mitchell, H. Hitz, G. Horn, A. Poliakova, and
P. Howard. Secure billing for mobile information services in UMTS. In Pro-
ceedings of IS&N'98, 1998.

[MS94] U. Maurer and P. Schmid. A calculus for secure channel establishment in open
networks. In Proceedings of the European Symposium on Research in Computer
Security, 1994.

[MvOV97] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
Discrete Mathematics and Its Applications. CRC Press, Inc., 1997.

139

[Nes90] D. Nessett. A critique of the burrows, abadi and needham logic. Operating
Systems Review, 24(2):35{38, April 1990.

[NS78] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993{999, 1978.

[NT92] B. Nieh and S. Tavares. Modelling and analysing cryptographic protocols using
Petri nets. In Advances in Cryprology { AUSCRYPT'92, 1992.

[OR94] M. Osborne and A. Rubinstein, editors. A Course in Game Theory. MIT Press,
1994.

[Ora01] A. Oram, editor. Peer-to-Peer: Harnessing the Bene�ts of a Disruptive Technol-
ogy. O'Reilly and Associates, Inc., 2001.

[Pau98] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1{2):85{128, 1998.

[Pau99] L. Paulson. Inductive analysis of the internet protocol TLS. ACM Transactions
on Information and System Security, 2(3):332{351, 1999.

[Ped95] T. Pedersen. Electronic payment of small amounts. Technical Report DAIMI-
PB-495, Aarhus University, Computer Science Department, 1995.

[Per01] C. Perkins, editor. Ad Hoc Networking. Addison-Wesley, 2001.

[PG99] H.-H. Pagnia and F. Gaertner. On the impossibility of fair exchange without a
trusted third party. Technical Report TUD-BS-1999-02, Darmstadt University of
Technology, Department of Computer Science, March 1999.

[PK00] G. Pottie and W. Kaiser. Wireless integrated sensor networks. Communications
of the ACM, May 2000.

[PPW97] A. P�tzmann, B. P�tzmann, and M. Waidner. Trusting mobile user devices and
security modules. IEEE Computer, February 1997.

[PS00] A. Perrig and D. Song. Looking for diamonds in the desert { extending automatic
protocol generation to three-party authentication and key agreement protocols.
In Proceedings of the IEEE Computer Security Foundations Workshop, 2000.

[PVG01] H.-H. Pagnia, H. Vogt, and F. Gaertner. Fair exchange. manuscript, August
2001.

[Ran88] P. V. Rangan. An axiomatic basis of trust in distributed systems. In Proceedings
of the IEEE Symposium on Research in Security and Privacy, pages 204{211,
April 1988.

[RH93] A. Rubin and P. Honeyman. Formal methods for the analysis of authentication
protocols. Technical Report CITI TR 93-7, October 1993.

[Ros95] A. W. Roscoe. Modelling and verifying key exchange protocols using CSP and
FDR. In Proceedings of the IEEE Computer Security Foundations Workshop,
pages 98{107, 1995.

140

[RS96] R. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment
schemes. Technical report, MIT Laboratory for Computer Science, 1996.

[RSW96] R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and time-release crypto.
Technical Report MIT/LCS/TR-684, MIT Laboratory for Computer Science,
March 1996.

[Rue91] R. Rueppel. A formal approach to security architectures. In Advances in Cryp-
tology { EUROCRYPT'91, pages 387{398, 1991.

[San97] T. Sandholm. Unenforced e-commerce transactions. IEEE Internet Computing,
1(6):47{54, November-December 1997.

[Sch98] S. Schneider. Formal analysis of a non-repudiation protocol. In Proceedings of
the IEEE Computer Security Foundations Workshop, pages 54{65, 1998.

[SM93] P. Syverson and C. Meadows. A logical language for specifying cryptographic
protocol requirements. In Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 165{177, 1993.

[SM95] P. Syverson and C. Meadows. Formal requirements for key distribution protocols.
In Advances in Cryptology - EUROCRYPT'94, pages 320{331. Springer-Verlag,
1995.

[SN97] S. Suzuki and K. Nakada. An authentication technique based on distributed
security management for the Global Mobility Network. IEEE Journal on Selected
Areas in Communications, 15(8):1608{1617, 1997.

[Sne95] E. Snekkenes. Formal Speci�cation and Analysis of Cryptographic Protocols. PhD
thesis, University of Oslo, Norway, 1995.

[Son99] D. Song. Athena: An automatic checker for security protocol analysis. In Pro-
ceedings of the IEEE Computer Security Foundations Workshop, 1999.

[SS98] V. Shmatikov and U. Stern. E�cient �nite-state analysis for large security pro-
tocols. In Proceedings of the IEEE Computer Security Foundations Workshop,
pages 106{115, 1998.

[SvO94] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol logics.
In Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 14{28, 1994.

[Syv90a] P. Syverson. Formal semantics for logics of cryptographic protocols. In Proceedings
of the IEEE Computer Security Foundations Workshop, pages 32{41, June 1990.

[Syv90b] P. Syverson. A logic for the analysis of cryptographic protocols. Technical Report
9305, Naval Research Lab, December 1990.

[Syv91a] P. Syverson. The use of logic in the analysis of cryptographic protocols. In
Proceedings of the IEEE Symposium on Research in Security and Privacy, pages
156{170, 1991.

141

[Syv91b] P. Syverson. The value of semantics for the analysis of cryptographic protocols. In
Proceedings of the IEEE Computer Security Foundations Workshop, pages 228{
229, 1991.

[Syv92] P. Syverson. Knowledge, belief, and semantics in the analysis of cryptographic
protocols. Journal of Computer Security, 1(3):317{334, 1992.

[Syv93] P. Syverson. Adding time to a logic of authentication. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 97{101, November
1993.

[Syv94] P. Syverson. A taxonomy of replay attacks. In Proceedings of the IEEE Computer
Security Foundations Workshop, 1994.

[Syv96] P. Syverson. Limitations on design principles for public key protocols. In Proceed-
ings of the IEEE Symposium on Research in Security and Privacy, pages 62{73,
1996.

[Syv98] P. Syverson. Weakly secret bit commitment: Applications to lotteries and fair
exchange. In Proceedings of the IEEE Computer Security Foundations Workshop,
pages 2{13, 1998.

[TB95] D. Trcek and B. Blazic. Formal language for security services base modelling and
analysis. Computer Communications, 18(12):921{928, December 1995.

[Tou92] M.-J. Toussaint. Deriving the complete knowledge of participants in crypto-
graphic protocols. In Advances in Cryptology { CRYPTO'91, pages 24{43.
Springer-Verlag, 1992.

[Tyg96] J. D. Tygar. Atomicity in electronic commerce. In Proceedings of the 15th ACM
Symposium on Principles of Distributed Computing, pages 8{26. ACM Press, May
1996.

[vO93] P. van Oorschot. Extending cryptographic logics of belief to key agreement proto-
cols. In Proceedings of the ACM Conference on Computer and Communications
Security, pages 232{243, 1993.

[Var89] V. Varadharajan. Veri�cation of network security protocols. Computers and
Security, 8(8):693{708, 1989.

[Var90] V. Varadharajan. Use of a formal description technique in the speci�cation of
authentication protocols. Computer Standards and Interfaces, 9:203{215, 1990.

[WABL94] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in the
Taos operating system. ACM Transactions on Computer Systems, 12(1):3{32,
February 1994.

[WL93] T. Woo and S. Lam. A semantic model for authentication protocols. In Proceed-
ings of the IEEE Symposium on Research in Security and Privacy, pages 178{194,
1993.

142

[YKB93] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure systems: A
distributed authentication perspective. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, pages 150{164, 1993.

[ZG96] J. Zhou and D. Gollmann. A fair non-repudiation protocol. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, pages 55{61, May 1996.

Appendix A

Synthesis rules

(S1) In order for principal P to believe �, it is su�cient to believe �0 and (�0) �).

P j� �

�
P j� �0

P j� (�0) �)

(S2) In order for principal P to believe �, it is su�cient to believe that another principal Q
believes � and to believe that Q is competent (at least if � is concerned).

P j� �

�
P j� (Q j� �)
P j� ((Q j� �)) �)

(S3) In order for principal P to believe that another principal Q believes �, it is su�cient
to believe that Q has recently said � and to believe that Q is honest (at least if � is
concerned).

P j� (Q j� �)

�
P j� (Q jj� �)
P j� ((Q jj� �)) (Q j� �))

(S4) In order for principal P to believe that another principal Q has recently said a message
X, it is su�cient to believe that Q has recently said a message that contains X. In the
rule, we denote this message by X 0;X;X 00, but we note that X 0 or X 00 could be missing.

P j� (Q jj� X)
�
P j� (Q jj� X 0;X;X 00)

(S5) In order for principal P to believe that another principal Q has recently said a message
X, it is su�cient to believe that Q said a message that contains X, and to believe that
this message is fresh. In the rule, we denote this message by X 0;X;X 00, but we note
that X 0 and/or X 00 could be missing.

P j� (Q jj� X)

�
P j� (Q j� X 0;X;X 00)
P j�](X 0;X;X 00)

(S6) In order for principal P to believe that another principal Q has recently said a message
X, it is su�cient to believe that X arrived on a channel C, the source set of which is
believed to be the singleton fQg, and to believe that C is timely.

P j� (Q jj� X)

8<
:

P j� (P � C(X))
P j� (s(C) = fQg)
P j� \(C)

143

144 Appendix A

(S7) In order for principal P to believe that another principal Q said a message X, it is
su�cient to believe that Q said a message that contains X. In the rule, we denote this
message by X 0;X;X 00, but we note that X 0 or X 00 could be missing.

P j� (Q j� X)
�
P j� (Q j� X 0;X;X 00)

(S8) In order for principal P to believe that another principal Q said a message X, it is
su�cient to believe that X arrived on a channel C, and to believe that the source set
of C is the singleton fQg.

P j� (Q j� X)

�
P j� (P � C(X))
P j� (s(C) = fQg)

(S9) In order for principal P to believe that a compound message is fresh, it is su�cient
to believe that part of the message is fresh. Again, X 0 or X 00 could be missing from
X 0;X;X 00 in the rule below.

P j�](X 0;X;X 00)
�
P j�](X)

(S10) In order for principal P to recognize that it received a message X on channel C, it is
su�cient to see C(X) and to be able to read from C.

P j� (P �C(X))

�
P � C(X)
P 2 r(C)

(S11) In order for principal P to see message X, it is su�cient to see a message that contains
X. In the rule, we denote this message by X 0;X;X 00, but we note that X 0 or X 00 could
be missing.

P �X
�
P �X 0;X;X 00

(S12) In order for principal P to see a message X, it is su�cient to see C(X) for some channel
C, and to be able to read from C.

P �X

�
P � C(X)
P 2 r(C)

(*S13) Whenever P j� (Q j� �) appears as a goal during the synthesis, then we must also
add the goal Q j� �.

P j� (Q j� �)

�
P j� (Q j� �)
Q j� �

(*S14) Whenever P j� (Q jj� X) appears as a goal during the synthesis, we must also add
the goals Q � X1, Q � X2, . . . , where X1; X2; : : : represent those parts of message X
that cannot be computed by Q.

P j� (Q jj� X)

8>><
>>:

P j� (Q jj� X)
Q�X1

Q�X2

: : :

Synthesis rules 145

(*S15) Whenever P j� (Q j� X) appears as a goal during the synthesis, we must also add the
goals Q �X1, Q�X2, . . . , where X1;X2; : : : represent those parts of message X that
cannot be computed by Q.

P j� (Q j� X)

8>><
>>:

P j� (Q j� X)
Q�X1

Q�X2

: : :

146 Appendix A

Appendix B

Proofs of Section 5.2

Lemma 5.1

The lemma states that if B receives a message m = (�; �; �) 2 M4 in round r in q in the
restricted protocol game G�j�s(L), then V must receive � in an earlier round r0 < r in q.

Proof: Let us assume that B receives m in round r in q, but V does not receive � before
round r in q. Since B receives m in round r, U or V must send m in round r. According to
the formulae with which we tagged the messages in M4, U can send m only if she receives m
in an earlier round. In addition, V can send m only if it receives � or a message in M4 or in
M 04 that contains � in an earlier round. Note that, by assumption, V does not receive �.

Let M4(�) = f(�0; �0; �0) 2 M4 : �0 = �g and M 04(�) = f(�0; �0) 2 M 04 : �0 = �g (i.e.,
M4(�) and M

0
4(�) contain those messages in M4 and M

0
4, respectively, that contain �). If U

does not receive any message inM4(�)[M
0
4(�) before round r in q, then let r�1 = r, otherwise,

let r�1 be the earliest round in q in which U receives a message in M4(�) [M
0
4(�). Similarly,

if V does not receive any message in M4(�) [M
0
4(�) before round r in q, then let r�2 = r,

otherwise, let r�2 be the earliest round in q in which V receives a message in M4(�) [M
0
4(�).

Now, we can distinguish two cases: (a) r�1 � r�2 and (b) r�2 < r�1.
Case (a): Recall that either U must receive m = (�; �; �) before round r in q, or V must
receive a message in M4(�) [M

0
4(�) before round r in q. However, this is not possible if

r�1 = r. Thus, r�1 < r must hold. This means that U receives, and thus, V sends a message in
M4(�) [M

0
4(�) in round r�1. According to the formulae with which we tagged the messages

in M4 and in M 04, this is possible only if V receives � or a message in M4(�) [M
0
4(�) in an

earlier round r̂ < r�1 � r�2. By assumption, V does not receive � before round r. Furthermore,
V cannot receive any message in M4(�) [M

0
4(�) before round r

�
2.

Case (b): r�2 < r must hold, since otherwise r�1 would be greater than r, which is not possible
by de�nition. This means that V receives, and thus, U sends a message m0 2M4(�)[M

0
4(�)

in round r�2. According to the formulae with which we tagged the messages inM4 and inM 04,
this is possible only if U receives m0 in an earlier round r̂ < r�2 < r�1. However, U cannot
receive any message in M4(�) [M

0
4(�) before round r

�
1. 2

Lemma 5.2

The lemma states that if B receives a message m = (�; �; �) 2 M4 in round r in q in the
restricted protocol game G�j�s(L), and h(�) = h(rnd), then V must receive � in an earlier

147

148 Appendix B

round r0 < r in q.

Proof: Let us assume that B receives m in round r in q, but V does not receive � before
round r in q. Since B receives m in round r, U or V must send m in round r. According to
the formulae with which we tagged the messages in M4, U can send m only if she receives m
in an earlier round. In addition, since h(�) = h(rnd), V can send m only if she receives � or
a message in M4 that contains � in an earlier round. Note that, by assumption, V does not
receive �.

Let M4(�) = f(�0; �0; �0) 2 M4 : �
0 = �g (i.e., M4(�) contains those messages in M4 that

contain �). If U does not receive any message in M4(�) before round r in q, then let r�1 = r,
otherwise, let r�1 be the earliest round in q in which U receives a message inM4(�). Similarly,
if V does not receive any message in M4(�) before round r in q, then let r�2 = r, otherwise,
let r�2 be the earliest round in q in which V receives a message in M4(�).

Now, we can distinguish two cases: (a) r�1 � r�2 and (b) r�2 < r�1.
Case (a): Recall that either U must receive m = (�; �; �) before round r in q, or V must
receive a message inM4(�) before round r in q. However, this is not possible if r

�
1 = r. Thus,

r�1 < r must hold. This means that U receives, and thus, V sends a message inM4(�) in round
r�1. According to the formulae with which we tagged the messages inM4, this is possible only
if V receives � or a message inM4(�) in an earlier round r̂ < r�1 � r�2. By assumption, V does
not receive � before round r. Furthermore, V cannot receive any message in M4(�) before
round r�2.
Case (b): r�2 < r must hold, since otherwise r�1 would be greater than r, which is not possible
by de�nition. This means that V receives, and thus, U sends a message m0 2M4(�) in round
r�2. According to the formulae with which we tagged the messages inM4, this is possible only
if U receives m0 in an earlier round r̂ < r�2 < r�1. However, U cannot receive any message in
M4(�) before round r

�
1. 2

Lemma 5.3

The lemma states that if B receives a message m = (�; �) 2 M 04 in round r in q in the
restricted protocol game G�j�s(L), then V must receive � in an earlier round r0 < r in q.

Proof: The proof of this lemma is identical to that of Lemma 5.1. 2

Lemma 5.4

The lemma states that no player can ever receive a message m 2M2 such that m 6= srv .

Proof: Let us assume that a player received a message m 2M2 such that m 6= srv in round
r in q. This means that a player sends m in round r in q. Let us denote the earliest round
in q in which m is sent by any of the players by r�. According to the logical formulae with
which we tagged the messages in M2, any player can send m in round r� only if she receives
it in an earlier round. This contradicts the fact that r� is the earliest round in q in which m
is sent. 2

Appendix C

Proofs of Section 5.4

Lemma 5.12

The lemma states that if A sends a message m = (�; �; �) 2 M3 in round r in q, then she
must receive � in an earlier round r0 < r in q.

Proof: Let us suppose that A sends m in round r in q, but she does not receive � before
round r in q. It can be seen from the formulae with which we tagged the messages in M3

that A can send m in round r only if she receives � or a message inM3 that contains � in an
earlier round. By assumption, A does not receive � before round r, and thus, A must receive
a message in M3 that contains � before round r.

Let M3(�) = f(�0; �0; �0) 2M3 : �
0 = �g (i.e., M3(�) contains those messages in M3 that

contain �). Let r� be the earliest round in q in which A receives a message in M3(�), and let
this message be m�. Such r� and m� exist because (i) we know that A must receive a message
in M3(�) before round r in q, and (ii) round numbers are positive integers. In addition, from
(i), we get that r� < r must hold.

Since the network is reliable, if A receives m� in round r�, then B sends m� in round r�.
However, it can be seen from the formulae with which we tagged the messages inM3 that this
is possible only if B receives m� in an earlier round r̂ < r�. This means that A sends m� in
round r̂. Again from the formulae with which we tagged the messages in M3, it can be seen
that A can send m� 2M3(�) in round r̂ only if she receives � or a message in M3(�) before
round r̂. By assumption, A cannot receive � before round r̂ < r� < r. Thus, she must receive
a message in M3(�) before round r̂. But this contradicts the fact that the earliest round in
which such a message is received by A is r�. 2

Lemma 5.13

The lemma states that if B sends a message m = (; �; �) 2 M2 in round r in q, then she
must receive � in an earlier round r0 < r in q.

Proof: Let us suppose that B sends m in round r in q, but she does not receive � before
round r in q. It can be seen from the formulae with which we tagged the messages inM2 that
B can send m in round r only if she receives � or a message in M2 or in M3 that contains �
in an earlier round. By assumption, B does not receive � before round r, and thus, B must
receive a message in M2 or in M3 that contains � before round r.

149

150 Appendix C

Let M2(�) = f(0; �0; �0) 2 M2 : �
0 = �g and M3(�) = f(�0; 0; �0; �0; �00) 2 M3 : �

0 = �g
(i.e., M2(�) and M3(�) contain those messages in M2 and in M3, respectively, that contain
�). If B does not receive any message inM2(�) before round r in q, then let r

�
2 = r, otherwise,

let r�2 be the earliest round in q in which B receives a message in M2(�). Similarly, if B does
not receive any message in M3(�) before round r in q, then let r�3 = r, otherwise, let r�3 be
the earliest round in q in which B receives a message in M3(�).

Now, we can distinguish two cases: (a) r�2 � r�3 and (b) r�3 < r�2.
Case (a): Recall that B must receive a message in M2(�) or in M3(�) before round r in q.
This is not possible if r = r�2. Thus, r�2 < r must hold. This also means that B receives a
message in M2(�) in round r�2. Let us denote this message by m�2.

If B receives m�2 in round r�2, then A sends m�2 in round r�2. However, it can be seen from
the formulae with which we tagged the messages in M2 that A can send m�2 in round r�2 only
if she receives (i) m�2 or (ii) a message m03 = (�0;m�2; �

0) 2 M3(�) in an earlier round r̂ < r�2.
We show that neither (i) nor (ii) is possible.

(i) If A receives m�2 2 M2(�) in round r̂, then B sends m�2 in round r̂. It can be seen
from the formulae with which we tagged the messages in M2 that this is possible only if B
receives � or a message in M2(�) or in M3(�) before round r̂. By assumption, B does not
receive � before round r. Thus, B must receive a message inM2(�) or inM3(�) before round
r̂ < r�2 � r�3. However, because of the de�nitions of r

�
2 and r

�
3, B cannot receive any message

in M2(�) before r
�
2 and any message in M3(�) before r

�
3.

(ii) If A receives m03 = (�0;m�2; �
0) 2 M3(�) in round r̂, then B sends m03 in round r̂. It

can be seen from the formulae with which we tagged the messages in M3 that this is possible
only if B receives m03 before round r̂ < r�2 � r�3. However, because of the de�nition of r�3, B
cannot receive any message in M3(�) before round r

�
3.

Case (b): If r�3 < r�2, then r
�
3 < r must also hold (since otherwise r�2 would be greater than r,

which is not possible by de�nition). This means that B receives a message inM3(�) in round
r�3. Let this message be m�3 = (��; �; �; ��; ���). If B receives m�3 in round r�3, then A sends
m�3 in round r�3. However, from Lemma 5.12, we know that A can send m�3 in round r�3 only
if she receives a message m02 = (�; �; ��) 2 M2(�) in an earlier round r̂ < r�3. This means
that B sends m02 in round r̂. It can be seen from the formulae with which we tagged the
messages in M2 that this is possible only if B receives � or a message in M2(�) or in M3(�)
before round r̂. By assumption, B does not receive � before round r. Thus, B must receive a
message in M2(�) or in M3(�) before round r̂ < r�3 < r�2. However, because of the de�nitions
of r�2 and r�3, B cannot receive any message in M2(�) before round r�2 and any message in
M3(�) before round r

�
3. 2

Lemma 5.14

The lemma states that B cannot receive a message m 2M3 before round 3.

Proof: Let us assume that B receives m = (�; ; �; �; �0) in round r, where r < 3. This
means that A sends m in round r. According to Lemma 5.12, this is possible only if A
receives m0 = (; �; �) in an earlier round r0 < r. Thus, B sends m0 in round r0. According
to Lemma 5.13, this is possible only if B receives � in an earlier round r00 < r0 < r. But this
is impossible, since round numbers are positive integers, and r < 3. 2

Proofs of Section 5.4 151

Lemma 5.15

The lemma states that no player can ever receive a message m = (�; "; !; �) 2 M1 such that
�t(dec(w�1(!); "); dscV) = true and dec(w�1(!); ") 6= itmV .

Proof: Let us suppose that there exist a player i 2 P 0, a round number r 2 N , and an action
sequence q 2 Q such that (rcv(m); r) 2 Hi(q). This means that a player j sends m in round
r in q. According to the logical formulae with which we tagged the messages in M1, this is
possible only if j receives m or a message in M2 or in M3 that contains m before round r {
no matter whether j is A or B.

LetM2(m) = f(0; �0; �0) 2M2 : �
0 = mg andM3(m) = f(�0; 0; �0; �0; �00) 2M3 : � = mg.

If no player receives m before round r in q, then let r�1 = r, otherwise let r�1 be the earliest
round in q in which m is received by any of the players. If no player receives any message
in M2(m) before round r in q, then let r�2 = r, otherwise let r�2 be the earliest round in q in
which a message inM2(m) is received by any of the players. Finally, if no player receives any
message in M3(m) before round r in q, then let r�3 = r, otherwise let r�3 be the earliest round
in q in which a message in M3(m) is received by any of the players.

Now, we can distinguish three cases: (a) r�1 � r�2; r
�
3, (b) r

�
2 � r�1; r

�
3 , and (c) r�3 � r�1; r

�
2 .

Case (a): Recall that j receives m or a message in M2(m) or in M3(m) before round r in
q. Note that if r�1 = r, then no player receives m or any message in M2(m) or in M3(m)
before round r in q. Thus, r�1 < r must hold. This means that a player receives m in round
r�1. If a player receives m in round r�1, then a player must send m in round r�1. According to
the logical formulae with which we tagged the messages in M1, this is possible only if that
player receives m or a message in M2(m) or in M3(m) in an earlier round r̂ < r�1 � r�2; r

�
3.

However, because of the de�nitions of r�1, r
�
2, and r

�
3, no player can receive m before round

r�1, a message in M2(m) before round r�2, and a message in M3(m) before round r�3.
Case (b): Recall that j receives m or a message in M2(m) or in M3(m) before round r in
q. Note that if r�2 = r, then no player receives m or any message in M2(m) or in M3(m)
before round r in q. Thus, r�2 < r must hold. This means that a player receives a message
m0 = (0;m; �0) 2M2(m) in round r�2. If a player receives m

0 in round r�2, then a player must
send m0 in round r�2. According to the logical formulae with which we tagged the messages
in M2, A can send m0 in round r�2 only if she receives m0 2 M2(m) or a message in M3(m)
that contains m0 in an earlier round r̂ < r�2 � r�1; r

�
3. Furthermore, B can send m0 in round r�2

only if it receives m or a message in M2(m) or in M3(m) in an earlier round ~r < r�2 � r�1; r
�
3.

However, because of the de�nitions of r�1, r
�
2, and r

�
3, no player can receive m before round

r�1, a message in M2(m) before round r�2, and a message in M3(m) before round r�3.
Case (c): Recall that j receives m or a message in M2(m) or in M3(m) before round r in
q. Note that if r�3 = r, then no player receives m or any message in M2(m) or in M3(m)
before round r in q. Thus, r�3 < r must hold. This means that a player receives a message
m0 = (�0; 0;m; �0; �00) 2 M3(m) in round r�3. If a player receives m0 in round r�3, then a
player must send m0 in round r�3. According to the logical formulae with which we tagged
the messages in M3, A can send m0 in round r�3 only if she receives (0;m; �0) 2 M2(m) or a
message in M3(m) that contains (0;m; �0) in an earlier round r̂ < r�3 � r�2. Furthermore, B
can send m0 in round r�3 only if she receives m

0 2M3(m) in an earlier round ~r < r�3. However,
because of the de�nitions of r�2, and r�3, no player can receive a message in M2(m) before
round r�2, and a message in M3(m) before round r�3. 2

152 Appendix C

Lemma 5.16

The lemma states that no player can ever receive a message m = (; �; �) 2 M2 such that
 6= itmU .

Proof: Let us suppose that there exist a player i 2 P 0, a round number r 2 N , and an action
sequence q 2 Q such that (rcv(m); r) 2 Hi(q). This means that a player j sends m in round
r in q. According to the logical formulae with which we tagged the messages in M2, this is
possible only if j receives a message in M2 or in M3 that contains before round r { no
matter whether j is A or B.

Let M2() = f(0; �0; �0) 2 M2 :
0 = g and M3() = f(�0; 0; �0; �0; �00) 2 M3 :

0 = g.
If no player receives any message in M2() before round r in q, then let r�2 = r, otherwise let
r�2 be the earliest round in q in which a message in M2() is received by any of the players.
If no player receives any message in M3() before round r in q, then let r�3 = r, otherwise let
r�3 be the earliest round in q in which a message in M3() is received by any of the players.

Now, we can distinguish two cases: (a) r�2 � r�3, and (b) r�3 < r�2.
Case (a): Recall that j receives a message in M2() or in M3() before round r in q. Note
that if r�2 = r, then no player receives any message in M2() or in M3() before round r in q.
Thus, r�2 < r must hold. This means that a player receives a message m0 = (; �0; �0) 2M2()
in round r�2. If a player receives m0 in round r�2, then a player must send m0 in round r�2.
According to the logical formulae with which we tagged the messages inM2, A can sendm0 in
round r�2 only if she receives m

0 2M2() or a message inM3() that contains m
0 in an earlier

round r̂ < r�2 � r�3. Furthermore, B can send m0 in round r�2 only if it receives a message in
M2() or in M3() in an earlier round ~r < r�2 � r�3. However, because of the de�nitions of r

�
2

and r�3, no player can receive a message in M2() before round r
�
2, and a message in M3()

before round r�3.
Case (b): Note that r�3 < r must hold (since otherwise r�2 would be greater than r,
which is not possible by de�nition). This means that a player receives a message m0 =
(�0; ; �0; �0; �00) 2M3() in round r�3. If a player receives m

0 in round r�3, then a player must
send m0 in round r�3. According to the logical formulae with which we tagged the messages
in M3, A can send m0 in round r�3 only if she receives (; �0; �0) 2 M2() or a message in
M3() that contains (; �

0; �0) in an earlier round r̂ < r�3 < r�2. Furthermore, B can send m0

in round r�3 only if she receives m0 2 M3() in an earlier round ~r < r�3. However, because of
the de�nitions of r�2 and r

�
3, no player can receive a message in M2() before round r

�
2, and a

message in M3() before round r
�
3. 2

Appendix D

Summary of notations

Logic of channels

C channel
C(X) message X in channel C
r(C) reader set of channel C
s(C) source set of channel C
w(C) writer set of channel C
K session key
P;Q principals
X;Y messages
�; logical formulae
; concatenation (X;Y is a message composed of sub-messages X and Y)
� 'session key' operator (K � fP;Qg means that K is a session key for P and Q)
j� 'belief' operator (P j� � means that P believes that formula � is true)
� 'sees' operator (P �X means that P sees message X)
j� 'said' operator (P j� X means that P said message X)
jj� 'recently said' operator (P jj� X means that P has recently said message X)
] 'freshness' operator (](X) means that message X is fresh)
\ 'timeliness' operator (\(C) means that channel C is timely)
: negation
^ logical 'and' operator
_ logical 'or' operator
) implication
, equivalence

153

154 Appendix D

Game theory

a action
A(q) set of available actions after non-terminal action sequence q
� empty sequence
G game
Gj�s restricted game (the strategies in the strategy vector �s are �xed)

i index variable (usually denotes a player)
Ii information set of player i
Ii information partition of player i
j index variable (usually denotes a player)
k index variable
o outcome function
p player function
P player set
q action sequence
q:a action sequence q followed by action a
Q set of action sequences
si strategy of player i
Si set of strategies of player i
v positive integer
w positive integer
yi(q) payo� for player i after terminal action sequence q
Z set of terminal action sequences
�i preference relation of player i

Summary of notations 155

Protocol games

Ai(�i(q)) available actions for player i in local state �i(q)
�i(q) activity ag of player i after action sequence q (part of i's local state)
E set of all events
�mi (�i(q)) logical formula that describes the condition that must be

satis�ed by the local state �i(q) of player i in order for i
to be able to send message m after action sequence q

G�(L) protocol game of protocol �(L)
i player i's item to be exchanged
Hi(q) local event history of player i after action sequence q (part of i's local state)
L set of parameters of a protocol or a program
m message
M set of messages
Mnet (q) network bu�er after action sequence q (part of the local state of net)
M�(L) set of messages compatible with protocol �(L)
N set of positive integers
net network
p1; p2 main parties of the protocol
p3 trusted third party (TTP)
P 0 equals P n fnetg
�(L) protocol, de�ned as a description of a distributed computation

on a set L of parameters, where L usually contains the
identi�ers of the executing parties, the items to be exchanged,
the description of the items, and cryptographic parameters, such as
keys, random numbers, etc.

�i(Li) program of protocol party i, de�ned as a description of a local
computation on a set Li of parameters, where Li contains those
parameters that are known to i

ri(q) round number for player i after action sequence q (part of i's local state)
rcv receive event
snd send event
�i(q) local state of player i after action sequence q
u+i potential gain of player i (the value that the item of the other player is worth to i)
u�i potential loss of player i (the value that i's own item is worth to i)
y+i (q) gain of player i after terminal action sequence q
y�i (q) loss of player i after terminal action sequence q

156 Appendix D

Index

Abadi-Tuttle logic, 12, 28{29
abstract protocol, 9, 25
action sequence, 61

empty sequence, 61
in protocol games, 71
terminal, 61

activity ag, 68
ad hoc network, 107

cooperation in, 107{108
asynchronous protocol game, 76{79

de�nition of properties in, 78
modeling timers and timeouts, 77{78
of the rational payment protocol, 103
of the Syverson protocol, 103{104
rationality vs. fairness in, 78{79
scheduling the moves in, 78

authenticated key establishment, 7
authenticated key transport protocols

construction of, 24{25
aws in, 7{8
formal speci�cation of, 23{24
formal veri�cation of, 8, 25{31
systematic construction of, 8, 22{23,

41{44
authenticity, 23
available actions, 61

in protocol games, 69
in the rational payment protocol, 85{

87
in the Syverson protocol, 96{98

axioms of the logic of channels, 15{16

BAN logic, 8, 10, 12, 28
extensions, 28{29

belief operator (j�), 14
bit commitment

temporarily secret, 93{94

certi�ed electronic mail, 51

channel, 8{12, 25
examples, 19{21
implementation of, 9, 46{47
in algebrae and logics, 9
reader set of, 11{12
source set of, 11
timeliness of, 12
writer set of, 11
writer set vs. source set, 11{12

Communicating Sequential Processes, 26
compatible messages, 67

in the rational payment protocol, 82{
84

in the Syverson protocol, 95{96
competency, 15
compound message, 13
conjunction rule, 17
construction of key transport protocols, 24{

25
Convince, 27
cooperation in ad hoc networks, 107{108
correspondence, 23
credit counter, 109
credit synchronization interval, 125
credit synchronization protocol, 118, 125,

126
cross-certi�cation, 116
CSP, 26

dec function, 95
decryption function, 95
derivable relation, 17{18
direction bit, 19

e�ectiveness property, 59, 73{74, 76
formal de�nition of, 73
in the rational payment protocol, 92
in the Syverson protocol, 103

electronic contract signing, 51

157

158

empty sequence, 61
enc function, 93
encryption function, 93
event, 68
exchange problem, 51
exchange protocol

properties of, 59{60
extensive game, 61{62

interpretation of, 62
representation as tree, 62

fail-stop protocol, 24
fair exchange, 51{52, 74

informal characterization of, 51
optimistic, 52
with on-line and o�-line TTP, 51{52
without a TTP, 51

fairness property, 59, 74, 76
formal de�nition of, 73
relation to rationality, 74{76
strong and weak, 79

�t function, 82
aws in authenticated key transport proto-

cols, 7{8
formal de�nition

value of, 59
formal semantics, 29
formal speci�cation of key transport proto-

cols, 23{24
formal veri�cation of key transport proto-

cols, 8, 25{31
state machine based approach, 26
with BAN logic, 28
with CSP, 26
with Higher Order Logic, 26{27
with Ina Jo, 25{26
with LOTOS, 25
with Petri nets, 26
with spi-calculus, 30{31
with the Interrogator, 27
with the NRL Protocol Analyzer, 27

forwarding packet, 110
forwarding rules, 113, 122

performance of, 113{114, 122
'freshness' operator (]), 14

gain closed property, 72, 74, 76

formal de�nition of, 73
in the rational payment protocol, 90
in the Syverson protocol, 101

game theory, 60{65
action sequence, 61
available actions, 61
extensive games, 61{62
information partition, 61
information set, 61
Nash equilibrium, 64
outcome, 64
payo�, 62
player function, 61
player set, 61
preference relation, 61{62
strategy, 63
strategy pro�le, 63

game tree, 62
geodesic packet forwarding, 120{121
Global Mobility Network, 33
GLOMONET, 33
GNY logic, 29
gradual secret release scheme, 51

Higher Order Logic, 26{27
HOL, 26{27
honesty, 14

idealization, 12, 18, 28
in protocol veri�cation vs. design, 12

idealized message, 12
IMSI catcher, 40
Ina Jo, 25{26
inference rules of the logic of channels, 16{

17
information partition, 61
information set, 61

in protocol games, 68
interleaving attack, 18
Interrogator, 27
Isabelle, 27

join-calculus, 9

key agreement, 7
key authentication, 7
key con�rmation (explicit), 45
key establishment, 7

159

key transport, 7

language of the logic of channels, 12{13
limitations of the logic of channels, 18{19
limitations of the protocol game model, 92
local history of events, 68
local state of players, 68{69

state transitions, 69{70
logic of belief, 8, 10, 28
logic of channels, 10{19

axioms, 15{16
derivable relation, 17{18
description of operators, 13{14
idealization, 12
inference rules, 16{17
language of messages, 12{13
limitations of, 18{19
universal quanti�cation in formulae, 15
usage of, 18, 36{37

LOTOS, 25

majority rule, 122
matching runs, 23
message composition operator (;), 13
micropayment, 54

made rational, 56{58
PayWord, 55{56
unfairness of, 54

mobile ad hoc network, 107
modal logic, 10, 28
modeling time in the logic of channels, 18{

19
modus ponens, 16
Mur', 26

Nash equilibrium
de�nition of, 64
in restricted games, 65

necessitation rule, 16{17
Needham-Schroeder protocol, 7, 37
network bu�er, 69
NRL Protocol Analyzer, 27

requirement language of, 24
nuglets, 127

operators in the logic of channels, 13{14
optimistic fair exchange, 52
ordering of messages (�), 87, 98

outcome function, 64
own packet, 110

packet forwarding protocol, 117{118
Packet Purse Model, 127
Packet Trade Model, 127
payo�, 62

in protocol games, 71{72
in the rational payment protocol, 89{

90
in the Syverson protocol, 99{101

PayWord, 55{56
improved, 56{58

pending credit counter, 117
Petri net, 26
�-calculus, 9, 30
player function, 61

in protocol games, 71
player set, 61

in protocol games, 67{68
in the rational payment protocol, 84

preference relation, 61{62
primitive term, 13
principal list, 13
principal set, 13
programs

in the rational payment protocol, 82{
84

in the Syverson protocol, 95{96
properties of exchange protocols, 59{60, 72{

74
e�ectiveness, 73{74, 76
fairness, 73{74, 76
formal de�nitions of, 72{73
gain closed property, 72{74, 76
rationality, 73{74, 76
relationship between rationality and fair-

ness, 74{76
safe back out property, 72{74, 76
termination, 73

protocol game, 60
action sequences, 71
available actions, 69
description of general framework, 65{

72
events, 68
in asynchronous model, 76{79

160

information set of, 68
limitations of the model, 92
local state of the players, 68{69
payo� framework, 71{72
player function, 71
player set of, 67{68
round, 66
set of compatible messages, 67
state transitions, 69{70

public-key infrastructure, 115{116
purchase of network delivered services, 51

random waypoint mobility model, 120
rational exchange, 52, 74

a rational payment protocol, 53{54, 81
application to micropayments, 54{58
informal characterization of, 52
motivation for, 52
Syverson protocol, 93{94

rational payment protocol, 53{54, 81
available actions in, 85{87
e�ectiveness property, 92
gain closed property, 90
in asynchronous model, 103
payo�s of the parties, 89{90
player set of, 84
programs of the parties, 82{84
rationality property, 90{92
safe back out property, 90
set of compatible messages of, 82{84
startegies of the parties, 87{88
termination property, 92

rationality property, 60, 74, 76
formal de�nition of, 73
in the rational payment protocol, 90{

92
in the Syverson protocol, 101{103
relation to fairness, 74{76

reachability analysis, 26
reader set of a channel, 11{12
'recently said' operator (jj�), 14
reection attack

on the Suzuki-Nakada protocol, 36
replay attack, 7

classic replay, 18
interleaving, 18
on the Suzuki-Nakada protocol, 37{40

reection, 36
restricted game, 64
round, 66
round number, 68

safe back out property, 72, 74, 76
formal de�nition of, 73
in the rational payment protocol, 90
in the Syverson protocol, 101

safety and liveness properties, 79
'said' operator (j�), 14
scheduler, 78
secrecy, 19, 23
security association, 116{117
security header, 117
security module, 109, 115
'sees' operator (�), 14
sel�shness, 110, 111
sending and receiving sequence number, 117
service description, 82
session key operator (�), 14
sig function, 81
signature generation function, 81
signature veri�cation function, 82
sjoin-calculus, 9
source set

vs. writer set, 11{12
source set of a channel, 11
spi-calculus, 30{31
state explosion problem, 26
state transitions, 69{70
stimulation of packet forwarding, 109

analytical model, 109{114
credit synchronization interval, 125
credit synchronization protocol, 118, 125{

126
forwarding rules, 113{114, 122
mechanism of, 109
overhead, 119{120
packet forwarding protocol, 117{118
protection of, 115{120
public-key infrastructure, 115{116
robustness, 119
security associations, 116{117
simulation description, 120{121
simulation results, 122{126

strategies

161

in the rational payment protocol, 87{
88

in the Syverson protocol, 98{99
strategy

de�nition of, 63
strategy pro�le, 63
Suzuki-Nakada protocol

analysis of, 35{37
attacks on, 37{40
correction of, 41{48
description of, 34{35

SvO logic, 29
synchronous system model, 66
synthesis rules, 8, 21{23

general form of, 22
interpretation of, 22
usage of, 22{23, 41{44

systematic protocol construction approach,
8, 22{23, 41{44

Syverson protocol, 93{94
available actions in, 96{98
e�ectiveness property, 103
gain closed property, 101
in asynchronous model, 103{104
informal analysis of, 94
payo�s of the parties, 99{101
programs of the parties, 95{96
rationality property, 101{103
safe back out property, 101
set of compatible messages of, 95{96
strategies of the parties, 98{99
termination property, 103

tamper resistance, 108{109, 115
temporal logic

game based alternating, 79
temporarily secret bit commitment, 93{94
term rewriting systems, 30
terminal action sequence, 61
termination property, 59, 73

formal de�nition of, 73
in the rational payment protocol, 92
in the Syverson protocol, 103

Terminodes Project, 109
theorem

notion of theorem in formal logics, 17
throughput, 123

time
in asynchronous protocol games, 77{78
modeling time in the logic of channels,

18{19
time-lock puzzle, 93{94
timeliness of a channel, 12
'timeliness' operator (\), 14
top-down design, 10

unenforced exchange, 79
universal quanti�cation in the logic of chan-

nels, 15
usage of the logic of channels, 18, 36{37
usage of the synthesis rules, 22{23, 41{44

vfy function, 82

watchdog and pathrater, 126
weakest precondition calculus, 8
Wide-mouthed-frog protocol, 11{12

modi�ed, 11
writer set

vs. source set, 11{12
writer set of a channel, 11

162

Curriculum Vitae

Name: Levente Butty�an
Date of birth: December 3, 1970
Place of birth: Salg�otarj�an, Hungary
Languages: English, French, Hungarian

1998 { 2001 Ph.D. Student and Research Assistant
Institute for Computer Communications and Applications,
Swiss Federal Institute of Technology, Lausanne

1997 { 1998 Research Assistant
Telecommunications Laboratory,
Swiss Federal Institute of Technology, Lausanne

1995 { 1997 Postgraduate Student
Department of Telecommunications,
Budapest University of Technology and Economics

1990 { 1995 M.Sc. in Computer Science
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics
(Diploma with Honor)

1985 { 1989 Certi�cate of Final Examination
F�oldes Ferenc Gimn�azium, Miskolc
(Mathematics Section)

Publications

� L. Butty�an and J.-P. Hubaux. Rational Exchange { A Formal Model Based on Game Theory.
In Proceedings of the 2nd International Workshop on Electronic Commerce (WELCOM 2001),
November 2001.

� L. Butty�an and N. Ben Salem. A Payment Scheme for Broadcast Multimedia Streams. In
Proceedings of the 6th IEEE Symposium on Computers and Communications, July 2001.

� L. Butty�an and J.-P. Hubaux. Enforcing Service Availability in Mobile Ad Hoc WANs. In Pro-
ceedings of the IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC
2000), August 2000.

� L. Butty�an, C. Gbaguidi, S. Staamann, and U. Wilhelm. Extensions to an Authentication
Technique Proposed for the Global Mobility Network. IEEE Transactions on Communications,
48(3), March 2000.

� L. Butty�an. Removing the Financial Incentive to Cheat in Micropayment Schemes. IEE Elec-
tronics Letters, 36(2), January 2000.

� L. Butty�an and J.-P. Hubaux. Accountable Anonymous Access to Services in Mobile Commu-
nication Systems. In Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems
(SRDS'99), 1st International Workshop on Electronic Commerce (WELCOM'99), October 1999.

� L. Butty�an, S. Staamann, and U. Wilhelm. Multilateral Security in Middleware Based Telecom-
munication Architectures. In G. Mueller and K. Rannenberg (eds), Multilateral Security in
Communications, Volume 3: Technology, Infrastructure, Economy, Addison-Wesley, 1999.

� L. Butty�an, S. Staamann, and U. Wilhelm. A Simple Logic for Authentication Protocol Design.
In Proceedings of the 11th IEEE Computer Security Foundations Workshop, June 1998.

� L. Butty�an and I. Vajda. Searching for the Best Linear Approximation of DES-like Cryptosys-
tems. IEE Electronics Letters, 31(11), May 1995.

Co-authored publications

� J.-P. Hubaux, L. Butty�an, and S. �Capkun. The Quest for Security in Mobile Ad Hoc Networks.
In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHOC
2001), October 2001.

� L. Bla�zevi�c, L. Butty�an, S. �Capkun, S. Giordano, J.-P. Hubaux, and J.-Y. Le Boudec. Self-
Organization in Mobile Ad Hoc Networks: the Approach of Terminodes. IEEE Communications
Magazine, 39(6), June 2001.

� U. Wilhelm, S. Staamann, and L. Butty�an. A Pessimistic Approach to Trust in Mobile Agent
Platforms. IEEE Internet Computing, September-October 2000.

� J.-P. Hubaux, J.-Y. Le Boudec, S. Giordano, M. Hamdi, L. Bla�zevi�c, L. Butty�an, and M. Vo-
jnovi�c. Towards Mobile Ad-hoc WANs: Terminodes. In Proceedings of the IEEE Wireless
Communications and Networking Conference, September 2000.

� S. Staamann, L. Butty�an, A. Coignet, E. Ruggiano, U. Wilhelm, and M. Zweiacker. Closed User
Groups in Internet Service Centers. In Proceedings of Distributed Applications and Interoperable
Systems (DAIS'99), June-July 1999.

� U. Wilhelm, S. Staamann, and L. Butty�an. Introducing Trusted Third Parties to the Mobile
Agent Paradigm. In J. Vitek and C. Jensen (eds), Secure Internet Programming: Security Issues
for Mobile and Distributed Objects, Lecture Notes in Computer Science, Springer-Verlag, 1999.

� S. Staamann, L. Butty�an, and U. Wilhelm. Security in TINA. In Proceedings of IFIP-SEC'98,
August-September 1998.

� U. Wilhelm, S. Staamann, and L. Butty�an. Protecting the Itinerary of Mobile Agents. In
Proceedings of the 12th European Conference on Object-Oriented Programming, Workshop on
Mobile Object Systems: Secure Internet Mobile Computations, July 1998.

� U. Wilhelm, S. Staamann, and L. Butty�an. On the Problem of Trust in Mobile Agent Systems.
In Proceedings of the IEEE Network and Distributed Systems Security Symposium (NDSS'98),
March 1998.

� S. Staamann, L. Butty�an, J.-P. Hubaux, A. Schiper, and U. Wilhelm. Security in the Telecom-
munication Information Networking Architecture - the CrySTINA Approach. In Proceedings of
the TINA'97 Conference, November 1997.

� I. Vajda and L. Butty�an. On Design Criteria of Conventional Block Ciphers. Communications,
March 1995. (in Hungarian)

