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in Coding Based Distributed Storage Schemes
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Abstract—We address the problem of pollution attacks in
coding based distributed storage systems. In a pollution attack,
the adversary maliciously alters some of the stored encoded
packets, which results in the incorrect decoding of a large part
of the original data upon retrieval. We propose algorithms to
detect and recover from such attacks. In contrast to existing
approaches to solve this problem, our approach is not based on
adding cryptographic checksums or signatures to the encoded
packets, and it does not introduce any additional redundancy
to the system. The results of our analysis show that our
proposed algorithms are suitable for practical systems, especially
in wireless sensor networks.

Index Terms—Network level security and protection, sensor
networks, distributed data storage, network coding, pollution
attack, integrity protection

I. INTRODUCTION

IN coding based distributed storage systems, data is stored

in encoded packets in a distributed fashion, such that

each encoded packet is computed by combining multiple data

packets, according to the idea of linear network coding [1],

[2]. In order to retrieve the original data, a sufficient number

of encoded packets must be collected and decoded together.

Such coding based distributed storage systems have important

emerging applications, e.g. in peer-to-peer systems and in

wireless sensor networks (WSNs).

We consider multiple, distributed sources that generate data

that must be stored efficiently in multiple storage nodes, each

having constrained communication, computation, and storage

capabilities. Storing encoded data, instead of raw data, can

help to increase the efficiency of the system. In [3], [4], for

instance, the following scheme is proposed: There are k source

nodes, each producing a single data packet of interest (per

time epoch), and there are n storage nodes that are used as

a distributed memory for the k data packets. Each storage

node can store a single data packet. Instead of storing raw

data packets, each storage node stores a linear combination of

a subset of them. The random coding techniques (distributed

erasure codes, fountain codes) introduced in [4], [5], [6] ensure

that, for appropriately selected parameters, a collector node

can reconstruct all the k data packets with high probability by

downloading the encoded packets from any k storage nodes

and solving a system of linear equations (s.l.e). Thus, the

collector node can retrieve the interested data from k nearby

nodes, which results in decreased delay in data reconstruction

and lower traffic load in the network.
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While coding may increase the efficiency of distributed

storage systems in a benign environment, it also has a potential

problem in hostile environments, where an adversary may

attack the storage nodes. In particular, the problem that we are

interested in this paper is the so called pollution attack [7],

whereby the adversary modifies some of the stored encoded

data, which results in erroneous decoding of a large part of the

original data upon retrieval. Note that these coding schemes

mix (typically, linearly combine) blocks of the original data,

therefore, a single corrupted encoded block can affect the

decoding of multiple data blocks. This amplification effect of

the pollution attack is particularly annoying and undesirable.

Our main contribution in this paper is a novel information

theoretic approach to counteract pollution attacks in cod-

ing based distributed storage systems1. Compared to other

approaches in the same vein, we do not add redundancy

to the data packets, but rather, we take advantage of the

inherent redundancy provided by the coding scheme itself.

This redundancy comes from the fact that the content of each

storage node corresponds to the same data block vector. To

the best of our knowledge, our proposal is the first error

detection/correction method that does not require any new

functionality at the source nodes or at the storage nodes. The

price of this property is only a slightly increased communica-

tion overhead for the attack detection. On the other hand, the

attack recovery requires more computational effort from the

collector.

While the scheme we describe is general, we illustrate

its benefits in the context of WSNs where requirements on

resource consumption are the most demanding. The principles

of our algorithms can be extended also for network coding

based P2P file distribution systems, because the algorithms

and analysis do not exploit any specialties of WSNs that

would hinder their application in other storage systems. We

propose algorithms for pollution attack detection and also

for recovery from such attacks. In order to measure the

performance of our algorithms, we calculate the probability

of success together with the complexity of the algorithms.

Two complexity measures are considered: the computational

complexity, measured in the number of s.l.e.’s that need to

be solved, and the communication complexity, measured in

the number of encoded packets that need to be downloaded

when data is retrieved from the distributed storage system.

We showed the optimal communication and computational

complexity of the proposed attack detection algorithm in the

1The first version of this work was presented in [8]. Here we apply a
stronger adversary model and develop further algorithms for the recovery
problem.
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Fig. 1. System model.

applied system model. We investigate the attack recovery

problem as well. We show an algorithm with very low compu-

tational complexity. We also propose a recovery algorithm with

optimal communication complexity, which has also feasible

computational complexity for small to medium size practical

systems. For larger systems, we propose a recovery algorithm

that makes a trade-off between the two complexity measures.

We also introduce an extension of the recovery algorithms to

reduce the false negative error probability in the case of a

strong adversary.

The remainder of the paper is organized as follows: In

Section II, we introduce the system model and the adver-

sary model. In Section III, we describe our proposed attack

detection algorithm, together with the analysis of its error

probability and complexity. In Section IV, specific recovery

algorithms are proposed and analyzed. Section V gives the

extension of the recovery algorithms. In Section VI, some

related works are discussed, and finally, in Section VII, we

draw some conclusions. The appendix contains some addi-

tional computations and results.

II. MODEL

A. System model

The general model of the distributed storage systems that

we consider in this paper is taken from [4] and it is illustrated

in Figure 1. The system consists of k source nodes, n storage

nodes, and one or more collector nodes. Note that these are

roles, and therefore, the sets of source nodes, storage nodes,

and collector nodes may overlap. Only the collector node

is assumed to be a powerful computer (base station), while

source and storage nodes may be low capacity devices.

Each source node i generates a data block Xi, and transfers

it to some randomly selected subset of the storage nodes. Each

storage node j computes a random linear combination of all

the data blocks that it receives; the result is a single code

block Yj . Formally, we can write that Yj = XGj , where X =
(X1, X2, . . . , Xk) is the row vector of all the data blocks, and

Gj = (g1j , g2j, . . . , gkj)
T is a column vector, the non-zero

elements of which are the random coefficients used in the

linear combination. Here, gij ∈ GF (q) for all i = 1, 2, . . . , k
and j = 1, 2, . . . , n, and for some q. Each storage node j stores
the pair Zj = (Gj , Yj), which represents the equation Yj =
XGj . The entire system is represented by the system of linear

equations (s.l.e.) Y = XG, where Y = (Y1, Y2, . . . , Yn) is the
row vector of all code blocks, and G = (G1, G2, . . . , Gn) is a

k1
1

m

X1 X2 Xk

. . .

x

n1

Y1 Y2 Yn

. . . . . .

..
.

n1

G1 G2 Gn

. . . . . .

1

k

Gj

Yj

Zj

X Y

1

m

G

Fig. 2. Illustration of the system of linear equations representing the entire
distributed storage system.

k×n matrix that contains the coefficient vectors in its columns.

Matrix G is also called generator matrix.

For appropriately selected values of k and q, any k×k sub-

matrix of G is non-singular with high probability. According to

Theorems 1 and 2 in [4], the probability of non-singularity is at

least (1 − k
q
)c2(k), where c2(k) → 1, if k → ∞. Larger values

of q increase the probability of successful decoding, but makes

the overhead of storage higher. [4] also shows that storage

nodes required to store O(ln k) coefficients. E.g. if k = 100
and q = 220, the probability of singularity is ≈ 10−4, while

the average overhead of a storage node is 92 bits. Therefore,

the collector node can reconstruct all the data blocks with high

probability by downloading the equations from any k storage

nodes and solving the obtained s.l.e. for X . In the rest of the

paper, we assume that this property of G holds.

In fact, each data block Xi can itself be a column vector

of m symbols (x1i, x2i, . . . , xmi)
T, where xℓi ∈ GF (q) for

all i = 1, 2, . . . , k and ℓ = 1, 2, . . . , m. In that case, each

code block Yj is also a column vector (y1j , y2j, . . . , ymj)
T of

m symbols in GF (q). The linear combination Yj = XGj is

computed in a symbol-by-symbol manner, meaning that yℓj =
∑k

i=1 xℓigij for all j = 1, 2, . . . , n and ℓ = 1, 2, . . .m. Thus,

one can think of X and Y in the s.l.e. Y = XG as matrices

of size m×k and m×n, respectively. This view is illustrated

in Figure 2.

B. Adversary model

We assume that the adversary has access to t storage nodes,
and she can observe and modify the equations stored by them.

This means that if the adversary has access to storage node

j, then she can modify both Gj and Yj stored by node j. Let
G∗ = G + ∆G and Y ∗ = Y + ∆Y be the modified generator

matrix and the modified code block vector after an attack,

where the modifications made by the adversary are contained

in matrix ∆G and vector ∆Y . We further allow the adversary

to compromise the communication links of the t storage nodes.
It gives more possibility to the adversary, but does not extend

the possible effect of the attack. For simplicity, we refer to

nodes that store modified data as compromised nodes, and not

distinguish them upon the way of modification.

Note that the adversary has no access to the source nodes,

rather she aims at compromising the output of the storage sys-

tem. The rationale behind this assumption is that storage nodes

are exposed to attacks for an extended period of time, whereas
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the source nodes must be attacked during the limited time

period of data generation. Data distribution from the source

nodes to the storage nodes typically takes place on a wireless

channel, that is exposed to various attacks. Accordingly, our

applied model of adversary is realistic in most cases.

Recall that when reconstructing the data blocks, the col-

lector node chooses the k storage nodes, from which it

downloads the k linear equations, randomly. Therefore, the

adversary has no information on which storage nodes will

be chosen when she performs the attack. At the same time,

the collector node does not know which storage nodes are

compromised. In the sequel, we will assume without loss of

generality that the adversary randomly chooses the t storage

nodes to be compromised, and the collector node downloads

the equations of the first k storage nodes, where the order of

the storage nodes is defined randomly by the collector node.

Thus, the set of equations downloaded by the collector node is

Z∗
1..k = (G∗

1..k, Y ∗
1..k), where G∗

1..k = (G∗
1, G

∗
2, . . . , G

∗
k) and

Y ∗
1..k = (Y ∗

1 , Y ∗
2 , . . . , Y ∗

k ).
Let us now investigate the effect of an attack. The collector

node solves the s.l.e. Y ∗
1..k = XG∗

1..k for X , and obtains the

result X∗ = Y ∗
1..k(G∗

1..k)−1. Let us suppose for the moment

that the adversary modifies only the code blocks, meaning that

G∗ = G. In this case, X∗ = Y ∗
1..k(G1..k)−1. The modification

induced by the attack in the decoded data blocks can be

computed as follows:

∆X = X∗ − X

= Y ∗
1..k(G1..k)−1 − X

= (Y1..k + ∆Y1..k)(G1..k)−1 − X

= ∆Y1..k(G1..k)−1

where in the last step we used that Y1..k(G1..k)−1 = X . This

means that (a) if a given row of ∆Y1..k contains only zeros,

then the corresponding row of ∆X will contain only zeros too,

and (b) a non-zero element in a given row of ∆Y1..k will affect

the entire corresponding row in ∆X . Thus, a modification

made by the adversary in a given row in any of the first k
code blocks will, in general, affect all decoded data blocks,

but the effect will be limited to the corresponding row. This

is illustrated on the left hand side of Figure 3.

Now, let us suppose that the adversary modifies only the

coefficient vectors, meaning that Y ∗ = Y . In this case, X∗ =
Y1..k(G∗

1..k)−1. If at least one of the first k coefficient vectors

has been modified by the adversary, then G∗
1..k 6= G1..k, and

thus, (G∗
1..k)−1 can be completely different from (G1..k)−1.

Therefore, in general, such a modification affects all decoded

data blocks in every row. This is illustrated on the right hand

side of Figure 3.

If the adversary modifies both the coefficient vectors and the

code blocks, then these effects are combined. In the general

case, the modification induced by the attack on the decoded

data blocks can be derived as follows:

X + ∆X = (Y1..k + ∆Y1..k)(G∗
1..k)−1

(X + ∆X)G∗
1..k = Y1..k + ∆Y1..k

X∆G1..k + ∆XG∗
1..k = ∆Y1..k

∆X = (∆Y1..k − X∆G1..k)(G∗
1..k)−1

where in the second step we used that G∗
1..k = G1..k+∆G1..k

and XG1..k = Y1..k.

The above formulas imply the following observation. If

∆Y1...k is controlled by the adversary, meaning that all

downloaded equations are from compromised nodes, the value

of ∆X can be chosen by the adversary. The adversary can

reconstruct X from the contents of the nodes, so she is able

to enforce arbitrary X∗ = X + ∆X solution by loading

Y ∗
i = X∗

i Gi as the modified content of the i-th compromised

storage node. As a result, the adversary can not only destroy

the original data block vectors, but she can also enforce a

particular value. This scenario may occur, if t ≥ k.
Actually, these observations illustrate the amplification ef-

fect of the pollution attack: a small amount of modifications

in the stored coded information can result in a large amount

of modifications in the decoded data. In the worst case all data

blocks are entirely destroyed. This is highly non-desirable, and

requires the development of some countermeasures. Below, we

address this problem by proposing mechanisms to detect and

recover from such attacks.

III. ATTACK DETECTION

A. Principle

The basic idea of our attack detection mechanism is the

following: In most cases, the adversary cannot enforce a

particular solution X∗ = Y ∗
1..k(G∗

1..k)−1, because it is unlikely

that she compromises all the first k equations (the probability

of this event is
(t

k)
(n

k)
≈ (t/n)k). In most of the cases, X∗ can

be treated as a random vector, except if all the first k equations

are intact, in which case X∗ = X will hold. As we will see

from the alysis, if X∗ 6= X , X∗ takes its values randomly

form a set of size at least q.
Now, suppose that we have an additional intact equation:

Yk+1 = XGk+1 (i.e., the collector downloaded Zk+1 =
(Gk+1, Yk+1)). If X∗ is random or it is chosen by the

adversary, then it will not satisfy the additional intact equation

with high probability, while it will satisfy it with probability

1 if X∗ = X . Thus, we can detect if the decoded data block

vector X∗ is polluted with the help of an additional intact

equation.

In the rest of this section, we develop an attack detection

algorithm based on the principle described above, and we

analyze it in a more rigorous way.

B. Algorithm

The proposed attack detection algorithm works in the fol-

lowing way: The collector downloads the first k equations

Z∗
1..k and computes X∗ = Y ∗

1..k(G∗
1..k)−1. Then, the collector

downloads the next equation Z∗
k+1. If Y ∗

k+1 = X∗G∗
k+1, then

no attack is detected (and the collector accepts X∗ as the

correct solution). Otherwise, if Y ∗
k+1 6= X∗G∗

k+1, an attack is

signalled.

C. Analysis

In this subsection, we investigate the complexity of the

attack detection algorithm, as well as its false negative and

false positive error probabilities.
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Fig. 3. Effects of the pollution attack on the decoded data blocks.

1) Complexity: We measure the communication complexity

in the number of downloaded equations. This measure is

a property of the algorithm independently of the network

topology, however describes well the amount of communi-

cation required. The amount of traffic that loads the network

in reality highly depends on the topology and routing. The

computational complexity in the number of s.l.e.’s that the

collector needs to solve. Again this is an abstract measure that

describes the algorithms. The amount of required computation

depends on the size of the system. We can expect that

an s.l.e. can be solved in O(k2.5) steps. For recovery we

introduce an acceleration that makes this computation faster.

For simplicity we do not consider the method of solving s.l.e.’s

when describing the algorithms and complexity refers only the

number of solved s.l.e.’s.

The communication complexity of the proposed attack

detection algorithm is hence k + 1, and its computational

complexity is 1. According to Lemma 1, any attack detection

algorithm that operates in the described system needs at least

k + 1 equations to download, hence the attack detection is

optimal in terms of communication complexity.

Lemma 1: In the described system model, any attack de-

tection algorithm uses at least k + 1 downloaded equations.

Proof: When a node downloads k′ equations, the obtained

matrix G∗
1...k′ determines a (k′, k) linear code for the data

block vectors where Y ∗
1...k′ is the coded block vector. An

attacked encoded block can be seen as an erroneous block.

Note, that the case when not only the coded block but the

encoding vector is also modified, can be treated as if only the

encoded block was modified, because each encoding vector is

valid, thus it has a corresponding correct encoded block.

It is known that the Hamming distance of any error detection

code is at least 2. In our case, k′ determines the Hamming

distance of the code. If k′ < k, the Hamming distance is 0,

because the s.l.e. has many solutions, thus many data block

vectors have the same encoded vector. When k′ = k, the

Hamming distance of the code is 1, because each encoded

block is valid and has exactly one corresponding data block

vector. This is sufficient for decoding, but not for error

detection. It means, that attack detection is not possible with

less than k+1 equations. If k′ = k+1, the Hamming distance

reaches 2, because the last coded block is determined by the

first k blocks, thus error detection becomes possible.

2) Probability of a false negative decision: We distinguish

two cases: either X∗ can be taken as a random value, or it is

controlled by the adversary. First, we assume that either out of

the first k downloaded equation at least one equation is intact,

or the adversary modified the content of the storage nodes

independently, thus X∗ can be taken as a random value. Let

us assume for the moment that the adversary does not modify

the coefficient vectors, meaning that G∗ = G. As we saw

earlier, in this case, the collector obtains the solution X∗ =
X + ∆Y1..kG−1

1..k = X + ∆X .

If we further assume that the additional equation that we

use for detection is intact, then we have Z∗
k+1 = Zk+1 =

(Gk+1, Yk+1). In this case, the false negative error probability,

denoted by Pfneg , can be computed as follows:

Pfneg = Pr{Yk+1 = X∗Gk+1|∆Y1..k 6= 0}

= Pr{Yk+1 = (X + ∆X)Gk+1|∆Y1..k 6= 0}

= Pr{∆XGk+1 = 0|∆Y1..k 6= 0} (1)

where in the last step we used that Yk+1 = XGk+1.

Recall from the left hand side of Figure 3 that if ∆Y1..k

has a non-zero element in the i-th row (and G1..k is intact),

then ∆X also has some non-zero elements in the i-th row.

Otherwise, if the i-th row of ∆Y1..k contains only zeros, then

the i-th row of ∆X contains only zeros too.

We can write the i-th element of ∆XGk+1 as

k
∑

ℓ=1

∆xiℓgℓ(k+1) (2)

By the argument above, (2) is a non-trivial linear combination

of the elements of Gk+1. However, the elements of Gk+1 are

chosen randomly and due to the random order of downloads,

these values are not known to the adversary in advance,

therefore, the probability of (2) being 0 is equal to 1/q.
If elements of ∆X are independent,

Pfneg =
1

qt′
(3)

where t′ is the number of rows in ∆Y1..k that contain non-zero

elements. When the modifications are dependent, Pfneg ≤ 1/q
is still true. From this, it follows that X∗ takes its value

randomly from a set of size at least q. Clearly, in order

to maximize the error probability (and hence minimize the

success probability) of the detection, the adversary must make

all modifications to the code blocks in a single row, or make

the modifications of rows linearly dependent.

Next, we keep the assumption that the adversary does not

modify the coefficient vectors (hence G∗ = G), but we assume

that the code block of the additional equation that we use for
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detection is attacked, meaning that Z∗
k+1 = (Gk+1, Y

∗
k+1) =

(Gk+1, Yk+1 + ∆Yk+1). In this case, a simple derivation

similar to the previous case can be used to arrive to the

following result:

Pfneg = Pr{∆XGk+1 = ∆Yk+1|∆Y1..k 6= 0} (4)

Recall from the previous discussion that the i-th row of

∆X contains only zeros if the i-th row of ∆Y1..k contains

only zeros. In this case, the i-th element of ∆XGk+1 must

be a zero too. Thus, if the i-th element in ∆Yk+1 is not zero,

then the above error probability is 0 (i.e., we can detect the

attack even though the additional equation used for detection

is not intact). On the other hand, if ∆Yk+1 contains zeros in

every row where ∆Y1..k contains only zeros, then due to the

randomness of Gk+1, we get again that Pfneg ≤ 1/q.
Finally, let us consider the general case when the adver-

sary may modify both the coefficient vectors and the code

blocks, hence ∆G 6= 0 and ∆Y 6= 0. This case has to be

handled carefully, because X∗ = Y ∗
1..k(G∗

1..k)−1 might be not

completely random. E.g. if ∆Y1..k = X∆G1..k then although

∆G1..k 6= 0 and ∆Y1..k 6= 0 can hold, ∆X = 0. Of course

this modification can not be treated as an attack, because the

modified equation is not polluted. This example is to point

out that even if all elements of the coefficient vector and the

encoded block are modified it may be equivalent to an intact

equation with a single modified element. Thus, if we consider

the highest possible dependency between modified elements,

we get back to the previous case, and

Pfneg = Pr{Y ∗
k+1 = X∗G∗

k+1|∆G1..k 6= 0} ≤
1

q
(5)

holds also for this case also. In the case of a random adversary,

all values of X∗ may be independently random, and hence this

probability falls to 1/qm.

The conclusion of this analysis is that when not all down-

loaded equations belong to the same X∗ 6= X value, the

maximum value of a false negative detection is Pfneg = 1/q.
Hence, if q is chosen sufficiently large, then the probability

of not detecting a pollution attack is negligible. Of course a

larger value of q introduces larger overhead in communication

and storage also. Note that if the code blocks contain standard

error detection elements, such as a CRC checksum, then at

least 2 rows must be changed presumably independently by

the adversary in every attacked code block. Consequently, in

that case, we have that Pfneg ≤ 1/q2. This observation allows

to choose smaller fields and hence to make the computations

over the Galois field faster. Recall from the system model that

e.g. q = 220 is realistic, that indicates an error probability

2−40.

Now, we consider the case when all k + 1 downloaded

equations are polluted and X∗ is chosen by the adversary.

In this case the attack detection algorithm does not signal an

attack, because X∗ satisfies the polluted testing equation also.

This is clearly a false negative decision. The probability of

this case is ∆ =
( t

k+1)
( n

k+1)
≈ (t/n)k+1. When t is not very large

compared to n and k is large enough, this value is very small

(e.g. when n = 100, k = 10, t = 20, ∆ ∼ 10−9). Hence,

we can estimate the upper bound of a false negative decision

with:

Pfneg < 1/q + ∆.

Beside k, the value of ∆ depends on the number of

compromised nodes. In most cases, it is reasonable to assume

that n ≫ t, and so ∆ is close to 0. However, if we consider

a strong adversary and large values of t, ∆ may become not

negligible. In Section V we give a method to eliminate the

effect of ∆.

3) Probability of a false positive decision: Let us close this

section with the analysis of the probability of a false positive

decision. For this, let us assume that the first k equations

downloaded by the collector node are intact, meaning that

Z∗
1..k = Z1..k. Thus, the collector computes the correct

solution X∗ = Y ∗
1..k(G∗

1..k)−1 = Y1..k(G1..k)−1 = X . If the

additional equation downloaded for attack detection is also

intact (i.e., Z∗
k+1 = Zk+1), then no attack is detected as

Y ∗
k+1 = Yk+1 = XGk+1 = X∗G∗

k+1. Thus, an attack may

be signaled only in the case when the additional equation is

not intact. From this, a good approximation of the probability

of a false positive decision, denoted by Pfpos , is the following:

Pfpos ≈ Pr{∆Zk+1 6= 0|∆Z1..k = 0} (6)

Given that the first k equations are intact, the probability

that the (k + 1)-st equation is also intact is
(

n−k−1
t

)

(

n−k
t

) =
n − k − t

n − k
(7)

where t is the number of randomly chosen storage nodes that

are attacked by the adversary. From this, we get that

Pfpos = 1 −
n − k − t

n − k
=

t

n − k
(8)

While Pfpos is not negligible, false positive decisions do

not have serious effects. Indeed, when the attack detection

algorithm signals an attack, the recovery procedures described

in the next section are executed. These procedures try to

recover the original data block vector, and as we will see, they

succeed in a few steps when the number of attacked equations

is small (which is the true by definition in case of a false

positive decision of the attack detection algorithm).

IV. RECOVERY FROM ATTACK

Based on the same principle as the attack detection, we

give recovery algorithms as well. These algorithms use the

attack detection algorithm as a building block. The task of

the recovery algorithm is to find a k + 1 size set of intact

equations, given the attack detection algorithm. With less than

k + 1 intact equations, successful recovery is theoretically

impossible, because k intact equations are needed to obtain

the correct data block vector and an additional intact equation

is needed to verify the solution. The attack detection is

assumed to always give correct result, because q can be chosen

sufficiently large and ∆ is negligible. Later in Section V we

investigate cases when this assumption is too strong, i.e. when

the attacker is strong enough to compromise a large portion

of the storage nodes.
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TABLE I
MAIN PROPERTIES OF THE PROPOSED RECOVERY ALGORITHMS

Success Communication Computational

probability complexity complexity

Algorithm 0 optimal high low

Algorithm 1 optimal optimal high

Algorithm 2 reasonable medium medium

Fig. 4. Comparison of the three recovery algorithms - the left hand side
group belongs to n = 100, the right hand side group belongs to n = 1000.

In other words, the attack detection algorithm gives for any

k + 1 size set whether it contains some polluted equations

or not. If an attack is signaled, we only know that there are

some polluted equations in the set, but do not know how many

and which ones. Therefore, the system can be modeled as

Z =
(

n
k+1

)

sets out of which z =
(

n−t
k+1

)

are intact and we

need to find one of the intact sets.

In the following three subsections we propose three spe-

cific algorithms for the recovery problem. The first two

of them have optimal success probability, meaning that if

recovery is possible, they eventually succeed. Table I sum-

marizes the main properties of our algorithms, while Fig. 4

illustrates the qualitative properties of the algorithms for

two representative systems, a small and a large one, having

(n, k, t) ∈ {(100, 10, 40), (1000, 100, 80)}2. This figure gives

an overview of the algorithms, while we give the detailed anal-

ysis of each later. In computational complexity Algorithm 0 is

near to the optimum, but has high communication complexity.

On the contrary, Algorithm 1 has the theoretical optimum with

respect to communication complexity, but has unfeasibly large

computational load for a large system. Our third algorithm

gives up the optimality of success probability to fit for large

systems in complexity.

A. Algorithm 0

1) Description: Let us choose randomly a k+1 size set out

of the n equations of the system. Let S be the first k element

in this set. Run the attack detection algorithm on set S with

the remaining equation as the testing equation. If no attack is

2Algorithm 2 has a further parameter τmax , we introduce later, we set
τmax = 4 in the figure. Although the success probability of Algorithm 2 is
not optimal, we will see later, that for these values this hardly makes sense.
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Fig. 5. Average computational complexity of Algorithm 0

signalled, S is clear. Otherwise, restart the algorithm with a

different randomly chosen set.

2) Computational complexity: The algorithm tests the Z =
(

n
k+1

)

sets until it fonds one of the z =
(

n−t
k+1

)

intact sets.

The expected value of the computational complexity of Algo-

rithm 0 is hence Z+1
z+1 =

( n

k+1)+1

(n−t

k+1)+1
. Fig. 5 shows the average

computational complexity as the function of the number of

attacked equations in the system for some selected values of n
and k. The figure clearly indicates the exponential complexity,

but also shows that in practice the range of usability is quite

wide, for n = 100 nodes and k = 10, if 70% of the nodes

are attacked, the complexity is still below 107, and in a ten

times larger system (n = 1000, k = 100), with the same

complexity still more then 15% of the nodes can be attacked.

Furthermore, there are reasons to assume that the exponential

complexity can not be avoided in this system model. Our

conjecture is as follows: Having n equations, fixed k value and

an unknown number t of attacked equations in the system, if

any algorithm provides optimal success probability, the lowest

average computational complexity it may have is exponential

in t.
3) Communication complexity: The following approxima-

tion is used to estimate the communication complexity of

Algorithm 0. In each iteration the probability that a given equa-

tion is selected is k+1
n

, as k+1 equations are selected randomly

out of the n equations. This consideration holds if the same

s.l.e. is allowed to be selected multiple times (if the selection

of the iterations are independent). Our approximation is good

for Algorithm 0, if Z ≪ Z+1
z+1 . This holds for the typical

parameters in practice. Accordingly, the system is treated as

n independent random variable having geometric distribution

with parameter k+1
n

. The jth equation is downloaded in the

ith iteration, if the value of the jth variable equals i. From the

geometric distribution it follows, that after the ith iteration of

the algorithm, the expected number of downloaded equations

is

n

i
∑

ω=1

(

1 −
k + 1

n

)ω−1 (

k + 1

n

)

.

The expected value of the communication complexity is the

weighted average of these values with the probability that
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Algorithm 0 stops in the ith iteration as weights. The success

probability of Algorithm 0 can be estimated with z
Z

in each

iteration, thus it succeeds in the ith iteration with probability
(

1 − z
Z

)i−1 z
Z
. Again, we model the iterations as independent

selections of sets. As a result, the estimated communication

complexity of Algorithm 0 is

n
z

Z

∞
∑

i=0

(

1 −
z

Z

)i−1 i
∑

j=1

(

1 −
k + 1

n

)i−1 (

k + 1

n

)

.

The complexity increases rapidly with the number of at-

tacked equations. Fig. 4 already showed the high complexity of

this algorithm. This is the main drawback of Algorithm 0, be-

cause in sensor networks it is important to minimize commu-

nication complexity. In the following we present Algorithm 1,

that has optimal communication complexity.

B. Algorithm 1

1) Principle: The following two recovery algorithms are

both based on the same principle. When the collector node

detects that the originally downloaded set S = Z∗
1..k of

equations is polluted, it can download more equations and use

them to clean the polluted set S. The basic idea of cleaning is

the following: Let us denote the set of equations downloaded

for cleaning by C, and let e be an additional equation. We

use the equations in C to replace a subset of size |C| of the
equations in S. We denote the resulting new set of equations by

S′. Then, we run our attack detection mechanism on S′ with

equation e used for testing. In other words, we solve the s.l.e.

corresponding to S′ and check if the solution satisfies equation

e. If no attack is detected, then we accept the obtained solution

as the correct data block vector. Otherwise, we take S again,

replace another subset of size |C| of its equations, and run the

attack detection again. We repeat these steps until either the

cleaning succeeds or all possible subsets of size |C| of set S
has been replaced.

Note that if e is intact, C contains only intact equations, and

the number of the attacked equations in S is not greater than

|C|, then the above described procedure eventually succeeds,

because we will eventually replace all the attacked equations

in S by the intact equations in C. In case of failure, either e
is attacked, or C contains an attacked equation, or the number

of attacked equations in S is greater than |C|. In this case, we

may download another set C′ of equations such that |C′| >
|C|, as well as another testing equation e′, and try the cleaning

of S again.

In the rest of this section, we propose two specific recovery

algorithms based on this principle. As we will see, the first

algorithm is optimized for communication complexity, how-

ever, its computational complexity does not scale well with k.
Nevertheless, it is still usable for many practical systems. The

second algorithm that we propose has improved computational

complexity, however, in general, it has a higher communication

complexity than the first algorithm has, and it can recover only

from attacks where the number of the compromised storage

nodes is limited. We deliberately do not give more precise

statements about the performance of our algorithms at this

point. We analyze them and describe the trade-off that they

offer in more details below.

2) Description: The basic idea of our Algorithm 1 is to

start the cleaning with a cleaning set C of size one (i.e.,

to assume first that there is only one attacked equation in

set S), and then, if cleaning fails, to increase the size of C
iteratively. In this way, sooner or later, we arrive to a cleaning

set C that contains as many intact equations as the number

of attacked equations in S. In each iteration, we select all

possible subsets of the equations in C and replace with them

all possible subsets of equations in S. Thus, eventually, we
replace the attacked equations with the intact ones, and arrive

to a clean set.

Below, we first formalize the operation of the algorithm,

then analyze its success probability and complexity.

The pseudo-code of the algorithm is presented in Table II.

Its operation is explained as follows: The algorithm first

downloads Z∗
1..k+1 (line 1) and runs the attack detection

algorithm on Z∗
1..k using Z∗

k+1 as the testing equation (line 2).

If no attack is detected, then Z∗
1..k is clean and the algorithm

stops (line 3). Otherwise, the algorithm starts the cleaning of

S = Z∗
1..k (lines 5–24). This is an iterative process, where

in each iteration (lines 7-24), exactly one new equation is

downloaded (line 8). The newly downloaded equation, denoted

by e, becomes the testing equation used for attack detection

in the current iteration (line 10). The rest of the equations

downloaded so far, not counting the equations in S, constitute
the cleaning set denoted by C (line 9). The algorithm takes

every possible subset C′ of C, such that |C′| = τ is not

greater than k (lines 12–13), and uses the equations in C′

to replace τ equations in S in all possible ways (lines 14–

16). After each replacement, the attack detection mechanism

is executed on the resulting set S′ of equations using e as the

testing equation (line 17). If no attack is detected, then S′ is

clean and the algorithm stops (line 18).

3) Success probability: It is easy to see that the algorithm

succeeds iff the number t′ of the attacked equations in S =
Z∗

1..k is smaller than the number of the intact equations in

the remaining set Z∗
k+1..n. On the one hand, if this condition

holds, then we have at least t′ +1 intact equations in Z∗
k+1..n,

and therefore, as we continue downloading more and more

equations for cleaning, we eventually reach a state where the

cleaning set C contains at least t′ intact equations and the

last downloaded equation e used for attack detection is also

intact. In this case, eventually, all the attacked equations in

S will be replaced by intact equations from C, hence S will

be cleaned. In addition, as e is intact, the attack detection

mechanism will indicate no attack, and we can actually realize

that S is cleaned.

On the other hand, if t′ is not smaller than the number of

the intact equations in Z∗
k+1..n, then either the cleaning set C

contains fewer than t′ intact equations, and hence, S cannot be

cleaned, or C contains exactly t′ intact equations and S can

be cleaned, but we have no more intact equation for attack

detection purposes, and therefore, we cannot realize that S is

cleaned.

Given that there are t attacked equations all together, and t′

of them are in Z∗
1..k, we get that the number of intact equations
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1 download Z∗

1..k+1

2 if attack detection(Z∗

1..k
, Z∗

k+1
) = no attack

3 return Z∗

1..k

4 endif

5 let S = Z∗

1..k

6 let w = 1
7 while w < n − k

8 download Z∗

k+w+1

9 let C = Z∗

k+1..k+w

10 let e = Z∗

k+w+1

11 for τ = 0 to min(w, k)
12 for every possible selection s1

of τ elements out of w elements
13 let C′ be the subset of equations

determined by s1 in C
14 for every possible selection s2

of τ elements out of k elements
15 let S′ = S

16 replace the equations determined by s2

in S′ with the equations in C′

17 if attack detection(S′ , e) = no attack
18 return S′

19 end if
20 end for
21 end for
22 end for
23 let w = w + 1
24 end while

TABLE II
PSEUDO-CODE OF ALGORITHM 1.

in Z∗
k+1..n is (n−k)− (t− t′). Hence, the algorithm succeeds

iff t′ < (n − k) − (t − t′), or equivalently, t < n − k. Thus,
we get that

Psuccess =

{

1, if t < n − k
0, otherwise

(9)

Note that if t ≥ n− k then it is theoretically impossible to

recover from an attack, hence, our algorithm is optimal with

respect to success probability.

4) Communication complexity: Recall that we measure the

communication complexity in the number of the downloaded

equations. As the algorithm downloads a new equation in

every iteration, its communication complexity depends on

the number of the iterations it performs. More precisely, if

the algorithm performs R iterations, then its communication

complexity is (k+1)+R, because it downloads k+1 equations

at the beginning before the iterative phase is started. As k is

a fixed parameter, we are interested in the characterization of

R.

The algorithm stops as soon as the following two conditions

hold: (see Figure 6 for illustration): (a) the number of intact

equations in the cleaning set C is equal to the number of

attacked equations in S, and (b) the last downloaded equation

e used for attack detection is intact. Indeed, if condition (a)

is satisfied, then eventually the intact equations in C will be

used to replace the attacked equations in S, hence S will

be cleaned. If, in addition, condition (b) is satisfied, then

the attack detection mechanism will indicate no attack, and

we can actually realize that S is cleaned. Thus, R is the

number of equations needed to be downloaded to satisfy the

1 k k+1 k+w+1

S C

intact equation

attacked equation

last
downloaded

equation

k+w

Fig. 6. Illustration of the stop condition of Algorithm 1.

two conditions above.

It must be clear that if S contains t′ attacked equations,

then C ∪ {e} must contain at least t′ + 1 intact equations,

as otherwise, we cannot clean S and realize that it has been

cleaned at the same time. Thus, R is minimal in the sense that

for R′ < R downloaded equations, C ∪ {e} contains fewer

than t′ + 1 intact equations, and hence, the algorithm cannot

succeed. This means that our algorithm is optimal in terms of

communication complexity.

We give an estimation of R in the following way. Let

p = t/n, and let W1 denote the number of equations

that need to be downloaded so that the downloaded set of

equations contain exactly the same number of intact equations,

on average, as the number of attacked equations in S. The
average number of attacked equations in set S is approximately

kp. The average number of intact equations among the W1

equations is approximately W1(1 − p). Hence, we get that

W1 ≈ kp/(1 − p). Furthermore, let W2 denote the average

number of equations that need to be downloaded until we

download an intact equation. Clearly, W2 ≈ 1/(1 − p). Thus,
when W1 +W2 equations are downloaded, both conditions (a)

and (b) are satisfied. In other words, a good estimate of R is

R ≈ W1 + W2 ≈
kp + 1

1 − p
(10)

5) Computational complexity: Recall that we measure the

computational complexity in the number of s.l.e.’s that need

to be solved. In our case, each call to the attack detection

algorithm requires the solution of an s.l.e.

The worst case computational complexity Pworst of the

algorithm can be easily determined by inspecting the structure

of the nested loops in the algorithm:

Pworst ≈

R
∑

w=1

min(w,k)
∑

τ=0

(

w

τ

)(

k

τ

)

(11)

where R is the number of iterations, which we can estimate

according to (10).

For the derivation of the average case computational com-

plexity Γavg , we assume that the number of the attacked

equations in S is t′, where the average value of t′ is kt/n.
We make the following observations:

• All but the last iterations of the algorithm execute fully.

(term (12) in the sum below)

• In the last iteration, the loops that try to clean S with

τ < t′ equations from C also execute fully. (term (13) in

the sum below)

• When we use τ = t′ equations from C for cleaning, we

have to process on average half of the possible selections
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Fig. 7. Average computational complexity of Algorithm 1 with comparison
to Algorithm 0, as a function of the number t of attacked equations. The
different curves belong to different values of n and k.

of t′ equations from C until we end up with the subset

that contains the t′ intact equations of C. For all those

selections, the inner loop executes fully and we must

process all the possible selections of t′ equations from

S. (term (14) in the sum below)

• Finally, when we select the subset of C that contains the

t′ intact equations, we have to process on average half

of the possible selections of t′ equations from S until we

end up with the t′ attacked equations of S. (term (15) in

the sum below)

Thus, we get that

Γavg ≈

R−1
∑

w=1

min(w,k)
∑

τ=0

(

w

τ

)(

k

τ

)

+ (12)

t′−1
∑

τ=0

(

R

τ

)(

k

τ

)

+ (13)

1

2

(

R

t′

)(

k

t′

)

+ (14)

1

2

(

k

t′

)

(15)

Figure 7 shows the average computational complexity of

Algorithm 1 as a function of the number t of attacked

equations. The different curves belong to different values of

n and k, and the computation is based on the formula given

above. For comparison the corresponding average computa-

tional complexity of Algorithm 0 is also drawn with dashed

line. Clearly, the price of the optimality of the communication

complexity is the increased computational complexity.

As we can see, the computational complexity of Algorithm 1

increases rapidly with the number t of attacked equations. Still,
for the presented values of n, k, and t, it does not exceed

109 ≈ 230, which is still feasible. Thus, for systems, where k
is in the range of 10 – 50, Algorithm 1 provides a practical

solution: it succeeds in recovering from attacks even if the

number t of the attacked equations is very large, its commu-

nication complexity is optimal, and it is still computationally

feasible up to t ≈ 55 attacked equations. Note that the case

of n = 100, t ≈ 55 means that more than half of the storage

nodes are compromised, yet Algorithm 1 can recover from the

attack and it is practically feasible. In the case of n = 500,
Algorithm 1 can cope only with a weaker attacker that can

compromise around 10% of the storage nodes.

Note that the algorithm requires solving a series of s.l.e.’s

that differ only in a few equations. This property can be

exploited to accelerate the solution of the s.l.e.’s. For details,

we refer the reader to Appendix C.

Due to the computational complexity Algorithm 1 is not

practical for very large systems with an attacker of con-

siderable strength. Below we present Algorithm 2, which

gives a trade-off between success probability, communication

complexity and computational complexity and thus fits for

very large systems as well.

C. Algorithm 2

1) Description: Our second algorithm applies the same

principles, but contrary to Algorithm 1, where the size of the

cleaning set is iteratively increased, it uses a fixed size cleaning

set C. In this way, the number of the possible selections

of the different subsets of C does not grow, and hence, the

computational complexity of the algorithm scales better with

k. Instead of iteratively increasing C, this algorithm changes

the fixed size sets S and C in each iteration. In effect, S
and C consist of the equations that are taken from a fixed size

window that slides over Z∗. As a result, the success probability

of this algorithm does not equal 1 in all cases. The recovery

is successful if S contains not more attacked equations than

τmax , where τmax is an input parameter that limits the

computational complexity of the algorithm by limiting the size

of the subsets of the equations that we choose from C and

replace in S.
The pseudo-code of the algorithm is presented in Table III.

First, we download the equations Z∗
1..k+1 and perform attack

detection in a way similar to Algorithm 1 (lines 1–4). If no

attack is detected, then the algorithm stops; otherwise, we

start an iterative cleaning process (lines 5–26). As we said

above, in this algorithm, the size w of the cleaning set C is

a fixed value ⌈αk⌉ (line 5), where α is an input parameter.

We download the equations Z∗
k+2..k+w (line 6), and initialize

the set S to be cleaned with Z∗
1..k and the cleaning set C

with Z∗
k+1..k+w . Both sets change in each iteration, and we

use variables iS and iC to point to the first equations of them

in the current iteration. Similarly, ie points to the equation

that we use in attack detection for testing. Variables iS , iC ,
and ie are initialized (line 7) and the iteration starts. In each

iteration (lines 8–26), we download exactly one new equation

(line 9), which becomes the equation that is used as the testing

equation in attack detection (line 12). The algorithm takes

every possible subset C′ of C, such that |C′| = τ is not

greater than τmax (lines 13–15), and uses the equations in C′

to replace τ equations in S in all possible ways (lines 16–

18). After each replacement, the attack detection mechanism

is executed on the resulting set S′ of equations using e as

the testing equation (line 19). If no attack is detected, then

S′ is clean and the algorithm stops (line 20). Otherwise, we
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increment each of our pointers iS , iC , and ie (line 25), and

continue the iteration. Note that set S ∪ C ∪ {e} consists of

the equations in a sliding window of size k+w+1 that slides

over Z∗ until either cleaning is successful or we downloaded

all equations in Z∗.

1 download Z∗

1..k+1

2 if attack detection(Z∗

1..k
, Z∗

k+1
) = no attack

3 return Z∗

1..k

4 endif

5 let w = ⌈αk⌉
6 download Z∗

k+2..k+w

7 let iS = 1, iC = iS + k, ie = iC + w

8 while ie ≤ n

9 download Z∗

ie

10 let S = Z∗

iS..iS+k−1

11 let C = Z∗

iC ..iC+w−1

12 let e = Z∗

ie

13 for τ = 0 to τmax

14 for every possible selection s1

of τ elements out of w elements
15 let C′ be the subset of equations

determined by s1 in C
16 for every possible selection s2

of τ elements out of k elements
17 let S′ = S

18 replace the equations determined by s2

in S′ with the equations in C′

19 if attack detection(S′ , e) = no attack
20 return S′

21 end if
22 end for
23 end for
24 end for
25 let iS = iS + 1, iC = iS + k, ie = iC + w

26 end while

TABLE III
PSEUDO-CODE OF ALGORITHM 2.

2) Analysis by simulations: Algorithm 2 is more difficult to

examine analytically, therefore, we used simulations, written in

Matlab, to investigate its performance. The simulation settings

are detailed in Appendix A.

We are interested in the success probability of the algorithm,

which we estimate as the fraction of the simulation runs, for a

given setting of the parameters, where the algorithm succeeds.

In addition, we are interested in the average communication

and computational complexity of the algorithm, which we

obtain as the mean of the communication and computational

complexities, respectively, of the simulation runs for a given

setting of the parameters.

3) Success probability: Figure 8 shows the success proba-

bility of Algorithm 2 as the function of the number t of the

attacked equations. The different curves belong to different

values of τmax .

As we can see, the success probability of the algorithm is

larger than 90% until a threshold value of t, and begins to

decrease rapidly after the threshold. This threshold value is

approximately t = 85, t = 100, and t = 110, for τmax = 4,
τmax = 5, and τmax = 6, respectively. Thus, as we expected,

if we increase τmax , the algorithm ensures recovery from

stronger attacks that involve more attacked equations. On the

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of attacked equations (t)

S
u
c
c
e
s
s
 r

a
te

 

 

τ
max

 = 4

τ
max

 = 5

τ
max

 = 6

Fig. 8. Success rate of Algorithm 2 as a function of the number t of attacked
equations. n = 1000 and k = 100.

other hand, as we will see below, the computational complexity

increases too.

Recall that in case of Algorithm 1, the success probability

remained one until the threshold t = n− k − 1, which would

be t = 899 for n = 1000 and k = 100. This threshold is much

larger than the threshold values that we got for Algorithm 2.

Despite of this, the threshold values that we obtained are

still surprisingly large given that the algorithm is prepared to

handle much smaller number of attacked equations. Indeed,

when τmax = 4, the algorithm is prepared to clean 4 attacked

equations in a set of size k = 100, which means 40 attacked

equations in the entire set of size n = 1000. However, the
algorithm succeeds with high probability even if the number

of attacked equations is around 85. A similar observation can

be made for the other values of τmax .

The reason of this is that when t = 85, the average number

of attacked equations in a set of size k = 100 is 8.5, but this
means that there are sets with a smaller number of attacked

equations. Apparently, we can find a set with not more than

4 attacked equations with a rather high probability among the

sets that we obtain by sliding a window of size k = 100 over

the entire set Z∗ of equations. A similar argument applies for

the other cases.

4) Communication complexity: Figure 9 shows the average

communication complexity (i.e., the number of the down-

loaded equations) of Algorithm 2. We truncated the plot at

t = 120, because above that value, the success probability of

the algorithm is rather poor anyway, hence, we are not really

interested in its complexity.

As we expected, the average communication complexity

increases as the number t of the attacked equations increases,

because it becomes more difficult to find, at the same time,

a set S of k equations that contains no more than a fixed

τmax attacked equations, and a set C of αk equations that

contains at least τmax intact equations. However, on average,

the number of the downloaded equations is smaller than half

of the total number n of equations, and the standard deviation

is also acceptably small. In particular, when the number t of

attacked equations is around 50 (i.e., only 5% of the storage

nodes are compromised), the communication overhead is very
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the number t of attacked equations. n = 1000 and k = 100.
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Fig. 10. Average computational complexity of Algorithm 2 as a function of
the number t of attacked equations. n = 1000 and k = 100.

small.

We can also observe that the communication complexity

increases as τmax decreases. As we will see below, the price

of this decrease is the substantially increased computational

complexity.

5) Computational complexity: Figure 10 shows the com-

putational complexity (i.e., the number of s.l.e.’s that need to

be solved) of Algorithm 2 as a function of the number t of

attacked equations. The different curves belong to different

values of τmax .

We can observe that the computational complexity increases

quickly as the number of the attacked equations t increases,

as well as with the increase of τmax . Indeed, incrementing

τmax by one results, roughly, in an order of magnitude more

computations. The best trade-off seems to be the τmax = 4
case, where Algorithm 2 can handle up to t = 30 attacked

equations (i.e., up to 3% of the total number of equations)

with a very low communication overhead, and still reasonable

computational complexity (108 ≈ 226 s.l.e.’s to solve). For a

more detailed estimation see Appendix C.

V. EXTENDED RECOVERY ALGORITHM

In the previous section we assumed that the attack detection

always gives correct result. Now we consider the case, when

the adversary compromises a large portion of the storage

nodes and want to enforce a particular X∗ value. In this

case, the attack detection algorithm signals no attack if the

first k + 1 equations are either all intact or all polluted, in

other words, the false negative error probability of the attack

detection may not be negligible due to the increased ∆ value.

We keep the assumption that the size q of the Galois field

is chosen sufficiently large. If the collector finds a seemingly

clean set of k equations (possibly as a result of the recovery

algorithm), it can not be sure, whether the obtained solution

is the correct solution X or it is a modified one X∗, chosen

by the adversary. Without further investigations, the collector

accepts an incorrect solution with probability

Perror =

(

t
k+1

)

(

n−t

k+1

)

+
(

t

k+1

) .

This probability is close to 0 in most practical cases,

however it depends on t that is out of our control. In the

following, we present an algorithm for attack recovery that

eliminates this error probability. In the sequel we assume

t < n/2, because successful recovery from the attack is

possible if and only if t < n/2. If t ≥ n/2, it can not be

decided which set of nodes is compromised, i.e. whether X∗

is the correct solution or it was enforced by the adversary. The

algorithm exploits the property that it is only the correct data

block vector X that satisfies at least n/2 equations.

A. Algorithm E

1) Principle: If a set S of size k and an additional equation

e are found for which the presented attack detection algorithm

does not signal an attack, we can assume that the correspond-

ing solution is either the correct data block vector X or it is

a vector X∗ enforced by adversary. We can make a decision

based on the number of further equations that this solution

satisfies.

2) Description: The operation of Algorithm E is the fol-

lowing. First, it finds S and e with the help of one of the

recovery algorithms presented in the previous section. Let X∗

be the solution of the s.l.e. formed by the equations in S.
A counter γ = k + 1 is set. Then it chooses an equation

e′ /∈ S ∪ {e}, if X∗ satisfies e′, increase the counter by

one. The last step is repeated until γ exceeds n/2 or all

possible equations are processed. In the former case X∗ = X ,

that is the correct solution is found, and the algorithm stops.

Otherwise, all equations, including e and the elements of S,
that X∗ satisfied are ignored, and the algorithm is repeated on

the remaining smaller set of equations.

3) Communication complexity: The theoretical lower limit

of the communication complexity is downloading ⌊n
2 + 1⌋

equations. Algorithm E reaches this limit if none of the first

⌊n
2 + 1⌋ downloaded equations is polluted. In other cases, the

communication complexity depends on the applied algorithm

for finding e and S.
4) Computational complexity: The computational complex-

ity of the algorithm is strongly determined by the applied al-

gorithm to find e and S. Notice, that the probability that S and

e are not clean, that is they will be ignored and the algorithm

finds another e and S, is below 0.5, because at least
(⌊n

2
+1⌋

k+1

)

clean sets exist, while the adversary may compromise at most
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(⌈n

2
−1⌉

k+1

)

sets that make the attack detection algorithm to give

a false negative result. In the next iteration, the probability

that S provides the correct solution further increases, while

the effort needed to find S and e falls, because the number

of attacked equations in the system was decreased by at least

k + 1. Consequently, the average number of iterations of the

algorithm is below 2 in all cases. The exact formulas are given

in Appendix B.

Considering that at least n/2 equations need to be down-

loaded anyway, the large communication complexity can

not be avoided. As Algorithm 0 provides the lowest av-

erage computational complexity, it is a reasonable choice

to use Algorithm 0 for finding S and e. For this reason,

we evaluated the overall computational complexity of Al-

gorithm E assuming Algorithm 0 is used. We compared

the computational complexity with Algorithm 0. The differ-

ence was found to be below 1% in all investigated cases

((n, k) ∈ {(100, 10), (500, 50), (600, 50), (1000, 100)}). Con-
sequently, this kind of recovery, that allows to reduce the error

probability of the recovery algorithms to 0 requires only a

slightly more computational effort than the basic versions.

VI. RELATED WORK

An algorithm to detect errors in communication systems

based on network coding principles is presented in [9]. In that

algorithm, a hash value is appended to each data packet. It

is assumed that the destination node receives at least one or

more unmodified packets, and checks the inconsistency of the

decoded packets using the appended hash values.

One important result for correcting errors introduced by a

Byzantine adversary in network coding based communication

systems is presented in [10]. In that paper, the authors in-

troduce an information-theoretically rate optimal code. The

packets from the adversarial nodes are intuitively considered as

packets coming from a second source, and the packets arriving

at the destination are linear combinations of the source’s

batch of packets and the adversary’s batch of packets. Linear

independence is assumed within and between these batches.

The destination node is assumed to receive all the packets

destined to it, and then, it tries to distill out the original data

packets from the polluted set of packets. Compared to these

works, we do not assume any encoding of packets at the source

nodes. In addition, in distributed storage systems, we do not

download all the available packets. Rather, our algorithms try

to download packets only until the original data packets can

be reconstructed.

Due to the distributed source classical error correction

codes (such as Reed-Solomon codes) are also not appropriate,

furthermore, unlike our solution they require additional redun-

dancy. This holds for the error correction code proposed for

network coding [11], [12] also. This work describes a Reed-

Solomon like code construction that operates with subspaces

instead of Galois symbols.

Cryptographic techniques have also been proposed to detect

attacks in coding based communication and storage systems.

For instance, in practical P2P file sharing systems, data blocks

are often hashed and the hash values are made available at

a central trusted publisher. By comparing the hash of each

downloaded data block to the corresponding hash available at

the publisher, a node can verify whether a downloaded block

is valid or not.

In order to make this idea work in network coding based

P2P file sharing systems, the usage of homomorphic hash

functions [13] is proposed in [14], [15]. In the proposed

scheme, the hash of an encoded packet can be easily derived

from the hashes of the blocks contributing to the encoding.

It is assumed that the hash value of every block of a given

file is obtained by the nodes in a secure way when they first

join the system. These hash values are then used to verify the

integrity of the encoded packets as they are downloaded. To

reduce the computational overhead caused by homomorphic

hash functions, the scheme proposed in [15] also requires the

nodes to cooperate and alert each other when a maliciously

modified block is detected. In this way, a given node does not

verify each and every block itself, but it can rely on alerts

from other peers.

In any case, every scheme that uses hash functions (be

it homomorphic or not) requires the existence of a secure

channel between the data sources and the destinations through

which the genuine hash values of the original data blocks can

be obtained. We do not assume such secure channel in our

approach.

Another approach to prevent the pollution attack is to

require the source nodes to digitally sign the data blocks before

they are injected in the system. However, in order to make

this work in systems where intermediate nodes combine data

blocks received from different sources, the digital signature

scheme must have some homomorphic properties, similar to

the case of homomorphic hash functions described above.

Recently homomorphic digital signature schemes have been

proposed for network coding based content distribution in [16],

[17], [18].

Unlike the approach based on homomorphic hash functions,

the approach of using homomorphic digital signatures does not

require a pre-existing secure channel between the sources and

the destinations. However, it has two other problems: first, ho-

momorphic signature schemes are computationally even more

expensive, and second, they need a public key infrastructure

(PKI) for the management of the signature verification keys.

These problems hinder their usage in practical applications;

in particular, due to the large computational complexity they

cannot be used in sensor networks, and due to the PKI

requirement, it is unlikely that they will ever be used in large

scale P2P content distribution systems.

Here we compare our proposal with homomorphic signature

schemes in terms of overhead. We take Algorithm 1 for recov-

ery as a basis for comparison. The operation of this algorithm

is the most similar to that of a digital signature scheme,

that is cleaning a polluted set with additionally downloaded

clean equations. Our scheme requires (R + 1)D additional

equations to download, where R = (kp+1)
1−p

= (kp + 1)α,
the number of rounds Algorithm 1 performs, and D is the

size of the data block. The communication overhead of a

digital signature scheme is kγs + ks + W1(D + s), where
γ = 5(n/k) ln(k), a value taken from [4], meaning the number
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of storage nodes a source needs to transmit its data to ensure

successful decoding, W1 = kpα is the number of additionally

downloaded equations until k clean equations are found, and

s is the size of the signature. We do not take into account

the overhead required to operate the PKI. Note that the first

term corresponds to the communication overhead of the source

nodes, while our scheme does not add any overhead to the

sources. Comparing the two result, we get that our scheme

has lower communication overhead as long as

D <
(γ + pα + 1)ks

1 + α
.

For a practical case when n = 100, k = 10, t = 40, assuming

the length s of the signature is 40 bytes, we get that the

threshold value is D ≈ 17500 bytes. In sensor networks the

typical size of a data block (few tens of bytes) is much smaller

than this value. In larger systems, this threshold becomes even

larger.

As for the computational complexity, our scheme per-

forms much simpler operations, so if the number of attacked

equations in the system is reasonable, our scheme performs

better. However, the digital signature scheme scales better

for stronger attacks and larger systems, but contrary to our

proposal source nodes also perform additional computation.

Accordingly, we believe that our proposal is much more

practical than the approach based on homomorphic digital

signatures. First of all, we need neither a PKI, nor any

cryptographic key management scheme, as we do not use cryp-

tography at all. The practical value of this feature should not

be underestimated. Second, while our approach also requires

intensive computational effort, this is required only for the

entity that retrieves information from the distributed storage

system. In wireless sensor networks, where the computational

overhead really matters, this entity is typically the base station,

which is usually assumed to be powerful enough. In contrast to

this, in the approach based on homomorphic digital signatures,

the source nodes and the storage nodes need to perform inten-

sive computation, and those are typically resource constrained

sensor nodes.

VII. CONCLUSION

In this paper, we addressed the problem of pollution attacks

in coding based distributed storage schemes, and we proposed

specific algorithms for detecting and recovering from such

attacks. A salient feature of the proposed algorithms is that

they are not based on cryptographic checksums or digital

signatures, which are traditionally used for providing integrity

services. Instead, we take advantage of the inherent redun-

dancy in such distributed storage systems.

In particular, our approach is to obtain more encoded

packets than strictly necessary for the decoding of the original

data, and to use those additional encoded packets for attack

detection and recovery purposes. Both detection and recovery

require only solving systems of linear equations over a finite

field GF (q). By not using cryptography, we do not need to

rely on a PKI or pre-established secure channels, which are

the usual drawback of the alternative approaches.

The attack detection algorithm that we proposed in the paper

is effective and extremely efficient both in terms of com-

munication and computational overhead. We proposed three

recovery algorithms as well. The first algorithm approximates

the lowest possible average computational complexity, while

the second algorithm is optimal in terms of communication

complexity, and it ensures recovery from attacks even if a

large fraction of the encoded packets are modified, but it does

not scale up to very large systems in terms of computational

complexity. It is still a practical solution, though, for many

systems. The third algorithm provides a trade-off for very large

systems, it is less effective in terms of recovery capabilities

and less efficient in terms of communication overhead, but

it is computationally feasible for large systems as well. We

presented an extension of the recovery algorithms to deal with

heavy attacks more efficiently in terms of error probability

by eliminating the effect of a possibly wrong decision of

the attack detection. This makes sense when the adversary

compromises significant portion of the storage nodes and aims

not only to destroy original data, but also to enforce a chosen

value of the reconstructed data.

The approach that we proposed in this paper can be applied

in any coding based distributed storage systems, be it in the

domain of P2P file distribution or in wireless sensor net-

works. In particular, our approach does not require the storage

nodes to perform additional coding on or to add additional

information to the encoded packets. Only the collector node

needs to perform a substantial amount of computation. For this

reason, we believe that our approach is particularly suitable for

wireless sensor networks, where the storage nodes are energy

constrained sensor nodes, while the collector is a powerful

base station.

APPENDIX A

SIMULATION SETTINGS

In our simulations, we set n = 1000 and k = 100, and we

range the value of τmax over the values {4, 5, 6}. For each

value of τmax , we set

α =
τmax

k − τmax

(16)

The rationale behind this setting of α is the following:

Intuitively, we are prepared to clean at most τmax attacked

equation in S. If we assume that S, which has size k, contains
τmax attacked equation, then we may estimate the probability

that a given equation in Z∗ is attacked as τmax/k. Thus, the
number of intact equations in C, which has size w, can be

estimated as w(1 − τmax/k). In order to be able to clean S,
the number of intact equations in C must be at least τmax .

Thus, we must have that

τmax ≤ w
(

1 −
τmax

k

)

(17)

from which

w ≥
τmax

1 − τmax

k

=
τmax

k − τmax

k (18)

Moreover, for each setting of τmax and α, we range the

number t of attacked equations form 10 to 150 with a
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step size of 10. For each setting of the parameters, we run

100 simulations, where the t attacked equations are chosen

uniformly at random in the set Z∗ of n equations.

APPENDIX B

COMPUTATIONAL COMPLEXITY OF ALGORITHM E

Appendix B is provided in the supplemental material to this

paper.

APPENDIX C

ACCELERATION OF SOLVING S.L.E’S

Appendices C is provided in the supplemental material to

this paper.
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