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Abstract

In this paper, we consider the problem of resilient data aggregation sosartworks, hamely, how to aggregate sensor readings collected by
the base station when some of those sensor readings may be compraddusethat an attacker can easily compromise the reading of a sensor
by altering the environmental parameters measured by that sens@rédéent a statistical framework that is designed to mitigate the effects
of the attacker on the output of the aggregation function. The main novelroapproach compared to most prior work on resilient data
aggregation is that we take advantage of the naturally existing correlattaredre the readings produced by different sensors. In particular,
we show how spatial correlation can be represented in the sensor ketatarmodel, and how it can be exploited to increase the resilience of
data aggregation. The algorithms presented in this paper are flexiblgretmbe applied without any special assumption on the distribution
of the sensor readings or on the strategy of the attacker. The effeetiveof the algorithms is evaluated analytically considering a typical
attacker model with various parameters, and by means of simulatioideong a sophisticated attacker.
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1. Introduction gregation functions include the average, the minimum, aed t
maximum.

Wireless sensor networks are considered as a promising tech A potential problem is that sensor readings can be compro-
nology that has a wide range of applications including envi-mised before they reach the base station. This can be adhieve
ronmental monitoring for agricultural and ecological ppsps, Py an attacker either by modifying the content of the dat&pac
wild life monitoring, remote patient monitoring in electic  €ts that carry the sensor readings, or by altering the emvien-
health care systems, building automation, and reconmaissa tal parameters around some sensors and corrupt their gsadin
applications for military purposes. Sensor networks tgijc While the former type of attack can be detected by standard
consist of a large number of sensor nodes and a few base s@YpPtographic message authentication and integrity ptiote
tions. The sensor nodes measure some physical phenomeli§ghniques, the latter type of attack cannot be detectedhreo
(e.g., temperature, humidity, vibration) that are imporiathe ~ vented, by cryptographic means. In addition, the latteetgp
given application, and report their sensor readings to tieeb attack is relatively easy to carry out: Firstly, an attackan
stations (typically via wireless communication channefsy ~ €asily approach a sensor node, as sensor networks typasally
both the number of the sensors and the amount of the measu@imed to operate in an unattended manner. Secondly, dogupt
ments that they perform can be large, in many applicatidres, t the measurement of a nearby sensor does not require sephisti
base stations aggregate the individual sensor readingsaint cated mechanisms, but in most of the cases, everyday taols ca
compact report. Aggregation can be useful to keep the amouie used effectively (e.g., a lighter, a pocket lamp, or asytds
of information that need to be handled under control, and tavater can be used to corrupt temperature, light, and huynidit

improve the energy-efficiency of the network. The typical ag Mmeasurements, respectively). Unfortunately, many uszgul
gregation functions (including those mentioned aboveyare
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The goal of resilient data aggregation is to alleviate thodopr gregation, deviation detection and attack detection clemigig
lem described above. More specifically, resilient dataeggyr  correlation.
tion schemes try to minimize the effect of an environmemralt A research paper that aims at data aggregation considering
ing attacker on the output of the aggregation function. Hage correlation is [30], the authors of which propose an aggrega
the related solutions often make the simplifying assummptio tor node election mechanism that aims at load balancing too.
that the sensor nodes produndependenand identically dis- According to this mechanism, the network is partitioned int
tributed measurements. In reality, however, the measurtsme equally sized sectors, wherein the aggregator nodes —ithat a
made by the sensors always have some kind of relationshigelected considering the correlation — collect the data fieeir
among them. This relationship can be either temporal correchildren in case an event occurs. In [29], correlation idaiga
lation (i.e., when the nodes’ sensing results show regulari in in-network aggregation. The highly correlated nodesaare
in time), or spatial correlation (i.e., when the nodes’ pbgs  sumed to have similar measurement results, therefore ooy
proximity is the basis of the relationship). of them is sufficient to fulfill the sensing task. Relying oisth
Contrary to several prior work on resilient data aggregatio assumption, the proposed solution reduces the numbemsf-tra
in sensor networks, in this paper, we assume that the sensorissions and provides approximate results to aggregatéegue
readings areorrelated In particular, we will focus on spatially by utilizing the spatial correlation of sensor data.
correlated measurements. The rationale is that, in mosteof t There are papers that aim at detecting anomalies (outliers,
sensor network applications, one needs to have a densely déeviations) in the system usually by exploiting the phenoome
ployed network in order to satisfy the sensing coverage and r of correlation, but not in the context of sensor network$1#],
dio connectivity requirements. Consequently, sensorsax-p the authors propose a method to detect anomalous network con
imity will measure spatially correlated values of the sarhe-p ditions with the help of PCA (Principal Component Analysis)
nomenon where the degree of correlation increases as the iwhile in [17], one can read about an outlier detection scheme
ternode distance decreases. that uses approximate computations in order to acceldnate t
Spatial correlation can be exploited to cross-check the@en operation, and detects outliers with the help of the so dalle
readings, testing whether there is an (environment aiigatr  'multi-granularity deviation factor’. While these paperg aot
tack or not. This naturally existing characteristic of tixenple  designed for sensor networks, there is a related solution fo
produced by the sensor network helps in improving the attackensor networks as well [16], in which the authors deal with
detection algorithms proposed so far in this context. Furth the problem of identification of deviating values in streagi
more, considering correlation is a significant step towaas  data. Regrettably, this latter paper assumes a speciabrietw
ing a more realistic data model of sensor networks in generatopology with a powerful backbone, and applies kernel dgnsi
Hereinafter, we introduce our sensor network model that igstimators, thus restricting itself to i.i.d. samples.
able to handle spatial correlation, and we also introducavaln These papers do not consider attacks, only anomalies (or
resilient data aggregation scheme developed for senser naiutliers, deviations). The main difference between thedom-
works that exploits the spatial correlation of the sensadiregs.  cepts is that anomalies are random events, while attacks are
Moreover, we study our proposed data aggregation scheme agentrolled events that aim at disturbing some functioieaiof
alytically and by means of simulation, and show how the efthe sensor network. The problem of defending such attacks in
fectiveness of attack detection can be improved by corisigler sensor networks is obviously important, hence, there ame mo
correlation. Our previously published short conferencpepa and more papers discussing countermeasures.
[20] deals with the same problem. This paper should be viewed An example of such papers is [22], in which the authors pro-
as a follow-up and substantially extended version of thattsh pose a method to reduce the effect of unauthorized dataéuakser
paper. by sybil and compromised nodes. The paper exploits correla-
The rest of this paper is organized as follows: In Section 2tion using a modified, sliding-window t-test that will poiotit
we summarize the papers considering correlation in sereter n the nodes that are suspected to be captured or sybil nodks, an
works and the papers related to resilient aggregation. i3 Sethese nodes have to authenticate themselves in this case. If
tion 3, we present our sensor network model. In Section 4, waode fails to authenticate itself, its message will be deajgnd
introduce our novel correlation-based resilient dataeg@gion  the malfunctioning will be reported to the base station. #heo
approach, and we evaluate its efficiency. Then, in Section Selated paper is [28], in which one can read about an en-route
we answer some emerging questions, and finally, in Section 6iltering method against injected false messages usingpteult
we conclude our work and propose some interesting future reMACs (Message Authentication Codes). The main idea here is
search topics. that the sensor nodes have disjoint sets of cryptograplyis, ke
and the nodes that sense the same event can attach multiple
MACs calculated by each of them to the message. Thus, if an
2. Related Work attacker wants to forge a message, it has to forge severaldVIAC
as well, but this forged message will be detected during its
Even though the naturally existing phenomenon of correlaroute to the base station as the forwarding nodes can check th
tion is sometimes neglected in research papers considegimg validity of the MACs with some probability. Regrettably,ine
sor measurement data, it can be exploited in many ways. In thiber [22] nor [28] propose resilient solutions: these sohg
following, we present the related papers in the field of dgta a are not applicable against an outsider attacker who alkers t
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measured parameters of the environment in order to have ttf&1. Assumptions on the adversary
sensors perform falsified measurements. This kind of at&ck

sults in messages that are cryptographically sound b fals  The adversary we consider is able to produce some kind of
content. This is a serious security threat in the sensoratésy  "offsets” which are added to the measurements of the sensors
as already mentioned in Section 1. These offsets are under the control of the adversary, but are
Some researchers already considered the problem of sugnsidered to be independent and identically distributte-
messages that cannot be filtered out using cryptographakshe gver, those are considered to be of the same kind as the sensor
however, usually under the assumption that the measuresmerfeadings, e.g., temperature in case of thermometer seasors
of the sensors are independent. One of the first researcispapqqght in case of photometer sensors. This attack can tottly
on this topic was [26]. The author investigates the ressieof  tort the aggregate considering the commonly used aggoegati
the commonly known aggregation functions like, for example fynctions like the average or the min/max.
the average, the min/max, and the median. Not surprisingly, we do not restrict the adversary in the number of sample
most of these function are not resilient even against one conklements he is able to compromise, but we assume that the
promised sample element (which can originate from only oneydversary’s knowledge do not extend to the distributiorhef t
compromised node), and only the median is declared to be reample produced by the sensor network, neither to the size of
silient. A question naturally arises: what can we doifwe dbon the sample gathered by the base station in a given query (some
want to calculate the median of the sample, but somethireg elspf these assumptions will be relaxed later in Section 4.2.3)
in a secure way? In [9] the authors address the same problefnally, we do not consider any particular distribution fbe
of compromised sensor readings. However, this paper showszgtacker’s offset.
method only for attack detection. In the model of [9], the at-  An example of such an attack is the following. Let us assume
tacker does not only want to cause a distortion in the outpufhat we have a sensor network on the vineyard that measures
of the aggregation function, but he also wants to remain undespme microclimate characteristics by calculating the max
tected. This trade-off helps in upper bounding the streafhe  (or the average, etc.) of the measurements of the individual
attacker notably. Another paper of the same authors [8sgve nodes [2,7,6,23]. The owner of the vineyard is assisted by th
complex answer to this question by introducing the RANBAR gggregated reports in the decision making about what task is
algorithm. This algorithm is able to do statistical sample fi needed to be done on the vineyard, which ensures the maximum
tering, thus, it helps to obtain a cleaned sample which can bgyality of the grapes. Obviously, a malicious outsider casilg
a basis for secure calculation of any kind of aggregates) evemisiead the aggregate by approaching only one sensor node
those that were declared to be not resilient in [26]. and compromising its measurement for example by a lighter, o
In the most related paper [10], one can read about a seciy ysing chemicals, according to the measured charaatsrist
rity solution that already assumes compromised nodes and thrhe misleaded aggregate can encourage the owner to perform

defense against them with the help of correlation. The astho inappropriate operations (e.g., grape harvesting in wiimg,
employ PCA (Principal Component Analysis) in order to detec inappropriate usage of chemicals, etc).

the misbehaviour of the nodes and filter out their measur&snen  another example can be considered in the case of bridge

According to the simulation reSUltS, the proposed meth'OdOImonitoring sensor networks that are dep]oyed to perma-
ogy overperforms conventional anomaly detection appre&ch nently monitor the structural and seismic conditions of the
However, the paper assumes a special network topology Withridge [15,4]. Even one compromised measurement in the ag-
more powerful primary nodes that, at the same time, cannqjregate of these measurements can cause false alarms for the
be compromised. Moreover, the a priori assumption in PCAyridge maintainers, and what is more, suppressed alarms can
is that the most important components (i.e., sensors) ageth |ead to disasters because of the missing maintenance.
that have a high variance in their values, which is not true in e emphasize that the mentioned attacker does not have to
general in our case. tamper with the nodes or reverse-engineer the crypthograph
After having presented the related literature, in the folt@  keys, neither needs he to destroy the communication pristoco

sections we introduce our solution for resilient data agafe ysed in the network — he only needs physical proximity!
tion in sensor networks. Our approach, described in detail i

Sections 3 and 4, exploits correlation to ensure the resitie
of data aggregation even in case of an attacker's activity. ~ 3.2. The data model

In our envisioned application, the base station collectamas

ple of measurements from the sensors and tries to aggregate

them in a secure way. Each sensor contributes to this sample
3. General Assumptions with its measurement by replying to the base station’s girery

an encrypted message. (We note that assuming even public key

In the next subsection, we present the set of assumptions wancryption in sensor networks is not far-fetched according

made on the attacker, which together is called attacker mod¢18]. Moreover, we note that our scheme supports distribute
in the security literature. After that, we present the dataleh  in-network aggregation as well, see Section 5 for the rdlate
that we employ for the calculations throughout the paper.  discussion.) Upon reception of the messages the basenstatio



decrypts the messages and aggregates their information cof. Exploiting Correlation in Resilient Data Aggregation
tent. The aggregation is done in two steps: At first, the sampl

is analyzed and a decision is made whether it is compromised Correlation among sample elements is a naturally existing
or not. After that, an aggregation step is performed dependi phenomenon. In this section, we show how this correlation ca
on the previous decision. The aggregation step is diffél@nt pe exploited. We start with a simplified scenario of two nodes
the two outputs of the decision function, namely when an atin Section 4.1 in order to get a first insight into the problem
tack is detected or when no attack is detected. If there is ngnd to prepare the ground for the general case. After that, we

attack detected then usual aggregation is performed,vais&@r generalize our model in Section 4.2 for arbitrary number of
the final output is calculated by extrapolation based ontke p nodes and attack strengths.

vious outputs (see Figure 1). This separation of cases helps

4.1. The two-nodes scenario

As a first step, we investigate the case when there are only
two sample elements (i.es,= 2), and there is at most one el-
ement that is attacked (i.¢.< 1). Our primary aim now is to
pursue attack detection on this 2-element sample with alsmal
error probability (both false negative and false positivié)en,
based on this decision, we are able to perform data aggoagati
Fig. 1. Resilient aggregation scenario including the &teacand the data of the same 2-element sample with a remarkably lowered dis-
processing part tortion, where the distortion is defined as the expectedevafu
the squared absolute difference between the aggregate of th
sample and the aggregate in case there is no attack. Our sec-
ondary aim is to show how correlation influences our results

to obtain a significantly smaller distortion at the outputieg ~ calculated for the distortion.
Zﬁggigjgt‘g;;fr‘ft“’” than having done the aggregationomtth - T Der(:, ) Attack Detection Algorithm
We assume that the sensor network data is normally dis-1: Randomly select one element from the sar{pig x-} and
tributed. The choice of the normal distribution is a common et the selected element be denotedalythe remaining
assumption in practice when measurement data is considered ©On€ byz"
However, we note that the algorithms we propose in the fol- 2: Calculate the(1 — )% confidence interval for” condi-
lowing sections are applicable to any kind of sampling @istr ~ tioned onz’ according to the p.d.bx, |x, (:[2")
butions; the assumption on the normal distribution is used o~ 3: if 2" is inside this confidence interviien
in the derivation of the analytical and simulation resuftstiis 4 D = 0 (* no attack detected *)
paper. 5. else
In order to be able to measure the gain of our approach, weé: D =1 (* attack detected *)
model the sensor network to produce measurements that cad: end if
be represented by identically distributed random varg ket
instead of assuming the independence of these randomlesriab  The solution we propose to fulfill our primary aim is the
we exploit the correlation among them (in other words, weAttack Detection AlgorithmDet(z1,x2) (Algorithm 1). This
consider dependent random variables). Therefore, oulosensalgorithm randomly chooses one of the two elements from the

Sample ———>| Attack |7

Enhanced Data Aggregation Algorithm

network data model consists of the following elements: sample and computes tlie — «)% confidence interval for the

— n: number of sensor readings in the sample remaining one conditioned on the chosen one, where the

— t: number of readings compromised by the attacker false positive probability. If the remaining one is insidast

— X,;: normally distributed random variable denoting tliie  confidence interval, then the output of the algorithm is that
uncompromised reading< ~ N (p,0), 0 <i < n) there is probably no attackX = 0), otherwise the algorithm

- rx, x, = r:correlation coefficient betweeX; and X, Vi, j, signals that an attack is detectdd &€ 1).
1#£ ] This straightforward approach already exploits correlaby

— G;: arbitrarily distributed random variable denoting the ad-using the conditional probability density functign;, | x, (-|-)
ditive offset produced by the attacke¥{ is independent of which is assumed to be known. In most of the cases this can

X, Vi) be a realistic assumption as the base station can perforsn dat
- Z; = X; + G;: random variable denoting the compromised gathering and can establish an estimatiorpgf x, (-) just
sample elementd)(< i < t) after the deployment of the sensor network when the probabil

As this model handles the dependence of the sensor meaf being already attacked is small. We note, however, that th
surements, it can help us to quantify the power of correfatio knowledge opx, | x, (+|-) does notimply the a priori knowledge
in attack detection. In the next section, we will show hovsthi of the p.d.f. of the measurement data at individual sensans.
quantification can be performed. example, a given conditional p.difx, | x, (-|-) gives a different



joint p.d.f. for different distributions o5, which then results investigate are the Bayesian decision and the Maximum Like-
in different marginal distributions fak;. Consequently, we do lihood decision.
not assume any a priori knowledge about the expected value of Informally, the Bayesian decision is concerned with making
the measurement data. a decision about the state of nature based on how probable
The output of the Attack Detection Algorithm can be appliedthat state is. Therefore, Bayesian decision theory playsdea r
in selecting the adequate way of data aggregation. If nalatta when there is soma priori information about the states we
is indicated then the sample can be handled in the usual wagre trying to classify. As we want to decide whether theranis a
e.g., its average can be calculated without the fear of wbtai attack occurred or not, the a priori information would be im o
ing a highly distorted aggregate. Otherwise, equipped thigh case the probability of facing an attack. However, our &gac
knowledge that the sample is compromised with high probabilmodel presented in Section 3.1 does not contain any kind of
ity, one can mitigate the effects of an attacker by handliveg t information about this probability. In other words, we da no
sample in a special way. Usually, dropping the compromisedely on assumptions about the attacker’s attacking freqgen
sample is the easiest method to apply, while extrapolatieg t or distribution in time. Therefore, the Bayesian decisibatt
current aggregate from the previous (unattacked) resalts c requires information about the attacking probability aatrime
guarantee a small distortion without relying on other infar  applied in our case.
tion. The type of the extrapolation can be suitably chosen to The Maximum Likelihood decision seems to be more attrac-
the characteristics of the data one is going to measure. tive in the scenario proposed in this paper. Generally, thg-M
This approach is formalized in the Enhanced Data Aggregaimum Likelihood approach decides to that state of nature for
tion Algorithm (Algorithm 2), where outpug is the aggregate which it holds that the value of the p.d.f. for the input cendi
of the input, while the output denoted by, is the minimum  tioned on that state is the maximum value among all the values
distortion output when we do not use outlier filtering,- is  of p.d.f’'s conditioned on other states for the same inpue Th
usually calculated as an extrapolation based on the oufput @ample received from the sensor nodes can be considereal as th
the previous uncompromised outputs. For examplg,. can  mentioned input, while the states of nature are 'attack’nar ’
be the output of the last run of the data aggregation algurith attack’. The problem with this approach is that without assu
when the attack detection algorithm detected no attack; thiing a concrete distribution of the attacker's additive effee

possesses the smallest distortion for ordinary samples. cannot figure out the p.d.f. of a vector of sample elements con
i : i ditioned on the class ’attack’. Therefore, regrettablg, khax-

Algorithm 2 Enhanced Data Aggregation Algorithm imum Likelihood decision needs too much information that is

1: Take both of the readings and apply the attack detectiofot available in our model and thus, it is not applicableesith

algorithm Det(z1, z2) in our case.

2: if Det(z1,x2) indicates an attacthen

3. Output =yeqsr

4: else 4.1.2. Evaluation of the Enhanced Data Aggregation

5. Output =y Algorithm under a Gaussian data model

6. end if To quantify the gain in the distortion of the output of the

Enhanced Data Aggregation Algorithm, we first have to eval-

The output of the Enhanced Data Aggregation Algorithm isyate the error probabilities of the Attack Detection Algjomi.
interpreted as the aggregate value of the current rounagUsi These probabilities are the false positive and the false neg-
the Attack Detection Algorithm and the Enhanced Data Aggrextive (3) probabilities.a is the probability of signalling an at-
gation Algorithm one can notably reduce the distortion & th 5ck in the unattacked case, whileis the probability of not
aggregate comparegl to the case when aggregation is pedormﬁgnalling the attack in the attacked case. In order to be tabl
without prior analysis. defines, we fix « t0 0.1 (i.e., we tolerate 10% of false alarms).

Moreover, for the evaluation we assume that the distributio

4.1.1. Why not using standard statistical decisions instead of G; is the Gaussian distribution with paramet@granda (i.e.,
Det(-,-)? G; ~ N(f1,5)). (We note that this assumption is only needed

Decision theory is a well-elaborated part of statisticdsit for the calculations below, Algorithm 1 and Algorithm 2 do
concerned with the topic of how to behave optimally undernot rely on it. We also note that a more general attacker will
uncertainty. The basic guideline in decision theory is mia be considered later and analyzed by means of simulation in
ing the expected loss encountered after the decision. @éner Section 4.2.3.) Here, the choice of the Gaussian distohbuti
speaking, we have the same objective in this paper: we want wimplifies the analysis and its two parameters allow us te con
minimize the distortion of the aggregation function. Thie  sider attacks of significantly different styles. Withouss$oof
distortion can be considered as the loss in our case, wléle thgenerality, we further assume that the first sample elengent i
decision we have to make is about signalling an attack or nocompromised, i.eZ; = X; + G;. Ast = 1, we can set aside
Why not using then well-known statistical decisions instebd the lower indices of the symbols corresponding to the atiack
inventing a new one? To answer this question we have to takiwusZ = X; + G. Based on these, theerror probability can
a deeper look at thmodus operanddf the decision algorithms be determined by averaging the two particular false negativ
proposed so far. The two most prevalent statistical dewisice  error probabilities corresponding to the two cases whewéi)



select the compromised element as the condition (i'es z)

— Y: random variable denoting the average of the sample ele-

or (ii) we select the uncompromised reading for the same role ments when there is no attack
(i.e., 2’ = x3). The averaging is justified by the fact that both Considering the first reading to be compromised (withous los

of these events have a probability @b to occur because of
the randomness of the selection. Formally,

1
B=5" +59) (1)
where
L 00 b2(2)
5 >:/ [/() Ptz (ulo)du p (v @
—o0 by (z
o ba(z)
:/ / DX,z (u, v)dudy 3)
—o0 Jb1(z)
9 oo bQ(CEQ)
B ):/ [ - pZ|X2(u|v)du}pX2(v)dv (4)
— 00 b1 o
oo bz(Ig)
:/ / Dz.x,(u, v)dudv (5)
— 00 bl(wz)

Theb(2), ba(2), b1(x2) andbs(x2) integration bounds are de-
fined with the help of the previously fixed false positive prob
ability as

bl(z) «
Px,|Xo (u\z)du = 5 (6)
oo N
| pxaxaulz)de =5 ™
bz(z)
bi1(z2) o
Px,|X, (u]xe)du = b) (8)
e @
[ pr(lez)du=5 ©
bz(.’tz)

respectively. Additionally, the correlation coefficienn i

px,,z(-,-) is calculated as

E[(Xo — ) (X1 + G — p— )]

s VT 4o
o
= TXI,XQW (12)

and the correlation coefficient ib; x,(-,-) iSrz x, = Tx,,2-

With the help of3, we can analyze our Enhanced Data Ag-

gregation Algorithm from its distortion’s point of view. Ake

of generality), the distortion in the first case can be exqgdss

dY|A=1)=E[Y —-Y[|[A=1] = (12)
=E[lY -Y]*|[A=1,D=1]-(1-p) (13)
+E[Y -Y|?|A=1,D=0] -3 (14)
= BlYor — VP (1= B)+ (2 %) - 5 (15)

While in the second case the distortion can be formalized as

dY|[A=0)=E[Y -Y]*|A=0] = (16)
=E[Y -Y]?|[A=0,D=1] a 17)
+E[Y -Y]’[4=0,D=0]-(1-q) (18)
= EYewtr — Y- (19)

To show how much gain our Enhanced Data Aggregation
Algorithm induces compared to a scenario where no attack
detection is employed, we defirg,,, as the improvement in
the distortion in case of an attack as follows:

= J0 47— [Eer = V-0 0) 4 1 4.5
1

4

(20)

(#*+35°) - (1-p) (21)
where we assume th#|Y, . — Y|2 is close to zero. In Fig-
ure 2, one can see a plot df,,, where the different curves
belong to different correlation coefficients. The horizdraxis
corresponds to the expected value of the attacker’s disiiii
(i.e., 1). For the calculations we chooge= 0, 0 = 1, andé =
1. We note that the choice &f in the rang€g0.5, 1.5] does not
alter the results significantly. In the figure, the steeplseasl-
ing lines show that the improvement in the distortion grows
with a growing difference betwegnand/i. The fact the curve
of r = 0.5 runs near to the curve of = 0.95 clearly indi-
cates that our approach considerably exploits even ctioeta
of moderate power.

As a second comparison, we show how much influence the
correlation has on the distortion. In Figure 3, one can see th
distortiond(Y|A = 1) for different values of the correlation
coefficientr. The horizontal axis represents the expected value

most interesting aggregation function is the average ts&cau of the attacker's distribution (i.e). The corresponding values
of its vulnerability (only one compromised measurement cany, the calculations argg = 0, 0 = 1, andé = 1. Here

totally mislead it) and its widespread usage, we considéred again, assuming tha|Y,,;, — y|2 is close to zero. we can

in our analysis too. To evaluate the distortion of the oufgfut

characterize the distortion as

Algorithm 2, we have to distinguish two basic cases: the case

when an attack happens, and another one when there is no MY|A=1) i(ﬂz + &2) B

tack. We introduce the following notations:

(22)

— A: indicator random variable denoting whether there is arin Figure 3, the difference in the form of the curves for the

attack or not (0 - no attack, 1 - attack)
— Y: random variable denoting the average of the sample

— Y. random variable denoting the minimum distortion out-

put in case an attack is detected

dependent cases (> 0) and the independent case £ 0)
shows that considering correlation helps in maintainingey v
moderate distortion in the aggregate in case of an attacknWhe
the sample elements are independent, the distortion cdnysed



attacked case (i.epx, .z Or pz x,). An attack is signalled if

T this quotient is smaller thaf. More formally, D = 1 if

e r=0

PXi,Xo (m)
30x,,2(@) + 5p2,x, (@)

<T (23)

whereT' can be obtained with the help of the false positive
probability «. Therefore,I" can be determined using that

o= [ (o) (24)
R

whereR is defined as

: ‘ : : : 1 1
exp. value of G R = {$ :le,XQ (x) < T(le,Z(m) + 7pZ,X2 (x))} (25)

2 2
Fig. 2. Calculated values fod;.,, for different values of the correlation After having the Maximum Likelihood decision described,
coefficientr we have to evaluate its probability of missed detectionsThi
can be formalized as

g=1=(5 [ rxs@+3 [ Gro@) (26)

5t - ==r=05
m— = 0.95

To be able to observe the effect of the Maximum Likelihood de-
ar cision on the distortion, we have putitin the Enhanced Data A
\ gregation Algorithm in place abet(-, -). Using the new values
i 5 of 3, the improvement in the distortion of the Enhanced Data
' Aggregation Algorithm can be calculated using Equation).(21
Figure 4 shows the results of the comparison of the Attack
e Detection Algorithm and the Maximum Likelihood decision,
e both as a building block in the Enhanced Data Aggregation Al-
‘ : gorithm. The corresponding values for the calculationg.ate
0 1 2 3 4 5 6 7 0, c =1, 6 = 1. As one can see from Figure 4, the improve-
e vale ol & ment in the distortion implied by the Maximum Likelihood de-
cision is higher than for the Attack Detection Algorithm iase
of low correlation, however, the difference becomes verglbm
if the correlation is higher. This difference is based onftwt
the adversary grows steeply wifia while in the dependent that the Maximum Likelihood decision takes advantage of the
cases the effects of an attack are strictly upper boundesh evknowledge of the distribution of the attacker’s offset. fiehe
when the correlation is moderate. fore, in this comparison, where this distribution is assdre
To understand the behaviour of Algorithm 1 more deeplybe known to the Maximum Likelihood decision algorithm, this
we compared it to the already detailed Maximum Likelihoodlatter can perform better than the Attack Detection Alduorit
decision. As mentioned in Section 4.1.1, the Maximum Likeli However, if the correlation is higher, the Attack Detectiln
hood decision is not applicable in our data and attacker inodegorithm performs as well as Maximum Likelihood decision,
however, its importance in decision theory lead us to compareven without relying on this extended knowledge. Neveebs|
its efficiency to the efficiency of Algorithm 1 in a significnt  we emphasize again that the Maximum Likelihood approach is
restricted model. The restriction is the following: we assu only applicable if one knows the distribution of the attatke
that the attacker’s distribution &spriori known. We emphasize offset, while the Attack Detection Algorithm does not neleid t
that this assumption is required for the Maximum Likelihood knowledge.
decision to be able to operate, and it should not be confused Figure 2, 3 and 4 clearly show that correlation has a sig-
with the assumption about the normality made only in ordemificant influence on the attack detection capabilities ajcAl
to perform the analysis of our approach; the Attack Detectio rithm 1 and therefore on the distortion that the attackebls a
Algorithm does not need to know the attacker’s distributionto cause in the output of Algorithm 2. Compared to the inde-
while the Maximum Likelihood decision needs. For the sakependent case (i.e., when= 0), considering the naturally exist-
of simplicity, we assume that the attacker’s distributiertie  ing correlation between the sample elements results inlemal
Gaussian distribution with known expected value and vagan distortion and allows the base station to make nearly asggrec
The Maximum Likelihood decision is the following. Let us decisions as for example the Maximum Likelihood approach
take the joint p.d.f. of the sample in case there is no attiaek ( which needs more knowledge about the attacker in order to be
px,,x,) and divide it with the joint p.d.f. corresponding to the able to operate. In other words, the attacker’s abilitiesaore

=1)

d(y | A

Fig. 3. Distortion caused by the adversary for differentieal of the correlation
coefficientr
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Fig. 4. Comparison of Maximum Likelihood decision and the Aki®etection Algorithm

restricted when the base station maintains a correlatieedd approach we are able to reduce the general problemsiz.,
data model. 2) to a special case (i.en, = 2) where we can apply our pre-
Using the preliminary data model consisting of only two viously introduced Attack Detection Algorithm and Enhatice
nodes from which one is possibly attacked we are able to quabdata Aggregation Algorithm.
tify the "strength” of correlation. The results justify osuspi- A sketch of the sample halving approach can be seen in Fig-
cion: exploiting correlation can help in developing datar@g  ure 5, in which a sample with six elements is represented by
gation algorithms for sensor networks that are more powerfucircles, where the white circles correspond to ordinarynelets
from the resilience point of view than algorithms not coesid and the black circle corresponds to an element that is compro
ing correlation. Now that the importance of correlationler¢  mised by the adversary. The sample halving approach divides
ified, we can go further by enabling our algorithms to elabo-the sample into two partitions in a random way and compresses
rate on data sets that are containing more than two elementhe two partitions independently from each other to obtain a
In Section 4.2 we will show how this generalization can besample of size two. As the first partition contains a compro-
performed. mised element its compressed counterpart is also condidere
compromised, but since the averaging blurs the effect ohthe

o . . versary the circle of the resultant value is grey insteadaxflb
4.2. Generalization using Sample Halving

Usually, sensor networks are imagined to contain a high num-
ber of sensor nodes, and in our simplified case the number of
nodes is strictly related to the sample size. Thus, in tHisec
tion we propose a generalized approach for attack deteatidn
resilient aggregation in sensor networks that is able tallean
a sample of arbitrary size. That means that in this subsectio
we consider samples for which
-n>2
-t > 1, i.e., the attacker’s strength is also considered to be

arbitrary

As the Attack Detection Algorithm and the Enhanced Data
Aggregation Algorithm are efficient considering a small sam Fig. 5. A sketch of the sample halving approach
ple, it is a natural idea to reuse them in this general case. In
the first step, one has to shrink a samplenoélements into To be able to use the Attack Detection Algorithiret (-, -)

a sample of two elements which can be achieved, for exanmand the Enhanced Data Aggregation Algorithm presented in
ple, by halving the sample into two partitions and compregsi Section 4.1, we have to obtain the conditional p.d.f. of ther-a
the partitions into one element each. The halving is done in age of the first partition conditioned on the average of tlee se
random way, i.e., each element has a 50% chance to get infnd partition, as instead ofy,|x, () we needpx %, (-[-) in

the first partition and the same holds for the second panrtitio Algorithm 1 to evaluate the corresponding confidence iaterv
too. The compression can be done for the two partitions inde the general case. Again, this can be obtained by perfgrmin
pendently from each other by e.g. averaging the halves. in ouneasurements just after the deployment of the sensor rietwor
case, the partitions do not need to have equal size but for simvhen the probability of being already attacked is small. We
plicity we require this property now. With this sample halyi  note that the knowledge ofy %, (|-) does not assume any-
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thing about the knowledge of the sampling distribution & th 2. 2¢09...0
measured parameter of the sensor network. M= (" " (31)
With this modified assumption we can reduce the problem 0...05 . .5

of resilient data aggregation on an arbitrary-sized sanepliee

already solved problem of data aggregation on a sample®f siz In this generalized case again, the first step is to formalize

two. Therefore, we are now able to perform attack detectiorihe false negative probability as

and resilient aggregation on a sample without restriction o

its size or the number of compromised elements. In the next, ) _ 1, ,1) | @)
: : =S (B +8Y) (32)

subsection, we formally evaluate the sample halving amgroa 2

4.2.1. Evaluation of the generalized algorithm under a where the(t,t2) superscript means that the first half of the
Gaussian data model sample containg; compromised elements, while the second
Jralf containst; compromised elements € t, +t5). 8(*2) is

The quantification of the gain introduced by the Enhance ) S .
Data Aggregation Algorithm in the case of samples of arbi-N€ average of two particular error probabilities correspog
trary size is similar to the evaluation of the case of 2-eleime to the cases of the different condition choice (see Alganith).

samples in Section 4.1.2. However, even if some of the formuThese particular error probabilities can be defined as
las look similar, the reason of their usage can be very differ

; : oo rb2(Th,1)
compared to the previous case. Moreover, the increased numyi) :/ / pe w (u,0)dudy (33)
ber of possibly compromised elements renders the analysis'a N T
bit more difficult. 0o bo(Tn.2)
Firstly, we introduce the notations needed: i :/ / Px, | X%, v)dudy (34)
— X: normally distributed random vector denoting the original —00 Jb1(Th,2) e

sample X ~ N, (g, X)) - o . :
— X,: arbitrarily distributed random vector denoting the sam-Similarly to the definitions in Section 4.1.2. The relatesitdi
ple in case of an attackX(, ~ N, (i, Sr)) butions can be defined with the help of matrix multiplicaton

— X: normally distributed random vector produced by gverang‘h and theM ¥, M" which result respectively in
ing the halves oiX in the unattacked cas&(~ N (&, X))

— X,,: random vector produced by averaging the halveX pf p+ 2t
in case of an attackX, ~ Na(f;,, X)) = o (35)
- r%, %, correlation coefficient between the elementsXof Bt ntapt
The sampleéX in the unattacked case has a multivariate nor-
mal distribution with mean (expected value) vector and
= ()" @n S 102
and with covariance matrix Xp = ’2 = (36)
ro Eh,gg
O'2 T02 .. 7'0'2
7’0’2 02 ...7”0'2 Where
SR S 2 22 2 o 2\, o
Yhp1= - ti0 —I—Ea +(1- - ro (37)
’I”(')'2 T0'2 e 0’2 9
_ } 2
In case an attack happens, the mean vector and the covarianee.22 = <n> t26” + 502 + (1 - n) ro® (38)

matrix of the compromised samp¥e, are respectively (without

loss of generality) Based on these, the distribution &f, ; is

Br=p+ pa (29)
and Xp1 ~ N(ﬁhﬁl, \/ ih,11) (39)
=X+ 3a (30)

and the distribution of\, » is

whereu is a column vector the firgtelements of which are

ii's, andX A is an x n matrix containing only zero elements __ —

except from its first diagonal where the firstlements aré2. h2 ™ N<l7h,2» V 2h,22)
The averaging transformation of the partitions can be de-

scribed by matriXM which is a2 x n matrix with the following ~ Furthermore, the integration limits in Equations (33) a8d)(

entries: are implicitly defined as

(40)



& is considered to be 1, but its value in the rarjgs, 1.5

does not affect the results significantly. The two sequefares
even and odd number of compromised nodes are clearly rec-
(42)  ognizable. In the odd sequence the correlation seems to be a
2(@n.1) dominating factor, while in the even sequence the law ofdarg

(41)

@\
3
3
=
=
8
=
S
|
[T RN CY e

b1(@n,2) «a numbers improves the attack detection capabilities anslttie
/_OO PX, X, (4fTh.2)du = 2 (43) value ofd,,,, for less correlated samples.

oo a Secondly, we show how much influence the correlation
/ Py, (ufThe)du = ) (44)  has on the distortion. In Figure 7, one can see the distortion
b2(Tn.2) d(Y|A = 1) for different values of the correlation coefficient

Finally, the corresponding correlation coefficients in Equ 7. The subfigures correspond to different attack strengtbs, i
tions (33) and (34) are defined as to different number of compromised nodes. The horizontal

axes correspond to the expected valuef the attacker’s dis-

E[(Xn2 = Br2)(Xn1 — Bp1)] tribution. Here again, assuming thatY,,,, — Y |? is close to

"Xn2Xna = = = (45) zero, we can characterize the distortion as
Yp,224/ 2,11
= 1
)Y — 1~ (g2 +5%).
=T —— (g) IVA=U=05 (#*+5%) -6 1)
TRRBERVRR 2 The calculations presented in Figures 6 and 7 are performed

with n = 10 (i.e., with a 10-nodes network or with a 10-nodes
cluster). This small value af helps in giving an overview of
the most probable cases considering the number of nodes an at
cker is able to compromise. Moreover, for a smaller sample
e effect of correlation is easier to trace because the oesnp
glon in the first step of the sample halving approach does not
ihfluence the distortion as much as for larger samples. How-
ever, we note that the sample halving approach is not resdric
in the value ofn.
The message of Figures 6 and 7 is manifold. Firstly, the fig-
ures clearly show the effect of the compression step (iadv:-h
ing and aggregating the halves). The random halving of the
t sample results in different behaviour of the distortion as&
8= Z P(t; = j)ﬂ(j’t‘j) (47)  the attacker compromises even or odd number of elements. The
§=0 subfigures corresponding to= 1, ¢ = 3 andt = 5 can be
considered as one sequence, while the remaining ones as an-
other sequence. In both figures, the odd sequence consists in
O (n=") three nearly coinciding subfigures on which only the dotieel |
P(t; = j) = 252 (48)  changes. This indicates that having smaller correlatics ot
<") always mean weak resilience in aggregation. However, ot co

is the hypergeometric distribution with parameters, and 2. sidering correlation cannot outperform the correlatea éehe

To show the gain of our Enhanced Data Aggregation A|go_correlation coefficient is high enough. The even sequence in

rithm compared to a scenario where no attack detection is enj® Same figures emphasizes the effect of the law of large num-

ployed we definel;,,,, as the improvement in the distortion in P€rs- Namely, having an uncorrelated (and thus in the Gaus-
case of an attack just like in Section 4.1.2 as follows: sian case independent) sample can be a better base for attack

detection than a correlated sample. The explanation ferishi

andr?h,l,yhl = T?h,%yh,l.

The main difference in the evaluation of the > 2 case
compared to the = 2 case stems from the random halving of
the sample. Along with the increased number of compromiseiﬁ
elements, the halving of the sample randomizes the number
compromised elements in the two halves. As a matter of fac
this kind of random selection is related to the hypergeoimetr
distribution, which describes the probability that in a géerof
n distinctive objectg objects are compromised. Therefore, the
final error probabilitys can be defined based on the particular
probabilities in Equation (32) as

2

dimp=d(Y|A=1,D =0) —d(Y|A=1) (49) that an independent sample is able to narrow very quickly by
1 the means of its standard deviation because of the averaging
= ﬁ(ﬂ2 +5%)-(1-8) (50)  while a correlated sample has always a bigger standard-devia

tion. Therefore, the confidence interval calculated basedro
where we still assume tha|Y,,:. — Y|2 is close to zero. In independent sample can be very small which then facilitates
Figure 6, one can see a plot of values of the redefigg, ~ the detection of outlier elements. The different naturehef t
function for different correlation coefficients represshby the  odd and even sequences has combinatorial roots. Having even
different lines. The subfigures correspond to differenackt number of compromised elements frequently results in such a
strengths, i.e., to different number of compromised nodibs.  halving where exactly the half of the compromised elements
horizontal axes correspond to the expected valud the at- are in the first half and the others in the second half. In this
tacker’s distribution, while the vertical axes correspaadhe  case, however, the attack detection capabilities are vesatke
improvement in the distortiod,,,,,, defined in Equation (49). numerical difference between the two sample halves is small
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Fig. 6. The improvement in the distortion considering the sanyallving approach withh = 10 nodes and with different values of
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Fig. 7. Distortion caused by the adversary for differenteal of the correlation coefficiemt with n = 10 nodes and withe = 1
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This then introduces a higher distortion and thus a smadiierev o2

for d;mp. In case of odd compromised elements the halving is
always "unfair”, one of the halves always possesses more com,

promised elements than the other, and therefore there &yalw
a remarkable difference between the halves, which impkgs b

ter attack detection capabilities.

4.2.2. Evaluation with non-constant correlation coefficient

Tn10'2 T'n20

wherer;; = rj;. r;; can be calculated using the Power Expo-
nential correlation model as

Until now, we have assumed that the correlation coefficient

0
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2 2

120 . T1no

o? . Ton0?

2 2

0
012345867

exp. value of G

0

123 45867

exp. value of G

r has the same value for all pairs of readings. In reality,)everri (d;;) = exp ( _ (di)ﬁz)

pair of readings has a specific correlation value which ddgen I 61

on the distance of the nodes that produced the readings,mand o

some physical properties of the environment in which theesod whered,; is the Euclidean distance between npded nodg,

are deployed. Several models have been proposed so faefor th; controls the relation betweef); andr;; with usual values

calculation of the value of the correlation coefficient lthea  of different integer powers of 10 (i.e., 1002, ... ,10%), and it

these parameters, e.g., the Spherical, the Power Expahentidepends o, whether the model is exponentid,(= 1) or

the Rational Quadratic and the Mam correlation models [3]. squared exponentiab{ = 2). For the analysis we have chosen

The most widely used correlation model in the literature ond; = 10 andé, = 1 as in [24,1].

spatial statistics is the Power Exponential model [13,2ith w To evaluate the distortion caused by an attacker in the out-

several applications [21,25,24,1,19,5], therefore wdiagpt put of the Enhanced Data Aggregation Algorithm in the case

as well. of non-constant correlation, one can formulate the prdibabi
Assuming non-constant correlation coefficients the cevaridensity function of the correlation coefficient; considering

ance matrix in Equation (28) will take the following form uniformly randomly placed sensor nodes as

(53)
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Pry,; (1) = (54) dimyp fOr 7 = 0.95|d;m for r;;

2103 Z-1 _ 863 £-1
97;; (—1In(z))% " — ﬁi(* In(z))? "+ 0.0046 0.0048
4
+ 2% (~ In(a)) % ! if 2 € (exp(—(£)%),1) 0.0115 0.0122
0.0342 0.0345
R 0.0700 0.0716
2 2 >y

32%(— ln(gc))%71 arcsin M + 0.1192 0.1199

. 0% (—In(x)) 92
= . X } 0.1823 0.1852

2 20 4 _

+2\/9%(*111(56))"2 —1-1| = GA(~In(x)% 0.2595 0.2741
0.3508 0.3587

if o € (exp(—(%2)%), exp(=(7)))  Taple 1

Numerical values of the = 0.95 curve (in Figure 6) compared with the
dimp values in case the correlation coefficient is not constant

0 if —(¥2)P2) 1
© & (exp(=( o )2):1) scenario of distance-dependent correlation coefficiemisng

Taking a sample from this distribution (using uniformly ran the sample elements. Moreover, as the curves-fer 0 and
dom sampling) and applying it to Equation (52) gives a realisr = 0.95 are significantly different (for both thd;,,, and
tic covariance matrix for a realization of the random node dethe d(Y|A = 1) metrics), the latter results also indicate that
ployment. Then, calculating the conditional p.¢hf; IYzH') assuming correlation is a must in order to establish a tealis
using this updated covariance matrix and performing thé-anasensor network data model.
ysis presented in Section 4.2.1 gives the distortion inghien
realization. 4.2.3. Evaluation assuming a sophisticated attacker
The conditional p.d.fp% ,(-|") can be easily described  The attacker we considered until now was a simplified one:
with the help ofg = Mp andX = MXMT (see [11]). The he added offsets to some of the sensor readings, where the off
correlation coefficient applied ipy IY2(.|.) can be defined as sets were independent and identically distributed randaria v
ables. For the performance evaluation, we categorizedfthe o
— Y12 (55) sets as elements coming from a normal distribution the param
X1, X2 \/i\/% eters (i.e., the expected value and the standard deviatifon)
o - ) ] which are under the control of the attacker. In this sectiea,
The joint probability density funCtlons’mJ,Ym('a -) and investigate the case of a more sophisticated attacker. Name
Px,,x,, (") can be defined in the same way as in Seciwe assume that the attacker knows the Enhanced Data Aggre-
tion 4.2.1. gation Algorithm in detail, including the Attack Detectidt-
Repeating the above calculations along with the samplingjorithm Det(-,-). Moreover, the attacker also knows the size
of p,,, multiple times gives the same result as having multipleof the sample that the base station gathers in a given quety, a
sensor networks with different uniformly random deploymen he can arbitrarily modify the observed sample elements.
Calculating the average distortion of the repetitions calp h Therefore, this sophisticated attacker is able to choose th
us in exposing the characteristic features of this scenanen  best attack in the long run after estimating the unobsened (
the correlation coefficient is not constant. known) elements of the sample. This can be done as follows. At
The results of this analysis are very interesting. After- per first, the attacker analyzes the observed sample part aed giv
forming the repeated sampling and distortion calculation f an estimation on the remaining elements (the attacker éstabl
t=1,...,5 (20 times for each value), the resulting curves aredo this since he knows the size of the gathered sample). This
nearly the same as the curves on Figure 6 and 7 wheif).95. estimation can be of any kind, for the simulations below we
As it would be difficult to distinguish the two kind of curves used the method to replace every unknown element with the
in a figure, we show a comparison table consisting of numeraverage of the observed elements. Then, the attacker isable
ical values for the two curves far = 2 (see Table 1). The investigate all the possible halvings and calculate thiodisn
t = 2 choice is confirmed by the fact that the differences ardor them for each possible value of the offset parameterchvhi
the largest in that case. parameter is under the control of the adversary. We note that
This small difference between thg,,, values of the two the attacker is not restricted to compromise all the obskrve
cases clearly shows, on the one hand, that one is able to modakasurements, but he is able to choose the number of measure-
the pairwise correlation among the sample elements with anents to compromise in the ranfet], wheret is the number
fixed correlation coefficient in the long run. This, on theesth of observed elements in this case.
hand, reinforces our previous results: even though we used After calculating the individual distortions for all cases
a simplified scheme in which we considered the correlatiorthe halving and all combinations of the compromised measure
coefficient to be constant (with two describing values 060.9 ments, the attacker selects those measurements to consgromi
and 0.5, and the value of 0 for the independent case), odtgesuthe modification of which leads to the highest distortion on
are still highly relevant when we consider the more realisti average. As the attacker cannot influence the sample halving
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procedure, the highest distortion on average is calculated tacker can be summarized as these are highly related to the
averaging the individual distortions over the differenivitegs  analytical results in Section 4.2.1 considering the form e
(all the halvings have equal probability Ret(-,-), which is  position of the related curves, however, a sophisticatedledr
2%) and taking the maximum of the resulting vector. can achieve a higher distortion than the previously comsitie

We simulate the sophisticated attacker assuming thatitpe or simplified attacker. Nevertheless, we note that the sdaphtstd
inal sample is normally distributed (with parameters= 0, attacker is still not an optimal attacker, and thus, the ltesu
o = 1 andn = 10) and correlated. The correlation of the sam- presented in this section do not correspond to the worst case
ple is modelled with the Power Exponential correlation mode After having presented the results of our sample halving ap-
with parameter#; = 10 andfy, = 1 as in [24,1]. We perform proach, having illustrated the impact of correlation onlierst
simulations for two different attacker behaviours. Thetfirs-  aggregation, having verified our results considering séali
haviour is when the attacker perturbs some of the sample eleorrelation coefficient distribution scenarios and a sstitated
ments with an offset, while the second behaviour descrifbes t attacker as well, in the next section, we present some gessib
case when the attacker replaces some of the sample elemeetgensions to the work presented.
with a common maximum. As the resulting figures for the two
behaviours are quite similar, we only detail the resultssambn
ering the first behaviour in Figure 8.

Figure 8 shows a simulation result (i.e., not an analytical _ _
calculation like all the figures until now). The horizontales 5. Discussion
correspond to the offset value chosen by the attacker, wlgle
vertical axes correspond to the distortion in the aggreddte = Does this approach allow in-network processing?The con-
five subfigures correspond to different number of observad se  cept of performing the aggregation at the base station allow
sor measurements. As the original samples are drawn ragdoml us to get rid of some typical "networking” problems (like
for the simulations, the curves in the subfigures are somewha e.g., routing, lost messages, etc.) and to concentrateeon th
irregular. novel statistical framework presented. However, our sehem

In the first three subfigures (i.e., up to 30% compromised can support in-network aggregation as well. There are two
nodes), the highly correlated measurements imply smaiker d  straightforward ways to perform in-network aggregation in
tortion than the independent measurements (similarly & th our case: Firstly, aggregator nodes chosen among the sensor
t = 1 andt = 2 subfigures in Figure 7). The last two subfig- nodes can aggregate the measurements of the sensors in their
ures, however, show that the effect of a powerful attackeg w  clusters. Algorithm 1 and 2 are both very energy-efficient as
can compromise the measurement of a high number of nodes, they do not require additional communication, thus, they ca
is better eliminable when the sensor readings are indepénde run even on resource-constrained sensor nodes. After the ag
(similarly to thet = 4 subfigure in Figure 7). All the same, low  gregation, the aggregator nodes send the result to the base
correlations (liker = 0.5) usually weaken the capabilities of  station, and the base station can average them without fur-
the proposed solution. In a realistic attack scenario, (vbere ther investigation, as the analysis has been already done by
the attacker is only able to compromise the measurement of a the aggregator nodes. The drawback of this way of process-
small number of sensor nodes) the distortion of the Enhanced ing is that the aggregator nodes have to decrypt the messages

Data Aggregation Algorithm can grow up 50 for less cor- of their corresponding clusters as our algorithms need raw

related and independent samples, while it usually stay@ibel data as their input.

1.2¢0 for highly correlated samples and far= 0.1. Secondly, considering again that the algorithms run on the
As one can see, the subfigures corresponding-=o2 and base station and that the Attack Detection Algorithm only

t = 3 show similarities, and the same happens in the case of needs two averages in order to make its decision, the ag-

subfigures corresponding to= 4 andt¢ = 5. In general, the gregator nodes only have to sort the measurements into two

attacker cannot reach a significantly higher distortion bme groups randomly, sum up these groups, and send only the

promising2k + 1 sensor readings compared to the case when sums to the base station. Upon reception of the sums the base

compromising only2k sensor readings (maybe except foe station is able to calculate the averages by, again, sahing

1, » = 0). The reason for this property is, on the one hand, that received sums into two groups randomly, summing them up,
the attacker is able to choose the number of measuremerts he i and dividing the two sums by the total number of measure-
going to compromise. For example, it is possible for an &dac ments they are based upon. Having the final averages, the
to observe three sample elements but compromise only two of base station is now able to perform the Enhanced Data Ag-
them. On the other hand, the random halving stepén(-, -) gregation Algorithm. This latter approach has the advantag
has a high influence on the result, as even numbered compro-that the messages do not have to be decrypted by the ag-
mised elements can be halved in a way that both halves contain gregator nodes while they perform the summation. The tool
the same number of compromised elements, which weakens that allows to sum up encrypted data is called 'nomomorphic
the attack detection capabilities, while odd numbered etdgm encryption’ (see [12]). Moreover, both approaches fullfié t
cannot be halved in such a "fair” way, which result in better requirement of having the minimum number of messages
attack detection capabilities. transmitted (wireless transmission consumes a plenty-of en
The results for the distortion caused by a sophisticated at- ergy), as aggregation invokes compression of the data too.
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Fig. 8. Distortion caused by a sophisticated adversary ifterdnt values of the correlation coefficient

How to relax the knowledge about the conditional p.d.f.?

In the previous sections, we assumed that the conditional
p.d.f. px,|x,(:]) (or p}1‘§2(-\-)) is known to the Attack
Detection Algorithm. In the following, we will show how
our algorithm behaves in case this conditional p.d.f. is not
precisely known. Let us assume that the Attack Detection Al-
gorithm knows onlyp x| x, (z]y) = px, |x, (z|y) + A(z|y),
where [*_|A(z|y)|dz < ¢ for any giveny. Moreover,
sincepx, |x, (") andpx,|x,(-|-) are both probability den-
sity functions, /% A(z|y)dz = 0 for anyy. The imprecise
knowledge implies a wider confidence interval in Algo-
rithm 1 with upper and lower bounds (-) and by(-) (see
Equations (6)—(9)).

As [%_ A(z|y)dz = 0, A has positive and negative do-
mains as well. Moreover, the integral of the positive doreain
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is equal to the integral of the absolute value of the negaEig. 9. The effects of the imprecise knowledge of the p.d.ftl@distortion

tive domains. The worst case happens (i&.-) — b;(-)|

is the largest) when the positive domains are smaller than
by(-) or greater tharb,(-), while all the negative domains
are betweerb, (-) and by(-). Equally weakening both sides
of the confidence interval means putting the same "weight”
below b, (-) and aboveh,(-). Instead of Equations (6)—(9),
this would imply

bi(2) a 0
| st = - (56)
o a 0
/ Px,|x, (ulz)du = - — — (57)
ba(2) 2 4

and two similar equations withx, instead of z. Using

the figure is that shifting the bounds of the confidence in-
terval does not necessarily results in a higher distortan f
correlated measurements. Especially,/fet 0.95 the attack
detection capabilities become better fop> 1.5, which em-
phasizes again the important role of correlation. Generall
speaking, the lack of precise information about the condi-
tional p.d.f. does not alter our previous results signifilyan
when assuming a moderatewhile it can also be beneficial
for higher correlation strength.

What is the optimal attack against the proposed scheme?

An optimal attacker is defined as an attacker who can reach
the highest possible distortion at the output of the aggrega

these formulas one can calculate the new confidence inter- tion function. We already presented two kind of attackers:

val boundsb: (-) and by(-), and with those one is able to
evaluate the effect of the imprecise knowledge of the condi-
tional p.d.f. on the distortion just like in Section 4.1.8Ve
note, however, that Equations (56) and (57) implicitly uppe
boundd by 2«.)

Figure 9 shows the results of this evaluation o= 0.1
andn = 2. As expected, the imprecise knowledge of the con-
ditional p.d.f. usually implies weaker attack detectiopaa
bilities, however, these calculations belong to the woaskec
(i.e., for a specially constructefl). The interesting news of
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a simplified one in Section 4.1.2 in order to carry out the
analysis, and a sophisticated one in Section 4.2.3 in order
to demonstrate the capabilities of the proposed scheme in
a more general setting. However, none of these attackers
are optimal attackers, as both contain some restrictions co
sidering the way how they perform the attack. More work
needs to be done for identifying the optimal attack against
the algorithms presented in this paper, and for evaluatiag t
performance of those algorithms when they face the optimal
attacker.
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