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Abstract—We present a novel information theoretic approach
to make network coding based storage secure against pollution
attacks in sensor networks. The approach is based on a new
decoding algorithm which makes it possible to find adversarial
blocks using one more encoded block than strictly necessary for
decoding. Our scheme fits well to the requirements of sensor
networks, because it operates with adding very low computational
and communication overhead to source and storage nodes, only
the collector node needs to perform some additional computation.
Our approach does not apply cryptography, hence it works in
environments where no pre-shared keys, secure channels or PKI
are available, which is often the case in sensor networks.

I. INTRODUCTION

The principle of network coding [1], [2] has emerging

applications both in the field of wired and wireless networking

[3], [4], as well as in the field of storage systems or peer-to-

peer networks [5], [6]. These systems benefit from coding in

terms of throughput, efficiency, robustness and fault-tolerance.

Here we consider a special application of network coding,

a coding based storage system in sensor networks. In this

system data is produced by multiple source nodes, and is

stored encoded in multiple storage nodes [7], [8], [9], [5].

Storage nodes apply a random linear code on received data.

When a collector node needs to reconstruct the original data,

it obtains encoded data by downloading the content of some

selected storage nodes, and performs decoding. Previous work

show the benefits of the encoded storage system [10], [5].

While network coding has advantages in benign environ-

ments, its performance may seriously fall in the presence of

an adversary [11], [12], [13]. We present a scheme that resists

pollution attacks, meaning that our scheme makes possible

successful decoding even if some compromised nodes store

maliciously modified data. The novelty of our scheme is the

decoding algorithm that allows the collector node to identify

unmodified data blocks using one additional intact block, but

without the need to modify the encoding algorithm or adding

further overhead to the data.

Contrary to cryptographic integrity protection solutions, we

do not require the existence of PKI or secure channels between

the source nodes and the collector. Our scheme exploits the

special properties of sensor storage systems, hence it provides

better applicability in such systems than exisiting general

pollution attack defence techniques, however, its scope of

applicability may be smaller. Moreover, our solution is the

first practical secure network coding scheme that is applicable

when encoded blocks are composed of blocks originating from

different sources.

The algorithms presented here are based on the principles

introduced in [13]. Here we explore the theoretical limits of

the method and we propose a much more efficient decoding

algorithm than the one in [13].

The rest of the paper is organized as follows. Section II gives

the model of the storage system we assume and defines the

adversary as well. Section III describes the decoding algorithm

we propose, while the properties of the scheme are analyzed

in Section IV. A part of the decoding algorithm, the subspace

search is discussed in Section V. In Section VI we investigate

the performance compared to other solutions. Section VII

gives an overview of related work, while Section VIII con-

cludes the paper.

II. SYSTEM MODEL

We adopt the model of distributed storage for wireless

sensor networks from [5], however our algorithms may be

applicable for other storage systems as well. In this system

data produced by l independent data sources is stored in n
(n > l) storage nodes.

We assume that sources transmit equal size data blocks,

the l sources have data M1, M2, . . . Ml to send. Data blocks

can be parts of a large message, or independent data blocks.

We require that the number m of GF(q) symbols in a data

block be sufficiently large, because, as we will see, this is

an important security parameter of the system. Storage nodes

perform random linear network coding to produce encoded

data blocks (or shortly encoded blocks). The encoding is

performed using a Galois field of size q. Each Mi can be

seen as a vector of length m over GF(q). The encoded

block is a random linear combination computed from the data

blocks [14]. Formally, to produce an encoded block, the ith
storage node selects an encoding vector ei = [ei1 , ei2 , . . . , eil

]
of length l having its elements chosen uniformly at random

from GF(q). The encoded data block is then produced using

these values as coefficients: Ei =
∑l

j=1
eijMj. An encoded

block consists of an encoding vector and the corresponding

encoded data: ei||Ei. Storage nodes select encoding vectors

independently for each encoded data block.

An encoded block ei||Ei is a linear equation, with co-

efficients ei1 , ei2 , . . . , eil
and variables M1, M2, . . . , Ml. We

denote such an equation Zi = (ei, Ei). Without confusing



the reader, let us also denote by Zi the l + m length vector

Zi =
[

ei, Ei

]

.

In a benign environment, the collector node obtains the

original message by downloading l equations from l randomly

selected storage nodes and by simply solving a system of

linear equations (s.l.e.). As coefficients are chosen randomly,

according to [15], the linear independence of equations holds

with probability

pq =

l
∏

i=1

(

1 −
1

qi

)

,

which is sufficiently large for a properly chosen field size

q. E.g. if q = 28, l = 10, then pq = 0.996. Our decoding

algorithm described later first finds a set of unmodified (intact)

equations then computes the solution of this intact s.l.e.

The encoded data block is the unit in which the collector

may download data. We do not distinguish random trans-

mission errors and malicious modifications of the transmitted

data. However, common error detection and error correction

techniques applied in the lower layer against channel errors

are assumed to ensure the reception of unmodified blocks as

well. The collector node applies our decoding algorithm to

recover the data sent by the source nodes in a way similar to

decoding of rateless codes.

We further assume that the source nodes and the collector

do not share a key, neither have the possibility to establish a

secure channel.

A. Adversary

We consider an adversary who compromises some selected

storage nodes, and reads and modifies the contents of them.

We do not limit the number of nodes the adversary may

compromise, but note that at least l + 1 intact nodes are

required anyway for successful recovery. By compomising

more nodes the adversary can also increase the error prob-

ability of the decoding. For detailed analysis we refer to

Section IV. We assume the adversary can not compromise

sources, but she may compromise the communication links

between the sources and the selected storage nodes. It gives

more possibility to the adversary, but does not influence the

effect of the attack. The adversary has no information about

the set of nodes from which the collector downloads data.

This model of adversary is realistic in practice, because

contrary to source nodes, storage nodes are exposed to attacks

for an extended period of time.

III. ATTACK-RESILIENT DECODING

The novelty of our scheme is the algorithm of decoding

that assures the attack-resilient property, which is achieved

by using one more encoded block than strictly necessary for

data reconstruction. The order and numbering of blocks are

not relevant, so we number the equations from the collector’s

point of view. Let Z∗

i denote the ith block (equation) received

by the collector, either it is from a compromised node or not.

The collector can reconstruct the original blocks if it is able to

collect l linearly independent equations, and if it can be sure,

that all of these l equations are intact.

The main difficulty of the decoding is to find the intact

equations among the received equations. We show, how the

(l+1)-st intact equation is eligible to find the l intact equations
in the received set of encoded equations.

Here we explain the principle of our algorithm. An encoding

vector and the corresponding encoded data form a vector from

the l + m dimensional vector space. Each block, either intact

or adversarial, is a vector from that space. However, intact

and adversarial equations can be distinguished upon whether

they belong to a specific subspace. Decoding exploits the fact

that intact equations span an l dimensional subspace in the

l + m dimensional vector space, because all intact equations

are linear combinations of the same l base equation, which we

get by tagging the ith data block with the ith unit vector as

encoding vector. Each intact equation belongs to that specific

subspace, and each element of this subspace can be treated

as an intact equation. We take advantage of the fact that it is

unlikely that l + 1 vectors taken from the l + m dimensional

space fall into the same l dimensional subspace if they are not

all intact equations. Hence, when l+1 equations that belong to

the same l dimensional subspace are found, it is reasonable to

assume that all these equations are intact. Random coding and

the random order of downloading equations together assure

this property. We further exploit that the (l + 1)-st intact

equation is a linear combination of the formerly received l
equations. We use this idea to find the intact equations in a

set that contains both intact and adversarial equations.

The pseudo-code of the decoding algorithm is presented as

Algorithm 1. The algorithm finds a set S that contains l intact
equations. Equations are received while the rank of matrix

Z, formed by the received equations, increases (lines 5-8).

The (l + 1)-st intact equation certainly does not increase the

rank, because it is a linear combination of the first l intact

equations. If the last received equation does not increase the

rank, we can assume that it is the (l + 1)-st intact equation
received. In this case, the linear combination of all received

equations (coefficient vector λ) that produces the last equation
of the already received equations is computed (line 9). Set S is

formed of the equations that have non-zero coefficient in this

linear combination (lines 10-14). If S has less than l elements,

the last received equation is not innovative and it is dropped

(line 4), and the operation continues (loop of lines 3-15). If S
has exactly l elements, we can assume that the last received

equation is the (l + 1)-st intact equation, and S contains the

first l intact equations received. In this case we return this

set as an intact s.l.e. (lines 16-18). Otherwise, we cannot say

anything about which equations are intact, because intact and

adversarial equations together span the subspace that the last

received equation belongs to, and its dimension is larger than

l. In this case we start searching the proper subspace in the set

of received equations (lines 18-21). We describe the algorithm

of this subspace search later in Section V, but we note that it

is unlikely that an intact equation falls into a subspace that is

not spanned by intact equations only, hence this case happens



rarely.

Algorithm 1 Decoding

1: download Z∗

1

2: let i = 1; Z =
[

Z∗

1

]

; S = {}
3: while |S| < l do
4: let Z

′ = Z; S = {}
5: repeat

6: download Z∗

i+1

7: let i = i + 1; Z = Z
′; Z

′ =
[

Z
T Z∗T

i

]T

8: until rank(Z) = rank(Z′)
9: let λ = linsolve(xZ = Zi)
10: for j = 1 to length(λ) do

11: if λj 6= 0 then

12: let S = S ∪ Zj,1...l+m

13: end if

14: end for

15: end while

16: if |S| == l then
17: return S
18: else

19: S = subspace search(Z)
20: return S
21: end if

IV. ANALYSIS

First, we investigate the performance of the decoding algo-

rithm assuming no subspace search is required, and analyze

the subspace search algorithm separately.

a) Security.: Let us assume for a moment that the collec-

tor downloads at most l adversarial blocks. Later we discuss

the cases when this assumption does not hold. The adversary

is successful, if decoding gives an erroneous result, which

happens if the returned set S contains adversarial equations.

From the operation of the algorithm it follows that this can

only happen if the last received equation belongs to an l
dimensional subspace spanned by l not only intact equations.

Let us denote by 〈I〉 the subspace spanned by intact equations

and 〈R〉 the subspace spanned by received equations at the

collector. Figure 1 illustrates the situation.

First, we investigate the case when the last received equation

is intact. The error probability in this case is the probability

that this intact equation belongs to an l dimensional subspace

of 〈R〉. We show that this probability is 0. The last received

equation belongs to 〈I〉 for sure, thus decoding is erroneous,

if the last received intact equation falls into the intersection

of 〈R〉 and 〈I〉. This intersection is a subspace of the l
dimensional subspace of intact equations. Consequently, the

last received equation is a linear combination of the intact

equations received, thus set S contains intact equations only.

If S contains less than l equations the last equation is not

innovative and is dropped, otherwise decoding is successful,

hence the error probability is 0 when the last equation is intact.

We now consider the case, when the last received equation

is not intact. Erroneous result can occur, if the last equation

Fig. 1. Illustration of subspaces

belongs to an l dimensional subspace of 〈I〉 ∪ 〈R〉. We

investigate the probability of this event. Each l size subset of

the received equations spans such a subspace. Recall that the

number t′ of adversarial equations received is at most l. If the
adversary does not know intact equations, adversarial blocks

can be treated as random vectors. In the worst case situation,

l intact and l − 1 adversarial blocks were received before

the lth adversarial block arrives. The probability that the last

adversarial blocks belongs to a specific l dimensional subspace

is 1/qm. If all subspaces were independent, the probability that

it does not belong to any would be (1 − 1/qm)(
r

l), where r
denotes the number of received blocks. Hence an upper bound

for the error probability is:

Perr ≤ 1 −

(

1 −
1

qm

)(r

l)
.

This error probability is practically very small. As an example,

consider q = 28, that is each byte forms exactly one symbol,

let the size m of the encoded data be small, e.g. m = 64, the
number of data blocks l = 100, and assume that the adversary

successfully inserts 99 adversarial blocks. In this case, the

error probability is less than 2−300.

If the adversary can attain intact equations before construct-

ing adversarial blocks, she can enforce incorrect decoding by

selecting adversarial blocks from a subspace that contains the

subspace of eavesdropped equations. Even in this case, due

to the randomness of coefficients, and to the random order

of downloading, at least one dimension of the subspace is

unknown, thus the error probability can not be larger than

1 −
(

1 − 1

q

)(r

l)
. This can be made arbitrarily small by using

a large field size q. Note that this error probability does not

depend on the computational strength of the adversary.

b) Computational cost.: The computational cost of the

decoding is solving two s.l.e.’s in GF(q). One s.l.e. is solved

to identify intact equations (line 9), and another to reconstruct

original data when a set of l intact equations is obtained. Note,
that the computation of the rank does not require additional

effort, because the Gaussian elimination can be performed on

a newly received equation at once. If it results in a zero vector,

the s.l.e. λ[Z] = [Z∗

i ] is solved, otherwise the next equation is

received and processed similarly. If not all received equations



are innovative, and thus line 9 of the decoding algorithm

runs several times, the computational effort does not increase

notably as there is no need to restart the Gaussian elimination

after dropping the last equation.

c) Communication overhead.: The algorithm eventually

stops when the (l + 1)-st intact equation is received. It means

one encoded block overhead, as l encoded blocks are needed

in any case for successful decoding. If we take encoded blocks

as the unit of coding, it can be proven that no attack detection

or recovery from attack is possible using fewer blocks; in this

sense our scheme is optimal.

Theorem 1. Assuming the described encoding algorithm, no

attack detection or recovery is possible using less than l + 1
intact encoded blocks.

Proof: Having l′ intact encoding vectors, they are con-

sidered as rows of a matrix G of size l × l′. This matrix

determines an (l′, l) linear code applied to the transmitted data

M = [M1, M2, . . .Ml], which is considered as a vector with l
elements. It is known [16] that no error detection or correction

is possible, if the Hamming distance of the code is less than 2.

The linear code G (assuming independent rows) has Hamming

distance more than 1 only if l′ > l, that is at least l +1 intact

encoding vectors are required to form such a matrix G that

corresponds to a code with Hamming distance 2.

This property has importance, because in sensor networks

the communication has high cost. The overhead of our scheme

is thus one additional block, the size of this additional block

is (l + m) log2 q.
d) Error probability.: The main constraint of our scheme

is the limitation on the number of adversarial blocks the

collector may download. If we allow the adversary to com-

promise more than l nodes, l+1 adversarial equations may be

considered as an intact s.l.e. by the collector. In this case it can

not be assured that the collector does not download more than

l adversarial equations. This introduces an error probability

Perror ≤

(

t
l+1

)

(

n−t
l+1

)

+
(

t
l+1

) ,

where n is the number of storage nodes, and t is the number

of compromised nodes. There are at most
(

t
l+1

)

seemingly

intact s.l.e.’s (l + 1 size set of adversarial equations indicated

as intact when decoding) and exactly
(

n−t
l+1

)

intact s.l.e’s. The

error probability is the ratio between the number of seemingly

intact s.l.e.’s and the number of all intact and seemingly intact

s.le.’s. This error probability is practically small, e.g. if n = 50,
l = 15, t = 20, then Perror ≈ 3.3 · 10−5.

This error probability can be reduced to 0 if the decoded

data contains authentication information, or with the assump-

tion t < n/2. In the latter case, the following method can

be applied: It can be exploited that the data sent by the

source satisfies at least n/2 equations, while adversarial data

satisfies at most t equations in the system. Using the decoding

algorithm the collector can find a seemingly intact set, and then

substitutes the result into further equations until all together

more than n/2 equations are satisfied. If all equations are

downloaded, but the obtained result fails to satisfy n/2 of

them, the result is erroneous and all equations that this result

satisfies are surely adversarial. After dropping the adversarial

equations, the process can restart until the correct data is

obtained.

V. SUBSPACE-SEARCH

e) Probability of occurrence.: We now discuss the cases

when computing the subspace fails, hence search is required

during decoding (the decoding algorithm runs line 19). This

process is needed if set S contains more than l equations. This
can happen, if the last received equation belongs to a more

than l dimensional subspace spanned by the already received

equations. As we have seen already, this can only happen,

if the last received equation is adversarial. If d equations

are already received, they span
(

d
δ

)

different δ dimensional

subspaces. Applying the same considerations as above, the

probability that an adversarial equation falls into a given δ
dimensional subspace is

Pcl =
1

ql+m−δ
.

This probability can be made arbitrarily small by choosing a

sufficiently large field.

A powerful adversary who can attain several intact equations

can make this probability higher in the following way. She

chooses a δ dimensional subspace from the l+m dimensional

space and selects the adversarial equations from that subspace.

In this case, the dimension of the subspace that received equa-

tions span (the rank of matrix Z) can not be higher than l+ δ.
This attack has significance, if δ ≥ l and the intersection of the
subspace of intact equations and the subspace that adversarial

equations span is not trivial, because, as the algorithm drops

all further adversarial equations as irrelevant equations, the

number of adversarial equations in Z may not increase above

δ, if δ < l. In the following, we assume δ ≥ l. If the dimension

of the intersection is α, the rank eventually stops to increase

after receiving l+δ−α equations, because the dimension of the

subspace that received equations span can not be larger than

l+δ−α. This implies that if there are already l+δ−α equations

received, a newly received equation eventually falls into their

spanned subspace, thus we cannot gain any information of

which equations are intact by solving the s.l.e. of line 9, and

a search of the subspace is required. It follows, that the attack

can force the search with the highest probability if δ is small

and α is large. Of course, δ ≥ l and α ≤ l must hold. If α = l
and δ = l + 1 (δ = l would mean that the adversary inserts

intact equations) and there is at least one adversarial equation

received, subspace search is eventually required.

To perform such an attack the adversary has to be powerful

enough to be able to eavesdrop at least α intact blocks and

combine their contents with her own δ−α equations to produce

the adversarial equations.

Of course, δ is also bounded by the dimension of the

space the equations are selected from, because even if all

adversarial and intact equations are linearly independent, the



dimension of the spanned subspace can not be larger than

l + m, that is l + δ − α ≤ l + m. Consequently, if there are

l + m already received equations, the next received equation

eventually falls into their spanned subspace without revealing

any information about which equations are intact, and the

search of the subspace is required. It means that if the number

of adversarial equations in Z reaches m, intact equations can

be found only by searching. However, the number of blocks is

usually much less then the size of a block, thus l ≪ m holds,

while the adversary is limited to insert l blocks.
Note, that the subspace search process does not effect the

security property of the scheme. The adversary may enforce

the collector to perform the subspace search, but she still

can not compromise the decoded data. It influences only

the computational effort the collector needs for successful

decoding.

f) Algorithm.: An algorithm similar to the recovery pro-

cess proposed in [13] can be applied for subspace search.

The algorithm finds the l + 1 intact equations by exhaustive

search among all received equations. This is done by applying

the same principle as before, that is l + 1 equations that

belong to the same l dimensional subspace are treated as intact

equations. This can be done by checking all possible l+1 size

subsets of the received d equations, whether the rank of the

matrix Z of size (l+1)×(l+m) they form is l. If rank(Z) = l,
the search is ready, Z contains intact equations only. If no such

subset is found, further equations are needed.

Algorithm 2 gives the pseudo-code of subspace search.

Equations are received until the search succeeds (line 4). All

possible l + 1 size subsets of equations are checked whether

they form an l dimensional subspace (lines 6-11). In each

iteration only selections containing the last received equation

are checked to avoid checking the same subset multiple times.

If no such subset is found, a new iteration is performed.

Algorithm 2 Subspace-search

1: let i = number of already received equations

2: while true do

3: let i = i+1

4: download Z∗

i

5: let Z
′ =

[

Z
T, Z∗T

i

]T

6: for every possible selection S
′ of l rows of Z do

7: let S
′

i =
[

S
′T, Z∗T

i

]T

8: if rank(S′

i) = l then
9: let S = {all rows of S

′}
10: return S
11: end if

12: end for

13: end while

g) Searching complexity.: Due to the exhaustive search,

the process is computationally expensive. Assume that when

searching starts, Z has d rows, and the algorithm stops when

D equations are received. The last iteration of the algorithm

is not executed fully, on average the half of the subsets needs

to be investigated until the intact set is found. From this it

follows that subspace search requires

1

2

(

D

l

)

+
D−1
∑

i=d

(

i

l

)

(1)

rank computations. The function of (1) is exponential in D,

but there are strong reasons to assume that the subspace

search problem is computationally hard, and consequently

it is presumably theoretically impossible to find an efficient

algorithm. The following consideration supports this intuition.

Let us first formalize the problem:

Problem 1. Given a matrix Z of size d × (l + m), with d >
rank(Z) ≥ l + 1, does there exist a vector x having exactly

l + 1 non-zero elements such that xZ = 0?

Here d corresponds to the number of received equations. If

x exists, l +1 rows of Z are found that span an l dimensional

subspace, in other words, these rows form a matrix with rank

l, so the non-zero elements of x indicate intact equations in

Z. The problem refers to one iteration of the algorithm.

From the theory of linear algebra, it is known that the

equation xZ = 0 has many solutions, more precisely, x
belongs to a subspace of dimension β = d− rank(Z)−1. We

consider a basis B of that subspace, consisting of β linearly

independent vectors. Let B be a matrix of size β × d. As B

is a basis of the solution of the equation Zx = 0, any linear

combination of rows of B results in a vector x containing

the coefficients for the equations, for which the corresponding

linear combination results the zero vector. We are interested in

the case when vector x has exactly l + 1 non-zero elements,

consequently Problem 1 is equivalent to the question: Does

there exist a vector c such that cB has exactly l + 1 nonzero

elements?

This is the problem of finding the minimum distance of a

linear code that is known to be NP-complete [17], [18], [19].

h) Accelerated computation.: Although the above rea-

soning implies that we can not hope to find a polynomial-

time algorithm for the subspace search problem, a considerable

acceleration of our proposed algorithm is possible.

The algorithm essentially checks for each possible l + 1
size selection of rows of Z, whether the formed matrix has

full rank. The size of the matrix the computation is performed

on is (l +1)× (l +m). Assuming a large field and a large m,

this may take considerable time. It is possible to get the same

result while working with smaller matrices in the following

way.

We have seen, that we can equivalently investigate the

number of zeros in the product x = cB. To decide if it is

possible to have d−l−1 zeros in x we check for each d−l−1
size selection of elements of x whether they can result all zero

for any vector c. Formally, let π be a d− l−1 size selection of

d elements. Let us select the columns of matrix B according

to the same selection: Bπ. If the linear equation

cBπ = 0 (2)
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Fig. 2. Computation times of our decoding algorithm and the former recovery
algorithm of [13]

has a non-trivial solution cπ, vector x = cπB has at most

l + 1 non-zero elements. If equation (2) does not have non-

trivial solution for any possible selection π, the iteration is

not successful, further equations are needed. It is known

from linear algebra that equation 2 has non-trivial solution,

if rank(Bπ) < β. This method requires the same number
(

d
d−l−1

)

=
(

d
l+1

)

of matrix rank computations as before, but

the size of matrix Bπ is only β×(d−l−1), which substantially
accelerates computation. The computation of matrix B is

efficient, it is equivalent to solving a s.l.e.

VI. PERFORMANCE

i) Computation.: Although the subspace search is com-

putationally expensive, it does not affect the performance of

the scheme when the adversary has limited capabilities, and

despite the high complexity it remains in the domain of fea-

sibility in many other practical cases as well. For comparison

we implemented both the recovery algorithm presented in

[13] and the novel decoding algorithm. The complexity of the

novel algorithm is polynomial in the majority of the cases,

and still remains in the domain of feasibility when the former

algorithm becomes computationally expensive. Figure 2 shows

an example result of the comparison. The computation was

performed on a 2.6 GHz desktop computer and in Matlab

environment. The parameter setting of the presented figure

is n = 100, l = 10, q = 28, m = 1000, and a worst-case

adversary was assumed: δ = l + 1, α = l. It is clear from the

figure that the novel algorithm operates with smaller deviation

and remains feasible in the case of stronger attacks as well.

j) Communication.: We present a comparison of the

communication overhead of our scheme and an alternate

scheme using digital signatures. However, note that using

digital signatures introduces additional overhead, that we do

not consider here. For the digital signature scheme, we assume

that the size in bits of the signature is s, and that on average

p (p > 1) equations need to be downloaded to get an intact

equation. Source nodes send their raw data to γ storage nodes

out of the n available nodes, where γ = 5(n/l) ln(l) to

ensure successful decoding [5]. The overall overhead is then

lγs + lps bytes, where the first term corresponds to the

overhead of transmitting raw data to the storage nodes, while

the second term refers to the additionally downloaded bytes

when reconstructing data.

Our encoding scheme requires one more intact equation to

download, so the overhead is pL, where L is the bitlength

of one packet: L = (l + m) log2 q. From this it follows, that

the overhead of our coding scheme is less than that of digital

signatures if L < l
(

s + γs
p

)

. E.g. if s = 40 bytes, n = 50,

l = 15, p = 1.8, our scheme performs better than the signature

based solution if L < 15600 bytes. The typical size of sensor

data is much smaller than this value. In larger systems this

threshold further increases. Furthermore, in our scheme source

nodes do not have any overhead, only the collector node does,

but that node is often a powerful base station.

VII. RELATED WORK

Securing network coding based systems has two main ap-

proaches: information theoretic and cryptographic. A summary

of network coding related security threats and solutions is

available in [20]. First we show some information theoretic

results. In [21] a rate-optimal code is introduced for securing

network coding. In that scheme redundant bits are added to

the sent data, and decoding relies either on a secure channel

or on publicly known information. The authors of [21] assume

a more general adversary, and allow adversarial blocks to be

encoded together with intact ones. Our scheme is less general,

instead it is tailored for the requirements of sensor networks.

It does not need secure channels or public information, and

contrary to the encoding of [21] it can be applied when there

are more than one sources. The same holds for the error

correction encoding scheme of [22]

The most similar approaches to the one presented here are

[23] and [13]. However, [23] proposes only an attack detection

scheme. We introduce a more efficient decoding algorithm

than in [13], and give a more in-depth analysis of the problem.

The other possible approach is to apply cryptography for

securing coding based systems. Cryptographic functions ap-

plied to encoded data need to have homomorphic property,

which means that a hash value or a digital signature of an

encoded block can be computed from the corresponding values

computed on raw data. The verification of an encoded block is

similar to the uncoded case. The advantage of cryptographic

solutions is that blocks can be verified one by one, while

our scheme can verify blocks only when decoding becomes

possible.

In the case of homomorphic hash function, the collector

computes the hash value of the encoded block from the

hashes of raw data received through a secure channel from the

sources. It also computes the hash of the received block, and

if the two values match, the block is verified. Homomorphic

hash functions are proposed in [24] and in [25]. The drawback

of these schemes is that they are computationally expensive,



and they require a secure channel between the sources and the

collector. We do not assume such secure channel.

For the homomorphic digital signatures [26], [27], [28],

[29], [30] the source (or intermediate nodes) can construct

a valid signature on the encoded block using the signatures of

the raw data without accessing the private key. The verification

of the signature is possible for the collector in the usual way,

assuming a PKI is available. As we have seen, digital signa-

tures require per block overhead and additional computations

at both the source and the collector. Moreover, if there are

multiple sources in the system - as in our applied model -

all source have to use the same signing key, that introduces a

difficult key management problem.

VIII. SUMMARY

We proposed a novel decoding algorithm for coding based

sensor storage that is able to correctly decode original data

even if some encoded blocks are maliciously modified or

inserted by an adversary. Our scheme does not require any

modification at the sources or storage nodes, instead the

collector uses one additional block by decoding. The decoding

algorithm has linear complexity in most cases, however a

powerful adversary has a chance to force more costly op-

erations at the collector. We investigated the probability and

the computational complexity of this latter case. By carefully

selecting the parameters, the probability of computationally

hard operations can be made sufficiently small in practice

(≤ 1

qx , where q is the field size of network coding and x
is at least 1).
The security analysis shows that, with proper parameters,

the scheme is at least as secure as cryptographic approaches.

Not using cryptography, our scheme does not rely on the

existence of a PKI or a secure channel.

Our scheme is developed applicable in sensor networks in

the first place, but other storage systems like peer-to-peer

content sharing may also benefit from it. Performance analysis

results confirms that the scheme is applicable in practice. This

method is the first attempt that gives practical security solution

for a multi-source network coding scenario.
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