
Security Analysis of Reliable Transport Layer Protocols for

Wireless Sensor Networks

Levente Buttyán and László Csik
Laboratory of Cryptography and Systems Security (CrySyS)

Department of Telecommunications
Budapest University of Technology and Economics

Email: buttyan@crysys.hu

February 11, 2010

Abstract

End-to-end reliability of communications is an important requirement in many ap-
plications of wireless sensor networks. For this reason, a number of reliable transport
protocols specifically designed for wireless sensor networks have been proposed in the lit-
erature. Besides providing end-to-end reliability, some of those protocols also address the
problems of fairness and congestion control, and they are all optimized for low energy
consumption. However, in this paper, we show that most of those protocols completely
neglect security issues. As a consequence, they ensure reliable communications and low
energy consumption only in a benign environment, but they fail in a hostile environment,
where an adversary can forge or replay control packets of the protocol. More specifically,
our analysis shows that control packet injection and replay can cause permanent loss of
data packets, and thus, such misdeeds make the hitherto reliable protocol unreliable. In
addition, even if the protocol can recover from such an attack, the recovery overhead
caused by forged or replayed control packets can be large, which gives an opportunity for
energy depletion attacks.

1 Introduction

Wireless Sensor Networks (WSNs) consist of a large number of resource constrained sensor
nodes and a few more powerful base stations. The sensors collect various types of data
from the environment and send those data to the base stations using multi-hop wireless
communications.

There are applications of WSNs where the sensors capture and transmit high-rate data
(e.g., multimedia sensor networks [1]). In those applications, special mechanisms are needed
to ensure end-to-end reliability and congestion control. Such mechanisms are usually imple-
mented in the transport layer of the communication stack in form of a transport protocol. It is
widely accepted that transport protocols used in wired networks (e.g., the well-known TCP)
are not applicable in wireless sensor networks, because they perform poorly in a wireless en-
vironment and they are not optimized for energy consumption. For this reason, a number of
transport protocols specifically designed for WSNs have been proposed in the literature (see
[13] for a survey). The main design criteria that these protocols try to meet are end-to-end
reliability, congestion control, and energy efficiency.

1



Interestingly, despite the fact that WSNs are often envisioned to operate in hostile en-
vironments, none of the proposed WSN transport protocols address security issues. As a
consequence, the proposed protocols meet the above requirements only in a benign environ-
ment, but they fail in a hostile environment. In particular, in this paper, we show that most
of the proposed WSN transport protocols fail to provide end-to-end reliability and are sub-
ject to increased energy consumption in the presence of an adversary that can replay or forge
control packets of the protocol.

Note that replaying and injecting forged control packets into a WSN can be easily done due
to the wireless nature of the medium, therefore, the assumption that WSN transport protocols
may be subject to these kinds of attack are not far fetched. One could even consider a stronger
adversary model that allows for the deletion of control and data packets, however, in such a
model, it is theoretically impossible to ensure reliable communication [5]. Hence, we restrict
our analysis to the weaker adversary model where only control packet replay and injection
are allowed.

We must also note that there are many papers on security issues in WSNs (see e.g., [6]
and the references therein), but to the best of our knowledge, the security of the transport
layer in WSNs has been neglected so far. Indeed, most of the literature on WSN security
deals with MAC layer and network layer security issues, and key management problems. In
contrast to those works, we focus on the security issues at the transport layer in this paper.

The rest of the paper is organized as follows: In Section 2, we give a high level summary
of the various acknowledgement schemes used to provide reliability in communications. In
Section 3, we specify our attacker model and define metrics required to measure the impact
of an attack. In Section 4, we describe specific WSN transport protocols and analyze them
with respect to security. Finally, in Section 5, we summarize the lessons that we learnt from
the analysis, and we conclude our paper in Section 6.

2 Transport layer reliability mechanisms

Communications in WSNs usually take place between the sensor nodes and the base stations,
and it is important to distinguish the direction of those communications. In case of upstream
communication, the sender is a sensor node, and the receiver is a base station, while in case
of downstream communication, these roles are reversed.

The goal of the sender is to reliably transmit to the receiver a full message that may
consist of multiple fragments. If a fragment is lost, it must be retransmitted. This may be
done in an end-to-end manner, where the source node itself repeats the lost fragment, or on
a hop-by-hop basis, where intermediate nodes can cache and retransmit fragments if they are
lost.

A reliable protocol can only detect fragment losses, if there is some kind of feedback in
the system. Typically the following types of feedbacks are used:

• Acknowledgement (ACK): Acknowledgements can be:

– Explicit – Upon receiving a fragment the node sends back a confirmation on it.
An explicit ACK can confirm the reception of a single or multiple fragments.

– Implicit – When a node overhears his neighbor forwarding a fragment sent by
the node, it can assume that the delivery of the fragment to that neighbor was
successful. This method can only confirm the delivery of a single fragment.

2



• Negative Acknowledgement (NACK): If a node somehow becomes aware of the fact that
it did not receive a fragment, it can explicitly send a request for retransmission. A
NACK can also refer to a single or multiple requested fragments. In multiple NACK
schemes the notion of loss window refers to a range of lost fragments.

• Selective Acknowledgement (SACK): It is a combination of an explicit single or multiple
ACK – used for the last fragments received in-order – and multiple ACKs for other
fragments that were also received, but which are out of order.

Finally, we should mention the following two important theoretical problems related to NACK
based schemes:

• Lost last fragment problem: Most NACK-based protocols use sequence numbers to
detect fragment losses. If a node receives a fragment with a sequence number higher
than expected, then it concludes that a fragment is lost. However, this method cannot
detect if the last fragments of a stream are lost, since they will not going to be followed
by a fragment with a higher sequence number. NACK based schemes must implement
a specific solution for this problem.

• Lost full message problem: In wireless networks, it is possible, that an entire message
is lost during transmission, as losses often occur in bursts, and messages in WSNs tend
to consist of a few (often only one) fragments. Loss of an entire message cannot be
directly detected by NACK based schemes, as the receiver never becomes aware of the
existence of the message. This problem also requires special handling in NACK based
schemes.

3 Attacker model

We assume that the attacker can eavesdrop the communications between any two nodes in
the network, and he can forge and inject control packets anywhere in the network with a
specified transmit power. However, we do not allow the attacker to delete (e.g., by jamming)
control and data packets. We understand that such attacks are possible in wireless networks,
but if we allowed them, then no transport layer protocol would be able to ensure the end-to-
end reliability of the communications. In other words, deletion attacks must be addressed in
another layer, typically below the transport layer.

Our attacker model is not affected by security mechanisms applied at the application
layer, because we are not interested in the content of the data packets, and the attacker in
our model only injects transport layer control packets. In contrast to this, security mechanisms
implemented below the transport layer (e.g., link layer packet authentication) would be useful
to prevent some of the attacks, but in fact, none of the proposed transport protocols assume
any security mechanisms at lower layers, and therefore, we will not assume their presence
either.

Attacks against WSN transport layer protocols come in two flavors: attacks against reli-
ability and energy depleting attacks.

Reliability in the context of transport protocols refers to reliable data transfer. In partic-
ular, a reliable transport protocol must be able to guarantee that every packet loss is detected
and that lost packets can be retransmitted until they reach their destination. Thus, an attack

3



against reliability is considered to be successful, if either a packet loss remains undetected, or
the attacker can permanently deny the delivery of a packet.

Energy depleting attacks are unique to sensor networks. In this case the goal of the
attacker is to force the sensor nodes to perform energy intensive operations, in order to
deplete their batteries, and thus, to decrease the lifetime of the network. In WSNs, the
overall energy consumption of a sensor node is highly proportional to the number of the
packets transmitted by the node. Therefore, an energy depleting attacker may try to coerce
the sensor nodes to re-transmit packets. In this case, we measure the successfulness of an
attack by the ratio between the number of packets injected by the attacker in the network
and the overall number of packets sent by the sensor nodes due to those injected packets.

4 Analysis of the existing transport protocols

In this section, we analyze four WSN transport protocols in details with respect to their
resistance to malicious attacks. We have chosen these protocols because they are relatively
well-known and frequently cited, and their descriptions are sufficiently detailed such that
they permit the analysis. We note that several other protocols have similar problems (see
Subsection 4.5).

4.1 PSFQ

PSFQ (Pump Slowly, Fetch Quickly) [12] is a general-purpose transport protocol, that pro-
vides downstream reliability with hop-by-hop recovery. The name of the protocol originates
from the delivery method it uses. During the transmission, data fragments are transferred
(pumped) with a relatively small speed, but if an error is detected, the protocol tries to
quickly recover (fetch) the missing fragments from immediate neighbors.

4.1.1 Protocol overview

PSFQ uses a multiple NACK-based scheme to achieve reliability. It has three different working
modes:

• Pump Operation – This mode is responsible for the normal data transfer. Each data
fragment contains a message ID, a message length field, a sequence number and a TTL
(Time To Live) value. When a node receives a fragment, it checks its local data cache
and discards any duplicates. PSFQ buffers every new fragment, decreases their TTL
value and schedules them to forward, if there are no gaps in the sequence numbers and
TTL is not zero. Each scheduled fragment is delayed for a random period before it is
forwarded. Within this random period, the node counts the number of times the same
fragment is heard from neighboring nodes. If this counter reaches 4 before the scheduled
rebroadcast, the transmission is canceled.

• Fetch Operation – A node goes into fetch mode once a gap is detected in the sequence
numbers. PSFQ uses NACKs with three fields: message ID, message length, and loss
windows. Each node attempts to obtain all lost fragments in a single fetch operation.
To reduce collisions, neighbor nodes wait a random time before transmitting missing
fragments. Other nodes that have the same missing fragment will cancel their scheduled
retransmission if they hear a repair for the same fragment. NACKs are aggressively

4



repeated for non-received fragments. However, NACK packets are only propagated
once, and only after the number of repetition for the same NACK exceeds a predefined
threshold. To tackle the lost last fragment problem, each node can enter fetch mode
proactively and send a NACK for the next missing fragment.

• Report Operation – This working mode was designed to feedback data delivery status
information, however it has marginal influence on our the security analysis.

4.1.2 Weaknesses of the protocol

One important problem with PSFQ is that it does not deal with the lost full message problem.
Hence the protocol is not reliable, especially when the implementing WSN application uses
relatively small messages consisting only of a few fragments.

Another general problem of the protocol is the inappropriate handling of TTL values.
Due to the randomized transfer delays used by the forwarding method, it is possible that a
copy of a fragment arrives to a node from the source earlier on a longer path than on the
shortest one. This specific fragment will be scheduled for forwarding, even if it has a smaller
TTL value than other fragments for the same message ID. If fragments arriving later, but
with higher TTL value are discarded, then it is possible that the destination will not going
to receive any copy of the discarded fragment. Also, an attacker can inject a fragment with
a given message ID, message size, and sequence number but with a TTL value as low as 1.
This fragment might prevent the proper propagation of the valid fragment, which can lead to
permanent fragment losses. If duplicated fragments with higher TTL values are not discarded
but also propagated, and NACKs can force retransmission of fragments with zero TTL, then
this problem can be fixed, but it will not going to be very efficient.

Another problem stems from the fact that nodes cancel their scheduled transmission of a
given fragment if they hear that fragment being transmitted by neighboring nodes 4 times.
This means that an attacker can send enough spoofed copies of a fragment under different
identities to force the cancelation of a transmission. Even if the intended receiver later detects
the fragment loss and broadcasts a NACK for the fragment, the same method can be used
by the attacker to force the cancelation of the retransmission by immediately injecting a
false response to the NACK. Thus, in PSFQ, it is possible to permanently delete arbitrary
messages from the system.

Energy depleting attacks are also possible against PSFQ. In general, an injected fake
NACK forces the nodes to unnecessarily retransmit a fragment. For multiple NACK schemes
one packet can provoke the retransmission of multiple fragments, which multiplies the impact
of the attack. The problem with PSFQ, is that it does not limit the size of the loss window,
so it can be as high as the size of the largest transmitted message. Similarly, an attacker
can inject a fragment with a large sequence number, which generates a large loss window
potentially in many nodes.

Another attack against the protocol would be to inject a false fragment with a new message
ID, message length of 2, sequence number of 1, and a TTL value as high as possible. Since
this is the first fragment of the message, it does not generate a gap in the sequence numbers,
consequently every node will immediately propagate the fragment and due to the high TTL
value, it will reach every node in the network. After receiving this fragment, every node
will believe that only the last fragment is missing from the message, and so every node will
proactively enter into fetch mode and aggressively send out NACKs for the second half of the

5



message.

4.2 DTC

DTC (Distributed TCP Caching) [2] is a specifically modified TCP protocol for WSNs. It
provides both up and downstream reliability with hop-by-hop recovery.

4.2.1 Protocol overview

This protocol implements a special SACK-based algorithm, where a SACK packet contains
an ACK field that contains the sequence number of the last fragment that was received in-
order, and a SACK field that lists the sequence numbers of additional fragments received
out-of-order. It is important to note, that the SACK field also works as a multiple NACK,
since it implicitly lists all missing fragments.

DTC assumes that each intermediate node between a source S and a destination D can
store only a single fragment. Periodically, D sends a SACK packet to S. Along the path
to S each intermediate node I examines the SACK packet. If it acknowledges a fragment
that is stored by I, then I deletes that fragment from its cache. If the SACK negatively
acknowledges a fragment that is stored by I, then I retransmits the missing fragment and
inserts its sequence number into the SACK field. Finally, I forwards the SACK packet to
the direction of S. If an intermediate node can retransmit all missing fragments listed in a
SACK, it drops the SACK.

4.2.2 DTC weaknesses

As opposed to NACK-based protocols, ACK-based schemes can achieve full reliability without
any further extension. Also, if an attacker injects an ACK into a system, it does not generate
any additional traffic. However injected ACK packets can be very dangerous. In general, pro-
tocols that use ACKs assume, that an arbitrary fragment which was acknowledged explicitly
or implicitly, can be deleted from the system as it arrived to its destination. Since an attacker
can forge and insert fake ACKs for fragments that are actually lost, he can cause permanent
fragment losses.

In DTC, this attack can be realized easily. A SACK lists multiple lost fragments, so an
attacker can forge and inject another SACK that acknowledges all missing fragments. With
this single packet, he can provoke multiple fragment losses.

Beside the previous vulnerability, energy depleting attacks are also feasible against DTC.
This is so, because the SACK field also functions as a multiple NACK. Injecting a SACK
with a large loss window generates a large traffic of retransmitted fragments.

In addition, the previous two attacks can be easily combined by injecting an inverse SACK
packet to the system that requests the retransmission of every fragment that was actually
received by D while acknowledges every lost fragment.

4.3 Garuda

Garuda [8] provides a scalable solution for sink to all sensors communication. It is a down-
stream reliability scheme using single NACKs, and a local recovery scheme realized by special
CORE nodes.

6



4.3.1 Protocol overview

In this protocol, every 3rd node is a CORE node, serving as a local and designated loss
recovery server. Nodes use implicit multiple NACKs to recollect missing fragments, where
the NACK is the sequence number of the last message ID the node has received so far.

To protect against lost full messages, Garuda uses a special Wait-for-First-Packet (WFP)
pulse, which is a finite series of short duration pulses repeated periodically. Sensor nodes
upon reception of the pulses, also start pulsing. The sink after pulsing for a finite duration
transmits the first fragment. If a node receives the first fragment, it stops pulsing the WFP
and broadcasts the first fragment. Therefore, WFP serves as an implicit NACK for the first
fragment, while termination of WFP pulsing is an ACK for it. As first messages can store
the size of the data that is going to be transferred, reliable transfer of the first fragment can
solve the lost last fragment problem.

4.3.2 Garuda weaknesses

The major problem with Garuda is the unconditional propagation of WFP pulses. If an
attacker injects a WFP into the system, every node will immediately rebroadcast it until an
undefined time. Even if nodes stop pulsing after some consecutive WFPs, the impact of this
attack is proportional to the number of nodes in the network.

4.4 RBC

RBC (Reliable Bursty Convergecast) [16] implements a special window-less block acknowl-
edgement scheme that can be used for hop-by-hop recovery.

4.4.1 Protocol overview

In RBC, intermediate nodes cache every fragment they receive. If a fragment is acknowledged,
it is deleted from the cache, otherwise it is repeated n times. RBC implements a special
cache queuing model capable of efficiently delivering out-of-order fragments, which is useful
for bursty communication. The protocol uses multiple (block) ACKs.

4.4.2 RBC weaknesses

Unlike hybrid NACK-ACK schemes (such as DTC), in a protocol that uses solely ACKs, the
receiver cannot request the retransmission of a fragment and the sender will never repeat
an acknowledged fragment. Therefore a false ACK on a lost fragment guarantees fragment
loss contrary to other schemes where recovery might be feasible, although it can have a big
overhead. Moreover, as RBC supports block acknowledgements, it is possible to acknowledge
every fragment stored by a node in one ACK. Upon reception of this packet, the node will
completely empty its cache, which can lead to fragment losses with high probability.

4.5 Other protocols

There are numerous other WSN transport protocols [11, 15, 14, 4, 7, 9, 3, 10] that provide
reliability. We analyzed all of them, however, due to space limitations, we cannot present
that analysis in details in this paper. In any case, they use the same techniques that we have

7



studied above in the context of the PSFQ, DTC, Garuda, and RBC protocols, and they all
have similar weaknesses.

5 Lessons learned

Both ACK and NACK-based schemes are vulnerable to injected control packets. In general,
ACK-based schemes are vulnerable to attacks against reliability, while NACK-based protocols
are only vulnerable to energy depleting attacks. For both methods, the multiple version is
significantly weaker. Moreover, if a protocol combines ACK and NACK packets – like SACK-
based schemes – then it inherits the problems of both methods.

In practice, attacks against reliability are more important than energy depleting attacks,
therefore NACK schemes may be preferred to ACK schemes. NACK schemes are also more
suitable for multi-hop communication. However, pure NACK-based schemes have two inher-
ited weaknesses, the lost last fragment and the lost full message problem.

It is relatively easy to solve the lost last fragment problem by informing the destination
node about the number of fragments in the message at the beginning of the communications
(e.g., in the first fragment). For the lost full message problem, we cannot identify a satis-
factory solution for the time being. Garuda was the only protocol that tried to tackle the
problem, however it led to a serious energy depleting attack. Perhaps this specific problem
requires a dedicated ACK-based technique, while NACKs should be used everywhere else in
the communication. It is important to note, that these problems only exist for event driven
applications. For continuous communications, NACK-based schemes can be directly applied,
as there are no first or last fragments.

Without adequate authentication – probably using cryptographic solutions – it seems im-
possible to fully protect a NACK-based protocol against energy depleting attacks. However,
the impact of these attacks can be kept low with some precautions. If multiple NACKs are
used, the loss window must be maximized and hop-by-hop or some kind of local retransmis-
sions should be used instead of end-to-end recovery.

It is hard to estimate an impact threshold where these types of energy depleting attacks
become dangerous. Ideally, the ratio between the number of injected packets and the number
of packets generated due to the injected packets should be constant, however, this objective
might be difficult to achieve, if possible at all. On the other hand, if this ratio is proportional
to the size of the network, then the attack can definitely be considered to be dangerous.

6 Conclusion

In this paper, we analyzed reliable transport protocols proposed for wireless sensor networks
with respect to their resistance to malicious control packet replay and injection attacks. Our
analysis shows that all of the proposed reliable WSN transport protocols have vulnerabilities.
In particular, control packet replay and injection attacks can lead to unrecoverable data loss,
jeopardizing the basic reliability requirement that these protocols are supposed to satisfy. In
addition, even if a protocol can recover from packet loss, the recovery overhead caused by
malicious control packets can be excessive, opening the doors for energy depleting attacks.

While these protocols were not designed to resist malicious attacks, and from this point of
view, they cannot be blamed to fail in hostile environments, we must emphasize that we are
not aware of any reliable WSN transport protocol that is designed with malicious attacks in

8



mind. Although authentication in lower layers would help to prevent most of the attacks we
described, it is likely to be an inefficient approach. The reason is that many WSN transport
protocols require intermediate nodes on a path to cache data fragments until they can be
sure that they have been delivered. Hence, control packets must be authenticated such that
these intermediate nodes can verify them, meaning that one needs a broadcast authentication
scheme. But those schemes are typically computationally expensive, and therefore, they
should not be used at lower layers to protect each and every packet. Thus, the problem
needs to be solved at the transport layer, by enhancing transport protocols with their own
security mechanisms. Our future work is concerned with proposing such security mechanisms
for WSN transport protocols.

Acknowledgment

The work described in this paper is based on results of the WSAN4CIP Project (www.wsan4cip.eu),
which receives research funding from the European Community’s 7th Framework Programme.
Apart from this, the European Commission has no responsibility for the content of this paper.
The information in this document is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

The first author has been further supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

References

[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A survey on wireless multimedia sensor
networks. Computer Networks, 51:921–960, 2007.

[2] Adam Dunkels, Juan Alonso, Thiemo Voigt, and Hartmut Ritter. Distributed tcp caching
for wireless sensor networks. In Proc. 3rd Annual Mediterranean Ad Hoc Net. Wksp.,
June 2730 2004.

[3] Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira, Ramesh Govin-
dan, Ben Greenstein, August Joki, Deborah Estrin, and Eddie Kohler. The tenet archi-
tecture for tiered sensor networks. In SenSys ’06: Proceedings of the 4th international
conference on Embedded networked sensor systems, pages 153–166, New York, NY, USA,
2006. ACM.

[4] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David E. Culler, Philip
Levis, Scott Shenker, and Ion Stoica. Flush: A reliable bulk transport protocol for
multihop wireless network. Technical Report UCB/EECS-2006-169, EECS Department,
University of California, Berkeley, Dec 2006.

[5] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[6] J. Lopez and J. Zhou. Wireless Sensor Network Security. IOS Press, 2008.

9



[7] Jeongyeup Paek and Ramesh Govindan. RCRT: rate-controlled reliable transport for
wireless sensor networks. In SenSys ’07: Proceedings of the 5th international conference
on Embedded networked sensor systems, pages 305–319, New York, NY, USA, 2007.
ACM.

[8] Seung-Jong Park, Ramanuja Vedantham, Raghupathy Sivakumar, and Ian F. Akyildiz.
A scalable approach for reliable downstream data delivery in wireless sensor networks.
In Proc. ACM MobiHoc 04, May 2426 2004.

[9] Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, and Konstantinos Psounis.
Interference-aware fair rate control in wireless sensor networks. SIGCOMM Comput.
Commun. Rev., 36(4):63–74, 2006.

[10] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz. ESRT: event-to-sink reliable trans-
port in wireless sensor networks. In Proc. ACM Mobihoc 03, pages 177–188. ACM, June
13 2003.

[11] F. Stann and J. Heidemann. RMST: Reliable Data Transport in Sensor Networks. In
Proc. IEEE SNPA 03, May 11. 2003.

[12] C.-Y. Wan and A. T. Campbell. PSFQ: A Reliable Transport Protocol for Wireless
Sensor Networks. In Proc. ACM WSNA 02, Sept. 28 2002.

[13] Chonggang Wang, Kazem Sohraby, Bo Li, Mahmoud Daneshmand, and Yueming Hu. A
survey of transport protocols for wireless sensor networks. IEEE Network, 20(3):34–40,
2006.

[14] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan Broad,
Ramesh Govindan, and Deborah Estrin. A wireless sensor network for structural mon-
itoring. In SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 13–24, New York, NY, USA, 2004. ACM.

[15] S. Gandham Y. G. Iyer and S. Venkatesan. STCP: A Generic Transport Layer Protocol
for Wireless Sensor Networks. In Proc. IEEE ICCCN 2005, Oct. 1719 2005.

[16] Hongwei Zhang, Anish Arora, Young ri Choi, and Mohamed G. Gouda. Reliable bursty
convergecast in wireless sensor networks. Comput. Commun., 30(13):2560–2576, 2007.

10


