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ABSTRACT
We present a novel outlier elimination technique designed
for sensor networks. This technique is called RANBAR and
it is based on the RANSAC (RANdom SAmple Consensus)
paradigm, which is well-known in computer vision and in
automated cartography. The RANSAC paradigm gives us
a hint on how to instantiate a model if there are a lot of
compromised data elements. However, the paradigm does
not specify an algorithm and it uses a guess for the number
of compromised elements, which is not known in general in
real life environments. We developed the RANBAR algo-
rithm following this paradigm and we eliminated the need
for the guess. Our RANBAR algorithm is therefore capable
to handle a high percent of outlier measurement data by
leaning on only one preassumption, namely that the sample
is i.i.d. in the unattacked case. We implemented the algo-
rithm in a simulation environment and we used it to filter
out outlier elements from a sample before an aggregation
procedure. The aggregation function that we used was the
average. We show that the algorithm guarantees a small dis-
tortion on the output of the aggregator even if almost half
of the sample is compromised. Compared to other resilient
aggregation algorithms, like the trimmed average and the
median, our RANBAR algorithm results in smaller distor-
tion, especially for high attack strengths.
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1. INTRODUCTION
Sensor networks will be the near future’s most powerful

monitoring applications. These networks are autonomous
networks consisting of a large number of sensor nodes and
some base stations. The nodes are applied to perform mea-
surements of some physical phenomena and report them to
the base station. Then, it is the base station’s task to ag-
gregate the received sample elements. However, if there are
some sensor nodes that were compromised by an attacker
then a part of the received sample may be incorrect. If
the base station aggregated the sample in this original form
then an attacker could cause a significant distortion in the
aggregation result.

There are two ways in which the sample can be compro-
mised. Firstly, the messages that carry the data from the
sensors to the place of the aggregation (the base station)
can be modified in transit. This can be detected by crypto-
graphic techniques. Secondly, the attacker may compromise
some sensors in the network and affect their readings (e.g., it
can increase the temperature around a temperature sensor).
This latter kind of attack cannot be prevented, neither de-
tected, by cryptographic mechanisms. Resilient aggregation
is concerned with this problem. The objective of resilient
aggregation is to perform secure data aggregation in the
presence of an adversary who can modify the input of the
aggregation function.

One of the first research paper on resilient data aggre-
gation was written by David Wagner and it was published
at SASN 2004 [1]. The author investigated the resilience
of commonly known aggregation functions and found that
the average, the minimum and the maximum calculations
are not resilient even against only one compromised node.
However, the median was found to be resilient, the count to
be acceptable and the trimmed average to be employable in
some cases, namely when an upper bound on the percent-
age of compromised nodes is known. But what shall we do
if we want to calculate the average instead of the median
and we do not known an upper bound on the percentage of
compromised nodes?

In this paper we propose a novel technique for resilient
sensor data aggregation to handle this problem using a com-
mon principle: the RANSAC paradigm [3]. The RANSAC
paradigm aims at finding data elements in the sample that
correspond to a specified data model. This paradigm is de-
scribed in several papers that deal with camera calibration,
hyphotesis testing, geological research, robotics and com-
puter graphics, but to the best of our knowledge, nobody has
applied it to achieve resilient aggregation. With this tech-



nique, we can notably reduce the power of an attack even
if the attacker has compromised a large percent of the sam-
ple and knows the aggregation procedure in detail. Thus,
the RANSAC paradigm can be especially useful in sensor
networks, where the nodes are unattended and lack physical
protection, and therefore they can be compromised in large
quantities.

The rest of this paper is organized as follows. In Section 2,
we present the related papers. In Section 3, we introduce the
RANSAC paradigm in general. In Section 4, we specify the
attacker model considered by the design of the RANBAR
algorithm presented in Section 5. In Section 6, we study the
simulation results. Finally, in Section 7, we conclude the
paper.

2. RELATED WORK
If an attacker can cause an arbitrary altering on a part

of the sample then the average as an aggregation function
is not secure, because every modified sample element may
have an unduly large influence on the aggregation result.
What shall we do, if we want to calculate the average in a
secure way? We shall use resilient aggregation techniques or
in a wider sense robust statistics.

The term ’resilient aggregation’ was coined by Wagner in
his SASN 2004 paper [1] and it has reference to such aggre-
gation methods that are also secure in case of an attack, i.e.,
it is hard for an attacker to produce a significant distortion
in the aggregation result. The main threat considered by
Wagner was that of malicious data. The adversary is able
to insert malicious data in to the list of sensor measurements
by capturing a few nodes and modifying their readings. The
adversary is only able to compromise a small percent of the
sensor nodes (at least fewer than the half of the network),
but he can insert arbitrary values in place of the original
readings. This means, that the adversary is modelled by
the Byzantine fault model. The goal of the adversary is to
skew the computed aggregate as much as possible. Wagner
investigates this problem for the case when the aggregation
function is, for example, the average, and finds that instead
of the average we should use the median. But there is a
problem with the median. In real life deployments, we usu-
ally do not want to know the median, but the average. In
some cases, the median can be significantly far from the
average, especially for high attack strengths.

In [2], the authors propose a resilient aggregation scheme
with attack detection, where the aggregator analyzes the
received sensor readings before the aggregation function is
called. In this model the attacker wants to remain unde-
tected besides causing as high distortion in the output of
the aggregation function as possible. The novel data aggre-
gation model in this paper consists of an aggregator func-
tion and a detection algorithm. The detection algorithm
analyzes the input data before the aggregation function is
called and tries to detect unexpected deviations in the re-
ceived sensor readings. In fact, trimming (proposed by Wag-
ner in [1]) is a special case of this more general idea. The
detection algorithm uses the technique of sample halving,
i.e., it first halves the sample and computes the sum of the
halves separately. Then it subtracts the two sums from each
other and indicates attack if the result is above a threshold.
The concrete value of this threshold can be calculated from
the desired false positive probability (i.e., when there is no
attack but the detection algorithm indicates attack). The

advantage of this approach is that in order to remain unde-
tected, the adversary cannot distort the output arbitrarily,
but rather the distortion is upper bounded, even for aggre-
gation functions that were considered to be insecure, such as
the average. Another drawback of the solution in [2] is that
if the detection algorithm indicates attack, the aggregation
function is not called. The approach of RANBAR improves
on this, because here, an output is produced most of the
time even when an attack is suspected.

The RANSAC (RANdom SAmple Consensus) paradigm
was suggested by A. Fischler and R. C. Bolles in 1981 [3].
The RANSAC approach relies on random sampling selection
to search for the best fit. The model parameters are com-
puted for every randomly selected subset of points. Then
the points within some error tolerance are called the ’con-
sensus set’ of the model, and if the cardinality of this set
exceeds a prespecified threshold, the model is accepted and
its parameters are recomputed based on the whole consensus
set. Otherwise, the random sampling and validation is re-
peated. Hence, RANSAC can be considered to seek the best
model that maximizes the number of inliers. The problem
with this approach is that it requires the prior specification
of a tolerance threshold which is actually related to the in-
lier bound. The authors proposed this technique for fitting a
model to experimental data, and applied it to the Location
Determination Problem: given a set of control points in the
image with known locations, determine the point in space
from which the image was obtained. The proposed principle
worked well, however, it is just a principle without defined
parameters. We have adopted it for the purposes of resilient
aggregation in sensor networks.

A large number of papers are concerned with securing
some aggregation related functions with the help of cryptog-
raphy. In [12] the adversary wants to estimate the network-
wide aggregate as accurately as possible. To achieve this, the
adversary can eavesdrop the communication between some
of the sensors. The authors show a way how the proba-
bility of a meaningful eavesdrop can be calculated, where
’meaningful’ means that the information obtained by the
eavesdropper helps him to calculate a good estimate of the
real aggregate. The function that measures this probability
is called eavesdropping vulnerability and it depends on the
set of eavesdropped nodes, on the adversary’s error toler-
ance and on the aggregation function used to calculate the
aggregate.

Hu et al. [13] consider large sensor networks where the
sensor nodes organize themselves into a tree for the pur-
pose of routing data packets to a single base station repre-
sented by the root of the tree. The authors present counter-
measures against intruder nodes deployed by the adversary
and against a single node compromise. Their approach is
based on delayed aggregation and delayed authentication.
Delayed aggregation means that instead of performing the
aggregation at the parent node, messages are forwarded un-
changed to the grandparent and aggregation is performed
there. This increases the overall transmission cost but it
allows the detection of a compromised parent node if the
grandparent is not compromised. Delayed authentication
refers to the method when intermediate nodes receive mes-
sages that contain values authenticated by their grandchil-
dren and a MAC (Message Authentication Code) on the
aggregated value computed by their child.

Przydatek et al. present cryptography based countermea-



sures against the attacker who wants to distort the aggregate
in [14]. The secure aggregation approach proposed in that
paper is based on cryptographic commitment and interac-
tive proof techniques. The aggregator sends the aggregate
statistics to the home server together with a Merkle hash
tree based commitment. In the proof step the home server
asks the aggregator for a randomly selected subsample. In
this step the aggregator sends the wanted subsample in the
form protected by the keys shared between the nodes and
the home server. The home server checks elements of this
subsample against the commitment by interacting with the
aggregator. If this check is successful, i.e., the home server
is convinced that the subsample really comes from the sam-
ple used for the calculation of the commitment and sent by
the corresponding sensors, it calculates the actual statistics
for this subsample and compares the result to the value sent
previously by the aggregator and calculated for the whole
sample. If the distance between these two values are small
enough, the home server accepts the statistics as authentic.

Browsing through the literature, we can also find sev-
eral papers on applications of robust techniques for securing
measurement data without citing the problem of resilient
aggregation. For example, in [4] and [5] statistical tools are
deployed for securing the localization in sensor networks as
well as allowing in-place sensor calibration. The applied
statistical tools are the median and the method of cutting
outlier measurements to secure these functions. The prob-
lem with the median is mentioned above, namely that it can
be significantly far from the average, especially for a large
number of compromised nodes. The solution for the in-
place sensor calibration problem in [5] is built on time series
correlation analysis and pairwise relations between sensor
nodes. Experiments show that the results of the algorithm
are promising but the algorithm is still in an early develop-
ment phase.

There are several publications about applications of RAN-
SAC. The main orientation of these papers is computer vi-
sion and image processing. In [6], the authors compare
a RANSAC-based algorithm with traditional optimization
schemes and find that in case of stereo camera calibration
the use of RANSAC seems unjustified, while in motion es-
timation it is beneficial. In [7], RANSAC was improved by
randomising its hyphotesis evaluation step and it was shown
that under some conditions this approach is significantly
more efficient than the standard RANSAC method. In [8],
the authors use RANSAC for articulated motion segmenta-
tion, and test their algorithm with both synthetic and real
data. They have found that their algorithm shows both the
properties of efficiency and robustness. The authors of [9]
extended RANSAC to handle the problem of simultaneous
parameter estimation of multiple models in data sets with
a high percentage of outliers. Experimental results on syn-
thetic data seem to support the robustness of their approach.

3. THE RANSAC PARADIGM
The RANSAC paradigm is capable of handling data con-

taining a significant percentage of gross errors by using ran-
dom sampling. That makes it convenient to be a building
block in robust statistical tools.

RANSAC is the abbreviation of RANdom SAmple Con-
sensus and it defines a principle for filtering non-consistent
data from a sample, or in other words, fitting a model to ex-
perimental data. The principle of RANSAC is the opposite

to that of conventional smoothing techniques: rather than
using as much of the data as possible to obtain an initial so-
lution and then attempting to eliminate the non-consistent
data elements, RANSAC uses as few of the data as feasible
to determine a possible model and then tries to enlarge the
initial data set with the consistent data.

Algorithm 1 shows how the RANSAC principle works in
general. In the first step, RANSAC establishes an inital set
S of minimum size s by randomly choosing sample elements.
Then, it builds a model with the help of set S. This will
be model M . In the next step, all elements that can be
approximately modelled by model M (i.e., that are within
some error tolerance from M) will be collected into set S∗,
the consensus set of S. If the size of set S∗ is satisfying, then
the algorithm calculates the final estimation M∗ (based on
set S∗) for the missing parameter and it ends. If set S∗ is too
small, then the algorithm drops its intermediate results, and
starts again by establishing a new random set S. In the case
when the algorithm is unable to find a suitable consensus set
S∗ in some upper bounded number of trials, it can either end
in failure or it can give an unprecise estimation based on the
largest consensus set found during the operation.

Algorithm 1 RANSAC Pseudo-Algorithm

1: while No. of trials ≤ Max trials do
2: Randomly select s data elements (S)
3: Instantiate the model M based on S

4: Select all data elements within some error tolerance
from M (S∗)

5: if #(S∗) > threshold then
6: Instantiate the model M∗ based on S∗

7: Return
8: end if
9: end while

10: Compute M∗ on the largest S∗ or terminate in failure

For example, if the task is to fit a circle to a set of points
with two-dimensional coordinates, then the above algorithm
would randomly choose three points for the initial set S

(since three points are required to determine a circle), and
it would fit a circle to this three points (this circle would be
model M). Then, the algorithm would enlarge the initial
set with all the points that are not too far from the arc of
the circle (this would be S∗, called also the consensus set
of S). If the size of the consensus set is above a limit, then
the algorithm would finish by fitting a final circle on all the
points within the consensus set. If the consensus set is too
small, then the algorithm would drop S and would retry to
establish a suitable S∗ by picking another three points and
running the algorithm again. If after some number of trials
the algorithm did not find a suitable consensus set, it would
finish with the best possible fit (that would include more
errors than desired) or would return with an error message.

The RANSAC paradigm is used in many applications,
e.g., geography or computer vision (see Section 2). How-
ever, to the best of our knowledge nobody has applied it to
resilient aggregation so far. Usually, it is impossible to pro-
tect the sensor nodes from malicious mishandling, therefore
we need resilient aggregation techniques to treat the situa-
tion of receiving some amount of invalid data. RANSAC is
able to handle data that contains a significant percentage of
invalid elements, and that makes it suitable for environments
such as sensor networks where the sensors can be affected



by compromising their measurements.
Up to this point, we have only presented a general para-

digm for handling invalid data content in a sample. In Sec-
tion 4 we introduce our attacker model and then we show
how the paradigm can be applied against this attacker.

4. THE ATTACKER MODEL
Our RANBAR algorithm is applied against an attacker

who can distort some sensor measurements. The attacker
has limited power resources, but he has control over some
part of the sensor network, thus he knows the concrete values
measured by the compromised nodes and he can arbitrarily
modify the values that will be sent to the base station by
the compromised nodes. The attacker knows the RANBAR
algorithm in detail, as well as the aggregation function, but
he cannot control them since they run on the base station,
which is assumed to be secure. The attacker also knows that
the sample is normally distributed. The sensors communi-
cate with the base station by cryptographically protected
messages, so the attacker cannot modify the messages af-
ter they have been encrypted. Thus, the attacker cannot
modify the readings of the non-compromised sensors. The
attacker’s objective is to cause as high a distortion in the
aggregation result as possible by altering the measurement
of the compromised sensors.

However, it is not straightforward to determine what the
best possible attack is. The attacker may attempt to achieve
a high distrortion in the aggregation result by introducing
highly extreme values in the list of measurements, but then
he risks that those values will be filtered out by the RAN-
BAR algorithm. In other words, introducing highly exteme
values may not be the best strategy. On the other hand,
a small modification of the sensor readings, while probably
being unfiltered, likely results in a small distortion. Due to
the complexity and the probabilistic nature of the RANBAR
algorithm, finding the best attack that achieves the highest
possible distortion seems to be a very difficult problem. We
postpone the investigation of this problem for the future.

As a first step, in this paper, we investigate the simplest
attacker, whom we call the Peak Attacker. The Peak At-
tacker is a näıve attacker who simply modifies the measure-
ment values of all the compromised sensor nodes to one
common value. That implies a peak in the histogram of
the sample received by the base station (hence the name).
The Peak Attacker is able to set this peak to an arbitrary
place in the histogram, in other words, he can modify the
measured values to an arbitrary value. The intuition behind
the choice of this attacker model is that it models well the
behaviour of a real-world attacker who simply goes to the
temperature sensors and lights a lighter near to them.

The Peak Attacker is characterized by the proportion of
sensor nodes he is able to compromise (this proportion is
denoted by κ). This means that their measured values are
replaced with a common value that is best suitable for the
attacker. κ is theoretically upper bounded by 0.5, since
for a higher κ no defence is possible. The attacker wants
to distort the aggregate as much as possible, therefore he
chooses the common replacing value that maximizes the dis-
tortion. Since the details of the RANBAR algorithm are
known, the attacker can compute this common value. This
is the motivation behind assuming always the maximum at-
tack strength in the simulations in Section 6 (worst case
simulations).

5. THE RANBAR ALGORITHM
The RANBAR algorithm filters out outlier measurements

from a sample. To do this, we need to know something
about the sample to have the possibility to distinguish be-
tween outlier and outlier elements. For this, we assumed
that the unattacked sample follows the empirical Gaussian
distribution, but we assumed nothing about the expected
value or the standard deviation of this distribution. Nev-
ertheless, the RANBAR algorithm is not restricted to the
i.i.d. case. We are currently working on a correlated data
model, see Section 7.

The operation of the RANBAR algorithm is as follows (see
Algorithm 1). The base station receives the sample compro-
mised previously by the attacker. The sample is the input
of the RANBAR algorithm. First, a set S of minimum size
will be randomly chosen to establish a preliminary model.
The size of set S is s, and the model M is the theoretical
histogram of the empirical Gaussian distribution with the
expected value of

θ̂ =
1

s

s
∑

i=1

Si (1)

and with the variance of

σ̂
2 =

1

s − 1

s
∑

i=1

(Si − θ̂)2 (2)

with the restriction that σ̂2 cannot be 0. Si denotes the
ith element of set S. We note that the RANBAR algorithm
could be applied to any type of parametrized1 distributions,
but the initial estimation for the expected value and for
the standard deviation would have another form. Generally
speaking, our RANBAR algorithm uses the Maximum Like-
lihood Estimation (MLE) to obtain the initial parameters θ̂

and σ̂2.
After the probability density function (PDF) of the model

M is calculated, the algorithm checks whether the histogram
of the sample is consistent with the PDF of the model M

or not. The bins of the histogram are determined by divid-
ing the elements into 10 equiwidth buckets after cutting the
upper and the lower 0.5% of the sample. The consistency
check is done by repeated steps the following way.

1. First, the algorithm normalizes the histogram of the
elements, i.e., it ensures that the area under the his-
togram is equal to one.

2. Then, it calculates the distance between the PDF of
model M (denoted by p(x)) and the histogram of the
sample (denoted by h(x)), where the distance is de-
fined by

d =

∫

|p(x) − h(x)|+, (3)

where

|x|+ =

{

x x ≥ 0
0 x < 0

(4)

1In case of non-parametrized distributions the RANBAR
algorithm cannot work without prior analysis. Considering
such a situation, we first have to approximate the underlying
non-parametrized distribution with a parametrized one, and
this has to be done when there is no attack. After this
initializing step, the RANBAR algorithm can be applied to
that parametrized distribution.



3. Finally, it drops one element from the bin of the his-
togram corresponding to the maximum |p(x) − h(x)|+.

If the distance becomes smaller than δ, this repetitive phase
ends.

The remaining sample elements constitute the set S∗,
called also the consensus set of S. If the size of S∗ is smaller
than a required size t then the algorithm starts again from
the first step, otherwise S∗ will be forwarded to the aggre-
gator. There is an upper bound on the maximum number
of retrials denoted by f . If there were more iterations than
f , the algorithm ends with failure. The estimator can be of
any kind; here we use the average to estimate the expected
value of the distribution of the sample. The value produced
by the aggregator is M∗.

The RANBAR algorithm has four parameters that have
not been defined yet. These are the size s of the initial set
S, the required size t of the consensus set S∗, the maximum
permitted number f of iterations and the error tolerance δ.

The size s of the initial set is desired to be as small as pos-
sible according to the RANSAC paradigm. For the RAN-
BAR algorithm, we need to establish the theoretical his-
togram of a Gaussian distribution. The Gaussian distribu-
tion has two parameters, the expected value θ and the stan-
dard deviation σ. A rough estimate for the expected value
can be based on a single element from the sample. Similarly,
for an estimate on the standard deviation we need at least
two elements. This was the motivation for the choice

s = 2 (5)

The required size t of the consensus set is the most im-
portant parameter of the algorithm. However, the RANSAC
paradigm does not give us any hint about the correct choice
of its value. If t is small, then the algorithm has a higher
probability to succeed, but the aggregate at the end will
contain a high level of error caused by an attacker. If t is
too big, the algorithm cannot work because of the high de-
mand on the number of elements in the final set. In general,
we have no information about the percentage of compro-
mised nodes, but we require the algorithm to work even in
extreme situations, e.g., when only half of the network is
uncompromised. That is why we have chosen

t =
n

2
(6)

where n is the total number of sensor nodes in the network.
The maximum number f of iterations can be determined

analytically in the following way.

f · P (good fit) = 1, (7)

since we require to have one good fit in f trials. Here
good fit is defined as

{good fit} = {θ − ǫ1 ≤ θ̂ ≤ θ + ǫ1 ; σ
2 − ǫ2 ≤ σ̂

2 ≤ σ
2 + ǫ2}

= {θ̂ ∼= θ ; σ̂
2 ∼= σ

2}, (8)

where ǫ1 and ǫ2 are small. Thus

P (good fit) = P (p(x) ∼= h(x)) (9)

= P (θ̂ ∼= θ, σ̂
2 ∼= σ

2) (10)

= P (θ̂ ∼= θ) · P (σ̂2 ∼= σ
2) (11)

since the sample is i.i.d. and therefore the Fisher-Bartlett
theorem is applicable in the last step. The distribution of θ̂

is N (θ, σ√
s
), therefore

P (θ̂ ∼= θ) =
1√
πσ

∫ θ+ǫ1

θ−ǫ1

e
−

(x−θ)2

σ2 dx (12)

=
1√
πσ

∫ ǫ1

−ǫ1

e
−( x

σ
)2

dx (13)

As a consequence of the Fisher-Bartlett theorem, s−1
σ2 σ̂2 fol-

lows the Chi Square distribution with s − 1 degrees of free-
dom, thus the probability density function of σ̂2 is s−1

σ2 χ2
s−1(

s−1
σ2 x),

therefore

P (σ̂2 ∼= σ
2) =

s − 1

σ2

∫ σ2+ǫ2

σ2−ǫ2

χ
2
s−1(

s − 1

σ2
x)dx

∣

∣

∣

∣

∣

s=2

(14)

=
1

σ2

∫ σ2+ǫ2

σ2−ǫ2

( x

σ2 )−
1
2 e

− x

2σ2

Γ( 1
2
)2

1
2

dx (15)

=
1

σ
√

2π

∫ σ2+ǫ2

σ2−ǫ2

1√
x

e
− x

2σ2 dx (16)

As it can be seen from (13) and (16), the value of f de-
pends on σ. However we would like to keep σ out of the list
of incoming parameters. Thus, we have chosen to determine
the value of f with the help of empirical analysis. We have
tested the algorithm with a couple of f values and we have
found that the choice of f does not really affect the distor-
tion of the final aggregate, but there is a trade-off between f

and the probability of finding a good consensus set S∗. If f

is small then there is a great risk that the algorithm will not
find a suitable model, and by increasing f this probability
decreases, however, the running time increases. Based on
empirical analysis, the choice of

f = 15 (17)

seems to be convenient. We note that in [3] the authors
propose a probabilistic calculation method for f . In our case
it is not applicable, because we do not know the parameter
σ.

The error tolerance δ is defined as the stopping criterion
of the algorithm. When d becomes smaller than δ, the repet-
itive phase of the algorithm ends. Thus, δ can be considered
as an accuracy level requirement. If δ is too big, the out-
put of the algorithm can be far from the real expected value
of the uncompromised sample. If δ is too small, the algo-
rithm may can not shape h(x) to be enough close to p(x),
thus it ends in failure. A suitable error tolerance level δ can
be obtained by testing this metric in the unattacked case
and for different proportions of compromised nodes. In the
test cases, we have tested all the reasonable δ values for
some typical attack strengths (denoted by κ), and we have
prefered those δ values by which both the average and the
variance of the distortion was small. The suitable δ values
for different proportions of compromised nodes are listed in
Table 1. A value compatible with all choices of κ is

δ = 0.3 (18)

is a proper choice for all cases.
Hereby we have defined all the parameters of the RAN-

BAR algorithm. In Section 6 we present our simulation
results.



Table 1: The suitable δ values for different κ values
κ δ

0 0.25 - 0.35
0.05 0.3
0.1 0.25 - 0.3
0.15 0.2 - 0.3
0.25 0.2 - 0.3
0.35 0.25 - 0.3
0.45 0.2 - 0.3

Table 2: Simulation parameters
µ and σ are unknown to the algorithm

Parameter Value Parameter Value

sample distr. N (µ, σ) s 2
n 100 and 1000 t n

2

µ 0 f 15
σ 1 and 5 δ 0.3

6. RESULTS OF THE SIMULATIONS
To prove the effectiveness of the RANBAR algorithm we

have tested it in a simulation environment with the help
of Matlab. The sample was generated by the randn func-
tion. The Peak Attacker was simulated by a function which
replaces those sample elements to a common value, which
correspond to the proportion determined by κ. This replace-
ment was done in the wide surroundings of the real expected
value of the sample with fine granularity. This can be consid-
ered as building a peak in the histogram of the sample, and
moving it slowly from one side to the other. In each of the
positions during this movement the distortion is obtained.
The distortion is defined as the difference between the real
average and the average calculated by the algorithm.

To obtain the maximum distortion reachable by the Peak
Attacker, we have made 50 simulation runs for different val-
ues of κ (i.e., the proportion of compromised nodes). Fig-
ure 1 shows our simulation results. The x axis represents the
different values of κ, the y axis corresponds to the distortion.
The points in the figure represent the maximum distortion
in the average of the numerous simulation runs. The max-
imum distortion of a simulation run is obtained by taking
the maximum among the distortions given by the different
peak positions. The parameter values of the simulations are
listed in Table 2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

1

1.5
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Figure 1: RANBAR simulation result (σ = 5)

As one can see, the distortion is always upper bounded for
κ < 0.5, in other words, the breakdown point of the RAN-
BAR algorithm is 0.52. In addition, the distortion never
goes above σ, which means that the attacker has very lim-
ited attack strength even if he controls about half of the
network. The straight line in Figure 1 is a regression line on
the points which is applied to emphasize that the algorithm
degrades very slowly while κ goes to 0.5. The explanations
of the linear growth of the distortion is the following. With
increasing κ, the attacker alters increasing number of sensor
readings. If the RANBAR algorithm operates well, these
compromised elements will be filtered out, thus the number
of elements in the final average calculation decreases. This
implies growing inaccuracy, i.e., growing distortion.

In Figure 2, we have compared the resilient aggregation
methods suggested by Wagner in [1](i.e., trimming and me-
dian) with RANBAR in case of the Peak Attacker. The hori-
zontal axis corresponds to different attack strengths, the ver-
tical axis corresponds to distortion of the algorithms. The
stipple line shows how the 5% trimming method performs.
The idea of trimming is that if there are some compromised
readings then we should drop the upper and the lower 5-
5 percent of the readings (5% trimming) and calculate the
average of the remaining sample as the estimation of the
real average. It is a relatively straightforward method and
it works well until the proportion of compromised readings
stays below the prespecified trimming level, but if this con-
dition does not hold, the distortion of trimming goes to in-
finity. In other words, the 5% trimming has a breakdown
point of 0.05. Of course, the trimming level can be lifted up
to 50%, but with this the accuracy of the method declines.
Thus, there is a need to precisely foretell the proportion of
compromised readings the method has to encounter, but in
a real life situation this information is usually not available.

The same problem occurs with the truncated average too,
which is not shown in Figure 2. The truncated average is
another näıve approach to handle outlier elements by per-
forming the average calculation only after a mapping phase.
The mapping of element x to the [l, u] interval is done by
the following rule. Let trunc[l,u](x) be x if l ≤ x ≤ u, l

if x < l, and u if x > u. The truncated average is the
average of the truncated elements (i.e., trunc[l,u](xi)). The
mentioned problem with this method is that it needs l and
u as input parameters. In general, the [l, u] interval has to
contain the expected value of the distribution of the sample,
otherwise the method gives a misleading result. However,
one of our preconditions was that we do not know the ex-
pected value of this distribution, thus we cannot make ap-
propriate guesses to l and u. This means that the truncated
average method is not applicable in our model. Moreover,
the truncated average method was found to be worse than
the trimmed average method from resiliency point of view
in [1], therefore its application has no advantages.

As a consequence, the median is the only rival of RAN-
BAR. The results of the median calculations for different
values of κ are represented with the dotted line. The me-
dian is defined as the middle element(s) of the sorted sample.
The median has a breakdown point of 0.5 similarly to RAN-
BAR. This means that both algorithms can tolerate up to
50 percent of compromised nodes. The lesson of Figure 2

2The breakdown point is defined as the fraction of data that
can be compromised while the error of the estimator remains
bounded.
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Figure 2: Comparison of RANBAR, median and the
trimming calculation (σ = 1)

is that the median calculation and the RANBAR algorithm
produce similarly distorted estimates for κ < 1

3
, but for

higher κ values the results of the median calculation rapidly
decline while the results of RANBAR are still close to the
real average of the original sample. The explanation for this
is that using the median method one compromised sample
element can alter the result by changing it to its neighbour
in the row of sorted elements. For more compromised ele-
ments the result can be as many indices far from the real
median as many compromised readings are presented in the
sample. Supposing a normally distributed sample by which
the majority of elements are located closely to the real me-
dian, the attacker has to compromise about one third of
the sample to reach a small distortion, but after this, each
compromised node can spoil the median significantly. In
contrast to this, the result of RANBAR does not diverge
notably from the real average even for high values of κ. Re-
call that for example κ = 1

3
does not mean that the attacker

controls everything in 1
3

of the network (e.g., he cannot dis-
rupt the communication protocols), but he is able to alter
the readings of 1

3
of the sensors.

In conclusion, we can summarize the result of the com-
parison by noting that while trimming is a natural way to
defend against outliers, it is not easy to determine the suit-
able level of trimming. The median calculation incurs only a
small computation overhead and still produces precise esti-
mates for small proportion of compromised nodes, while the
RANBAR algorithm is applicable in all conceivable attack
strength cases with more computational overhead. How-
ever, RANBAR always produces reliable estimates even for
a higher proportion of compromised nodes.

7. CONCLUSION AND FUTURE WORK
We have developed an algorithm for resilient aggrega-

tion in sensor networks which can handle a large propor-
tion of compromised sensor readings. We have tested our
algorithm in several cases with different parameter values
and we have found that it works well for arbitrary attacker
power in a simple attacker model. We have compared our
algorithm with known robust estimators and we have found
that our RANBAR algorithm outperforms the median and
the trimmed average for a higher proportion of compromised
nodes.

The work presented in this paper is in progress. We in-

tend to further study the behavior of our model in other
attacker models. We also intend to examine scenarios where
in-network processing is applied. Another interesting future
direction that we intend to explore is to consider redundant
or highly correlated sensor readings. We believe that as-
suming correlated measurements will further limit the capa-
bilities of the adversary, as attack detection becomes easier,
especially if the adversary is not aware of which sensors are
correlated.
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