
Towards Provable Security for Ad Hoc Routing Protocols

Levente Buttyán and István Vajda
Laboratory of Cryptography and Systems Security (CrySyS)

Department of Telecommunications
Budapest University of Technology and Economics, Hungary

{buttyan, vajda}@crysys.hu

ABSTRACT
We propose a formal framework for the security analysis of
on-demand source routing protocols for wireless ad hoc net-
works. Our approach is based on the well-known simulation
paradigm that has been proposed to prove the security of
cryptographic protocols. Our main contribution is the ap-
plication of the simulation-based approach in the context
of ad hoc routing. This involves a precise definition of a
real-world model, which describes the real operation of the
protocol, and an ideal-world model, which captures what
the protocol wants to achieve in terms of security. Both
models take into account the peculiarities of wireless com-
munications and ad hoc routing. Then, we give a formal
definition of routing security in terms of indistinguishability
of the two models from the point of view of honest parties.
We demonstrate the usefulness of our approach by analyzing
two “secure” ad hoc routing protocols, SRP and Ariadne.
This analysis leads to the discovery of as yet unknown at-
tacks against both protocols. Finally, we propose a new ad
hoc routing protocol and prove it to be secure in our model.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols

General Terms
Algorithms, Design, Security

Keywords
Ad Hoc Networks, Routing Protocols, On-demand Source
Routing, Provable Security, Simulatability

1. INTRODUCTION
Several “secure” routing protocols have been proposed in

the recent past for wireless ad hoc networks [19, 12, 13, 22,
24]. However, the security of those protocols have been ana-
lyzed either by informal means only, or with formal methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SASN’04, October 25, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-972-1/04/0010 ...$5.00.

that have never been intended for the analysis of this kind
of protocols (e.g., SRP was analyzed with BAN logic [6] in
[19]). This has at least two annoying consequences:

1. There is no clear (meaning formal) definition of the
term “secure routing”. Therefore, different authors
interpret security in different ways, and design their
routing protocols with different requirements in mind.
As a consequence, the properties of different proposals
are difficult to compare.

2. There is no mathematically rigorous way to prove a
proposed routing protocol secure. In fact, many of the
proposed protocols (e.g., SRP and Ariadne) are flawed
in the sense that they do not achieve the properties
claimed by their authors; a clear consequence of the
lack of a sound proof technique.

The situation described above is somewhat similar to the
situation that one could have witnessed in the field of ses-
sion key establishment protocols in the early 1990’s. There,
the solution was to come up with definitions and proof tech-
niques on solid mathematical grounds [3, 4, 5, 23, 1]. In
this paper, we follow a similar approach, and make the first
steps towards a formal model in which one can precisely de-
fine what secure routing means and prove (or fail to prove)
that a given protocol indeed satisfies that definition (under
some cryptographic assumptions). An extended version of
this paper is available as a technical report [8], which con-
tains some details that we had to leave out here due to space
limitations.

The organization of the paper is the following: We overview
our approach and main contributions in Section 2. We
present our model and the formal definition of secure rout-
ing in Section 3. We demonstrate the usage and usefulness
of our model in Section 4, where we analyze SRP and Ari-
adne, we describe previously unknown attacks against both
protocols, we propose a novel routing protocol, and we prove
it secure in our model. In Section 5, we report on related
work, and finally, in Section 6, we conclude the paper and
give some outlook to the future.

2. OVERVIEW OF OUR APPROACH AND
CONTRIBUTIONS

Approach. We follow the commonly known simulation-
based approach to prove security of cryptographic proto-
cols [2, 18, 9, 21]. In this approach, two models are con-
structed for the protocol under investigation: a real-world
model, which describes the operation of the protocol with



all its details in a particular computational model, and an
ideal-world model, which describes the protocol in an ab-
stract way mainly focusing on the services that the protocol
should provide. One can think of the ideal-world model as a
description of a specification, and the real-world model as a
description of an implementation. Both models contain ad-
versaries. The real-world adversary is an arbitrary process,
while the abilities of the ideal-world adversary are usually
constrained. The ideal-world adversary models the tolerable
imperfections of the system; these are attacks that are un-
avoidable or very costly to defend against, and hence, they
should be tolerated instead of being completely eliminated.
The protocol is said to be secure if the real-world and the
ideal-world models are equivalent, where the equivalence is
defined as computational indistinguishability from the point
of view of the honest protocol participants. Technically, se-
curity of the protocol is proven by showing that the effects of
any real-world adversary on the execution of the real proto-
col can be simulated by an appropriately chosen ideal-world
adversary in the ideal-world model.

Contributions. Our main contribution is the application
of the approach described above to ad hoc routing protocols.
We formally define the real-world and the ideal-world models
that capture the basic features of wireless ad hoc network-
ing in general, and ad hoc routing protocols in particular.
Another contribution of this paper is the analysis of two “se-
cure” routing protocols proposed for ad hoc networks: SRP
[19] and Ariadne [12]. This analysis leads to the discovery of
as yet unknown attacks against both protocols, and clearly
shows the usefulness of our proposal. Finally, we propose a
novel on-demand source routing protocol for wireless ad hoc
networks, which can be proven to be secure in our model.
This protocol should be viewed as a side effect of our anal-
ysis of SRP and Ariadne, and it serves purely illustrative
purposes in this paper. However, it has some noteworthy
features, and we hope that it will inspire protocol designers
when building their future protocols.

Now, we overview the main novelties of our model with
respect to the models proposed so far for the analysis of
cryptographic protocols in the context of the simulation-
based approach.

• Communication model: One main difference lies in
the underlying network model. Most of the models
proposed so far represent the network through which
the protocol participants communicate as a single buffer,
in which the participants place messages, and from
which these messages are eventually delivered to their
intended recipients. However, the single buffer model
abstracts away the multi-hop operation of the network,
and hence, it is not appropriate for our purposes. The
peculiarities of wireless networks that we have to deal
with include the broadcast nature of radio communi-
cations, which allows a party to overhear the transmis-
sion of a message that was not intended to him. On
the other hand, a radio transmission can usually be
received only in a limited range around the sender.

• Adversary model: In the models proposed so far,
the adversary has full control over the communications
of the honest protocol participants. This means that it
can read, modify, or delete any of the messages sent be-
tween protocol participants, and it can also send fake
messages to any protocol participant. This may be

an appropriate model in Internet-like networks, where
having access to some special network elements, such
as routers, allows the adversary to have this level of
control. On the other hand, in wireless ad hoc net-
works, an adversary can have a similar level of control
over the communications only if it is physically present
everywhere. In many applications, this is considered
to be very costly, and hence, unrealistic. Therefore,
we assume that the adversary has communication ca-
pabilities comparable to those of an average node in
the ad hoc network. This means that an adversary
can hear only those messages that were transmitted
by neighboring nodes, and similarly, the transmissions
of the adversary is heard only by its neighbors.

• Model of computation: In the models proposed so
far, usually the adversary schedules the activities of
the honest parties. This is so, because many protocols
are message driven, and by controlling the communica-
tions, essentially, the adversary decides which honest
party can do some computation and when. On the
other hand, in our model, the adversary has no full
control over the communications. Therefore, in our
model, the protocol participants (and the adversary)
are activated by a hypothetic scheduler. In addition,
this activation is done in rounds: in each round, each
participant is activated once. This leads to a sort of
synchronous model, where each participant is aware of
a global time represented by the current round num-
ber. We hasten to note, however, that knowledge of the
current round number is never exploited in our analy-
sis. The advantage is that we can retain the simplicity
of a synchronous model, without arriving to conclu-
sions that are valid only in synchronous systems.

• The ideal-world model: The simulation-based ap-
proach requires the definition of an ideal-world model,
which focuses on what the system should do, and it is
less concerned about how it is done. As a consequence,
the ideal-world model usually contains a trusted entity
that provides the services of the system in a “magical”
way. Hence, when trying to apply the simulation-based
approach to ad hoc routing protocols, one faces the
problem of describing what such protocols should do
in an abstract way. However, this seems to be a par-
ticularly difficult problem. This is so because many
factors affect the output of ad hoc routing protocols
even in the absence of an adversary, including the vari-
able processing time of the nodes, mobility, and opti-
mizations (such as replying from route caches in DSR
[15]). Requirements such as the one that the proto-
col should always return the shortest route between
two nodes are simplistic, and in fact, no real protocol
satisfies them. Therefore, instead of describing the ex-
pected output of an ideal routing protocol explicitly,
our ideal-world model captures only the requirement
that, ideally, non-existent routes should never be re-
turned to honest parties. This coincides with the ap-
proach of [19] and [12], where this requirement was
stated informally. In fact, the trusted entity in our
ideal-world model simulates the behavior of the real
network, with the difference that it never returns non-
existent routes to honest parties (it has a “magical”
capability of filtering them out). In addition, we do



not limit the capabilities of the ideal-world adversary,
but those are the same as the capabilities of a real-
world adversary. More discussions on these modelling
decisions can be found in [8].

3. MODEL
We consider an ad hoc network of wireless devices. We

assume that the radio links between the devices are sym-
metric, by which we mean that if device v can receive the
radio transmission of device v′, then v′ can receive the radio
transmission of v too. We further assume that each device
has a single and unique identifier, which is used, notably, in
the neighbor discovery protocol and in the routing protocol.
We denote the set of all identifiers by L.

It is convenient to represent an ad hoc network with an
undirected labelled graph G = (V, E,L), where V is the set
of vertices, E is the set of edges, and L : V → L is a labelling
function. Each vertex represents a device, and there is an
edge between two vertices v and v′, if the corresponding de-
vices can receive each other’s radio transmission. Function
L assigns to each vertex the identifier of the corresponding
device. Since identifiers are unique, L must be a bijection.

If W ⊆ V , then we will use the shorthand L(W ) to de-
note the set {L(v) : v ∈ W} of identifiers assigned to the
vertices in W . We introduce a function NG : V → 2V that
returns the set of neighboring vertices of a given vertex in
G. Formally, NG(v) = {v′ : (v, v′) ∈ E}.

We make the common assumption that during the execu-
tion of a route discovery process, G does not change. Thus,
we view the route discovery part of the routing protocol as
a distributed algorithm that operates on G. The algorithm
is run by the devices with the aim of finding routes (i.e.,
sequence of identifiers assigned to the vertices) in G, while
of course, each device has only a partial knowledge of G.
In some routing protocols, the routes found by the protocol
are not returned explicitly, but they are represented implic-
itly in the state of the devices in form of routing tables. In
this paper, we will not be concerned with this kind of pro-
tocols. We rather focus on source routing protocols, where
the routes are returned explicitly. More specifically, we will
be concerned with the route discovery part of on-demand
source routing protocols for wireless ad hoc networks. We
leave the study of other kinds of ad hoc routing protocols
for future work.

We assume an adversary A that wants to subvert the rout-
ing service. We assume that A interacts with the system
through a single corrupted device. We further assume that A
is static, meaning that no further corruption happens during
the operation of the system. According to the classification
introduced in [12], our adversary is an Active-1-1 attacker1.
The more general Active-x-y case and adaptive adversaries
are left for future work.

We denote by n the cardinality of V minus 1 (i.e., |V | =
n + 1). We denote the vertex that represents the corrupted
device by ṽ, and the vertices that represent the non-corrupted
devices by v1, v2, . . . , vn. The pair (G, ṽ) is called a configu-
ration.

1An Active-x-y attacker is an adversary that has compro-
mised x devices and owns y devices to which it has dis-
tributed data (e.g., authentication keys) obtained from the
compromised devices.

3.1 Real-world model
The real-world model that corresponds to a configuration

conf = (G, ṽ) and adversary A is denoted by sys real
conf ,A, and

it is illustrated on the left side of Figure 1. sys real
conf ,A con-

sists of a set {M1, M2, . . . , Mn, H, A, C} of Turing machines
interacting via buffers (or tapes). Each Mi represents the
non-corrupted device that corresponds to vertex vi in G, H
is an abstraction of higher-layer protocols run by the hon-
est parties, and A is the adversary, which encompasses the
corrupted device corresponding to ṽ. Machine C models the
radio links represented by the edges of G; it moves messages
between the buffers that are connected to it. All machines
apart from H are probabilistic.

Each machine is initialized with some input data, which
determines its initial state. In addition, the probabilistic
machines also receive some random input (the coin flips to
be used during the operation). Once the machines have been
initialized, the computation begins. The machines operate
in a reactive manner, which means that they need to be
activated in order to perform some computation. When a
machine is activated, it reads the content of its input buffers,
processes the received data, updates its internal state, writes
some output in its output buffers, and goes back to sleep
(i.e., starts to wait for the next activation). Reading a mes-
sage from an input buffer removes the message from the
buffer, while writing a message in an output buffer means
that the message is appended to the current content of the
buffer. Note that each buffer is considered as an output
buffer for one machine and an input buffer for another ma-
chine. The machines are activated in rounds by a hypo-
thetic scheduler (not illustrated in Figure 1). In each round,
the scheduler activates the machines in the following order:
H, M1, . . . , Mn, A, C. This means that H is activated first,
and then, each machine is activated when the previous ma-
chine in the sequence went back to sleep. The round ends
when C goes back to sleep.

Now, we describe the operation of the machines in more
detail:

• Machine C: This machine is intended to model the
broadcast nature of radio communications. When ac-
tivated, it first determines a random order of its input
buffers, and then, it processes the content of them in
this order2. Processing the content of an input buffer
out i (1 ≤ i ≤ n) consists in reading the content of out i

and copying it in inj for all j such that vj ∈ NG(vi).
Similarly, processing the content of outA means read-
ing the content of outA and writing it in inj for all
j such that vj ∈ NG(ṽ). Clearly, in order for C to
be able to work, it needs to be initialized with some
random input, denoted by rC , and graph G.

• Machine H: This machine models higher-layer pro-
tocols (i.e., protocols above the routing protocol) and
ultimately the end-users of the non-corrupted devices.
H can initiate a route discovery process at any machine
Mi by placing a request (ci, �tar ) in buffer req i, where
ci is a sequence number used to distinguish between
different requests sent to Mi, and �tar ∈ L is the iden-
tifier of the target of the discovery. A response to this

2This random shuffling introduces some non-determinism in
the system despite the fix scheduling of the activation of the
machines, and it makes our model more general.



M1

. .
 .

C
Mn

H

A

req1

res1

reqn

resn

ext

out1

in1

outn

inn

outA

inA

M1'

. .
 .

Mn'

H

A

req1

res1

reqn

resn

ext

out1

in1'

outn

inn'

outA

inA

T

C'

Figure 1: Interconnection of the machines in sys real
conf ,A (on the left side) and in sys ideal

conf ,A (on the right side)

request may be returned via buffer resi. The response
has the form (ci, routes), where ci is the sequence num-
ber of the corresponding request, and routes is the set
of routes returned. In some protocols, routes is always
a singleton, in others it is not. If no route found, then
routes = ∅.
In addition to req i and resi, H can access buffer ext .
This models an out-of-band channel through which the
adversary can instruct an honest party to initiate a
route discovery process towards a given target. The
messages read from ext have the form (�ini , �tar ), where
�ini , �tar ∈ L are the identifiers of the initiator and the
target, respectively, of the route discovery requested
by the adversary. When H reads (�ini , �tar ) from ext ,
it first checks if �ini ∈ L({v1, . . . , vn}). If the verifi-
cation fails, then H ignores the message, otherwise, it
places a request (ci, �tar ) in req i where i is the index
of the machine Mi which has identifier �ini assigned
to it (see also the description of how the machines Mi

are initialized). In order for this to work, H needs to
know which identifier is assigned to which machine Mi

(1 ≤ i ≤ n); it receives this information as an input in
the initialization phase.

• Machine Mi: The operation of Mi is essentially de-
fined by the routing algorithm. Mi communicates with
H via its input buffer req i and its output buffer resi.
Through these buffers, it receives requests from H for
initiating route discoveries and sends the results of the
discoveries to H, as described above.

Mi communicates with the other protocol machines via
its output buffer out i and its input buffer ini. Both
buffers can contain messages of the form (sndr , rcvr ,
msg), where sndr ∈ L is the identifier of the sender,
rcvr ∈ L∪{∗} is the identifier of the intended receiver
(∗ meaning a broadcast message), and msg ∈ M is the
actual protocol message. Here, M denotes the set of
all possible protocol messages, which is determined by

the routing protocol under investigation.

In any routing protocol, it must be possible to de-
termine if a protocol message is a route request or a
route reply. Hence, there exists a function type : M →
{rreq, rrep} that returns the type of any protocol mes-
sage. In addition, for any protocol message (be it a
route request or a route reply), it must also be pos-
sible to determine the initiator and the target of the
route discovery process to which the message belongs.
Therefore, there exist functions ini : M → L and
tar : M → L such that ini returns the identifier of the
initiator and tar returns the identifier of the target.

When Mi is activated, it first reads the content of req i.
For each request (ci, �tar ) received from H, it generates
a route request msg and updates its internal state ac-
cording to the routing protocol, and then, it places the
message (L(vi), ∗,msg) in out i.

Once all the requests found in req i have been pro-
cessed, Mi reads the content of ini. For each message
(sndr , rcvr ,msg) found in ini, Mi checks if sndr ∈
L(NG(vi)) and rcvr ∈ {L(vi), ∗}. If these verifica-
tions fail, then Mi ignores msg . Otherwise, Mi pro-
cesses msg and updates its internal state. The way this
is done depends on the particular routing protocol in
question. Some examples for the processing steps that
may be carried out by Mi depending on the type of
msg are as follows:

type(msg) = rreq : If tar(msg) �= L(vi) (i.e., Mi is not
the target of the route discovery), then depend-
ing on the content of msg and the current state of
Mi, msg may be dropped and no output is gener-
ated by Mi. Alternatively, Mi may re-broadcast
msg . In this case, Mi generates the appropri-
ate message msg ′ (e.g., appends its identifier to
the route accumulated so far in the request) and
places (L(vi), ∗,msg ′) in out i. If tar(msg) = L(vi)
(i.e., Mi is the target of the route discovery), then



Mi may generate a route reply msg ′ according
to the routing protocol, and place the message
(L(vi), �,msg ′) in out i, where, � ∈ L(NG(vi)) is
the identifier of the first device on the route that
the route reply should follow.

type(msg) = rrep : If ini(msg) �= L(vi) (i.e., Mi is not
the initiator of the route discovery to which msg
belongs), then depending on the content of msg
and the current state of Mi, msg may be dropped
and no output is generated by Mi. Alternatively,
Mi may forward msg , in which case, Mi gener-
ates the appropriate protocol message msg ′ (of-
ten msg ′ = msg , but in general, it may not be
the case), and places the message (L(vi), �,msg ′)
in out i, where � ∈ L(NG(vi)) is the identifier of
the next device on the route that the route re-
ply should follow. If ini(msg) = L(vi) (i.e., Mi is
the initiator of the route discovery), then Mi may
generate a response to H immediately or it may
wait for a number of route replies before returning
a response via resi.

We describe the initialization of Mi after describing
the adversary’s machine A.

• Machine A: This machine represents the adversary.
Regarding its communication capabilities, A is identi-
cal to any machine Mi, which means that it can read
from inA and write in outA much in the same way as
Mi can read from and write in ini and out i, respec-
tively. In particular, this means that A cannot eaves-
drop messages that were transmitted by devices that
are not neighbors of A. It also means that “rushing”
is not allowed to A in our model (i.e., A must send
its messages in the current round before it receives
the messages of the same round from other machines).
We intend to extend our model and study the effect of
“rushing” in our future work.

While its communication capabilities are similar to
that of non-corrupted devices, A may not follow the
routing protocol faithfully. In fact, we place no restric-
tions on the operation of A apart from being polynomial-
time in the security parameter k and in the size of the
network n. This allows us to consider arbitrary at-
tacks during the analysis. In particular, A may delay
or delete messages that it would send if it followed
the protocol faithfully. In addition, it can arbitrarily
modify messages and generate fake ones.

In addition, A may send an out-of-band request to H
by writing in ext as described above. This gives the
power to A to specify who starts a route discovery pro-
cess and towards which target. However, in order to
simplify the analysis, we restrict A to send only a sin-
gle request via ext . This essentially means that a single
route discovery process will take place in our model,
or in other words, we do not consider parallel runs of
the protocol. It is important to emphasize that this
restriction is made only to simplify the analysis in this
paper; the model itself is sufficiently rich to capture
parallel protocol runs by allowing A to send multiple
requests via ext . This feature will be exploited in fu-
ture papers.

As it can be seen from the description above, each Mi

should know its own assigned identifier, and those of its
neighbors in G. Hence, Mi receives L(vi) and L(NG(vi))
in the initialization phase. Similarly, A receives L(ṽ) and
L(NG(ṽ)).

In addition, the machines may need some cryptographic
material (e.g., public and private keys) depending on the
routing protocol under investigation. We model the distri-
bution of this material as follows. We assume a function I,
which takes only random input rI , and it produces a vector
I(rI) = (κpub , κ1, . . . , κn, κ̃). The component κpub is some
public information that becomes known to A and all Mi’s.
For 1 ≤ i ≤ n, κi becomes known only to Mi, and κ̃ becomes
known only to A. Note that the initialization function can
model the out-of-band exchange of initial cryptographic ma-
terial of both asymmetric and symmetric cryptosystems. In
the former case, κpub contains the public keys of all devices,
while κi (1 ≤ i ≤ n) contains the private key of the non-
corrupted device corresponding to vi, and κ̃ contains the
private key of the corrupted device corresponding to ṽ. In
the latter case, κpub is empty, and κi and κ̃ contain the
symmetric keys known to the non-corrupted device corre-
sponding to vi and the corrupted device corresponding to ṽ,
respectively.

Finally, all Mi and A receive some random input in the
initialization phase. The random input of Mi is denoted by
ri, and that of A is denoted by rA.

The computation ends when H reaches one of its final
states. In our simplified case (i.e., when A is restricted to
send a single out-of-band request to H), this happens when
H reads a response from one of its input buffers resi that
corresponds to the single request it placed in reqi. The
output of sys real

conf ,A is the set of routes found in this re-

sponse. We will denote the output by Out real
conf ,A(r), where

r = (rI , r1, . . . , rn, rA, rC). In addition, Out real
conf ,A will de-

note the random variable describing Out real
conf ,A(r) when r is

uniformly chosen.

3.2 Ideal-world model
The ideal-world model that corresponds to a configuration

conf = (G, ṽ) and adversary A is denoted by sys ideal
conf ,A, and

it is illustrated on the right side of Figure 1. sys ideal
conf ,A con-

sists of a set {H, T, A} of interacting Turing machines too,
where H is the same as in the real-world model, T is intended
to model the ideal operation of the routing protocol, and A
is the ideal-world adversary. T and A are probabilistic.

As we mentioned earlier in Section 2, the ideal routing
service should never return non-existent routes. Hence the
role of T will be to emulate the behavior of the real net-
work, and to ensure that route reply messages that contain
non-existent routes are identified and filtered out. This is
achieved in the following way: The internal structure of T
is identical to the structure of the real-world model (i.e.,
T runs machines M ′

i and C′, which work essentially in the
same way as Mi and C do in the real-world model). This
ensures that T can emulate the operation of the real net-
work. On the other hand, since C′ is initialized with G, it
can easily identify and mark as corrupted those route reply
messages that contain routes that do not exist in G. A cor-
rupted route reply is processed by each machine M ′

i in the
same way as a non-corrupted one (i.e., the machines ignore
the corruption flag) except for the machine that initiated the



route discovery process to which the corrupted route reply
belongs. The initiator first performs all the verifications on
the route reply that the routing protocol requires, and if the
message passes all these verifications, then it also checks if
the message is marked as corrupted. If so, then it drops the
message, otherwise it continues processing (e.g., returns the
received route to H). This means that in the ideal-world
model, every route reply that contains a non-existent route
is caught and filtered out by the initiator of the route dis-
covery3.

Since T emulates the operation of the real-world model,
the attacks that we allow against T should also be the same
as those in the real-world model. Therefore, in our approach,
the capabilities of an ideal-world adversary will be identical
to that of a real-world adversary. This is why we denote
both adversaries by A.

Just like in the real-world model, here as well, the ma-
chines operate in a reactive manner. They are activated by
a hypothetic scheduler in rounds, and in the following order
in each round: H, T , A, T . Note that T is activated twice
in each round. The buffers work in the same way as they do
in the real-world model.

The operation of H and A is the same as in the real-world
model. Now, we describe the operation of T in more detail:

• Machine T : T runs a set {M ′
1, M

′
2, . . . , M

′
n, C′} of

sub-machines, where M ′
i and C′ are essentially the

same as Mi and C, respectively, in the real-world model.
The difference between Mi and M ′

i is that M ′
i is pre-

pared to process messages that contain a corruption
flag. The difference between C and C′ is that C′ at-
taches a corruption flag to messages that it outputs.

In each round, when activated the first time, T acti-
vates machines M ′

1, M
′
2, . . . , M

′
n in this order. Then it

goes back to sleep and waits to be activated the sec-
ond time. When activated the second time, T activates
machine C′. When C′ finishes its task, T goes back to
sleep (and the round ends).

The messages that are placed in buffer in ′
i (1 ≤ i ≤

n) by C′ have the form (sndr , rcvr , (msg , cf )), where
sndr , rcvr , and msg are defined in the same way as
in the real-world model, and cf ∈ {true, false} is a
corruption flag, which indicates whether msg is cor-
rupted (true) or not (false). The messages that are
placed in buffers out i (1 ≤ i ≤ n), outA, and inA have
the same form as in the real-world model (i.e., they
have no corruption flag attached). Note that the in-
put and the output buffers of A contain messages of
the same format as in the real-world model, and there-
fore, a real-world adversary can easily be “plugged in”
the ideal-world model.

When machine M ′
i reads (sndr , rcvr , (msg , cf )) from

in ′
i, it verifies if sndr ∈ L(NG(vi)) and rcvr ∈ {L(vi), ∗}.

If these verifications are successful, then it performs
the verifications required by the routing protocol on
msg (e.g., it checks digital signatures, MACs, the route
or route segment in msg , etc.). In addition, if type(msg)

3Of course, corrupted route reply messages can also be
dropped earlier during the execution of the protocol for other
reasons. What we mean is that if they are not caught ear-
lier, then they are surely removed at latest by the initiator
of the route discovery to which they belong.

= rrep and ini(msg) = L(vi), then M ′
i checks if cf =

true. If so, then M ′
i drops msg , otherwise it continues

processing it. If type(msg) �= rrep or ini(msg) �= L(vi),
then cf is not checked. The messages generated by M ′

i

have no corruption flags attached to them, and they
are placed in out i.

Just like C, C′ copies the content of the output buffer
of each M ′

i (and A) into the input buffers of the neigh-
bors of M ′

i (and A). However, before copying a mes-
sage (sndr , rcvr ,msg) in any buffer in ′

i, C′ must attach
a corruption flag cf to msg . This is done in the fol-
lowing way:

– if type(msg) = rreq, then C′ sets cf to false;

– if type(msg) = rrep and all routes carried by msg
are existing routes in G, then C′ sets cf to false;

– otherwise C′ sets cf to true.

C′ does not attach corruption flags to messages that
are placed in inA.

Before the computation begins, each machine is initialized
with some input data. H and A receive the same initial
input as in the real-world model. The initialization of T
consists in the initialization of all M ′

i and C′. Every M ′
i and

C′ receive the same initial input as Mi and C, respectively,
in the real-world model.

The computation ends when H reaches one of its final
states. Since A is restricted to send a single out-of-band
request to H, this happens when H reads a response from
one of its input buffers resi that corresponds to the single
request it placed in req i. The output of sys ideal

conf ,A is the set of
routes found in this response. We will denote the output by
Out ideal

conf ,A(r′), where r′ = (r′I , r′1, . . . , r
′
n, r′A, r′C). Out ideal

conf ,A

will denote the random variable describing Out ideal
conf ,A(r′) when

r′ is uniformly chosen.

3.3 Definition of secure routing
Now, we are ready to introduce the definition of secure

routing:

Definition 1. A routing protocol is said to be (compu-
tationally) secure if, for any configuration conf and any
real-world adversary A, there exists an ideal-world adver-

sary A′, such that Out real
conf ,A

c
= Out ideal

conf ,A′ , where
c
= means

“computationally indistinguishable”.

In fact, Definition 1 describes the standard requirement
we have on protocols in terms of security. However, some
protocols may satisfy the following stronger definitions:

Definition 2. A routing protocol is said to be statisti-
cally secure if the same holds as in Definition 1 but with
s
= instead of

c
=, where

s
= means “statistically indistinguish-

able”.

Definition 3. A routing protocol is said to be perfectly

secure if the same holds as in Definition 1 but with
d
= in-

stead of
c
=, where

d
= means “equally distributed”.

The meaning of
d
= should be clear. Two random variables

are statistically indistinguishable if the L1 distance of their
distributions is negligibly small. Two random variables are



computationally indistinguishable if no feasible algorithm
can distinguish their samples (although their distribution

may be completely different). Clearly,
d
= implies

s
=, which

implies
c
=.

Intuitively, perfect security of a protocol means that ev-
erything that a real-world adversary can achieve against the
protocol in the real-world model, an ideal-world adversary
can also achieve in the ideal-world model. Since in the ideal-
world model, the ideal-world adversary cannot achieve that
a non-existent route is returned to H, it follows that for
perfectly secure protocols, H cannot receive a non-existent
route in the real-world model. For statistically secure pro-
tocols the same is true with overwhelming probability. For
(computationally) secure protocols, the view of the honest
parties in the real-world model cannot be efficiently dis-
tinguished from their view in the ideal-world model, and
therefore, as far as any practical application is concerned,
the real-world model is equivalent to the ideal-world model
(where non-existent routes are never returned).

3.4 Proof techniques
In order to prove the security of a given routing proto-

col, one has to find the appropriate ideal-world adversary
A′ for any real-world adversary A such that at least Defi-
nition 1 is satisfied. In our model, a natural candidate is
A′ = A. This is because for any configuration conf , the
operation of sys real

conf ,A can easily be simulated by the oper-

ation of sys ideal
conf ,A assuming that the two systems were ini-

tialized with the same random input r. In order to see this,
let us assume for a moment that no message is dropped
due to its corruption flag being set in sys ideal

conf ,A. In this

case, sys real
conf ,A and sys ideal

conf ,A are essentially identical, mean-
ing that in each step the state of the corresponding ma-
chines and the content of the corresponding buffers are the
same (apart from the corruption flags attached to the mes-
sages in sys ideal

conf ,A). Since the two systems are identical,

Out real
conf ,A(r) = Out ideal

conf ,A(r) holds for every r, and thus,

we have perfect security: Out real
conf ,A

d
= Out ideal

conf ,A.
However, it is possible that some route reply messages are

dropped in sys ideal
conf ,A due to their corruption flags being set

to true. In this case, since those messages are not dropped
in sys real

conf ,A (by definition, they have already successfully
passed all verifications required by the routing protocol),
sys real

conf ,A and sys ideal
conf ,A may end up in different states and

their further steps may not match each other. We call this
situation a simulation failure. In case of a simulation fail-
ure, it might be that Out real

conf ,A(r) �= Out ideal
conf ,A(r). Neverthe-

less, the definition of statistical security can still be satisfied,
if simulation failures occur only with negligible probability.
Hence, when trying to prove statistical security, one tries to
prove that for any configuration conf and adversary A, the
event of dropping a route reply in sys ideal

conf ,A due to its cor-
ruption flag being set to true can occur only with negligible
probability.

Finally, (computational) security can usually be proven
in an indirect manner. For this, it is first assumed that
Out real

conf ,A and Out ideal
conf ,A can be distinguished by an efficient

algorithm D, and then, a forger is constructed that uses D to
break the underlying cryptographic primitive (e.g., a digital
signature scheme) of the protocol.

4. USAGE OF THE MODEL
In this section, we demonstrate the usefulness of our model.

In particular, we present as yet unknown attacks against the
route discovery part of SRP and Ariadne with signatures,
which we have discovered with the help of our model. We
also propose a novel protocol, which can be proven to be
statistically secure in our model. We provide only sketch of
proofs in order to make the presentation easier to follow.

4.1 An attack on SRP

4.1.1 Operation of SRP
SRP has been proposed in [19] as an extension header for

on-demand source routing protocols such as DSR [15] and
the Interzone Routing Protocol of ZRP [11]. In what fol-
lows, we assume that SRP is a stand-alone protocol with
basic features similar to that of DSR. This makes the pre-
sentation simpler, and at the same time, it does not weakens
our results.

In SRP, the initiator of the route discovery generates a
route request message and broadcasts it to its neighbors.
The integrity of this route request is protected by a MAC
that is computed with a key shared by the initiator and the
target of the discovery. Each intermediate node that receives
the route request for the first time appends its identifier to
the request and re-broadcasts it. The MAC in the request
is not checked by the intermediate nodes (as they do not
know the key with which it was computed). When the route
request reaches the target of the route discovery, it contains
the list of identifiers of the intermediate nodes that passed
the request on. This list is considered as a route found
between the initiator and the target.

The target verifies the MAC of the initiator in the re-
quest. If the verification is successful, then it generates a
route reply and sends it back to the initiator via the reverse
of the route obtained from the route request. The route
reply contains the route obtained from the route request,
and its integrity is protected by another MAC generated by
the target with a key shared by the target and the initiator.
Each intermediate node passes the route reply to the next
node on the route (towards the initiator) without modifying
it. When the initiator receives the reply it verifies the MAC
of the target, and if this verification is successful, then it
accepts the route returned in the reply.

The target may receive several route requests that belong
to the same route discovery process, and it sends a reply to
each of these requests. It is assumed that the initiator waits
for some time (possibly defined by a timeout parameter),
and then it outputs the set of routes collected from all the
replies it received.

Although SRP does not specify it (as it should be part of
the base protocol to which SRP is added as an extension),
we will nonetheless assume that each node also performs the
following verifications when processing SRP messages:

• When a node v receives a route request for the first
time, it verifies if the last identifier of the accumulated
route in the request corresponds to a neighbor of v.
If the accumulated route does not contain any iden-
tifiers, then v verifies if the identifier of the initiator
corresponds to a neighboring node.

• When a node v receives a route reply, it verifies if its
identifier is included in the route carried by the reply.



In addition, it also verifies if the preceding identifier (or
if there is no preceding identifier, then the identifier of
the initiator) and the following identifier (or if there is
no following identifier, then the identifier of the target)
in the route correspond to neighbors of v.

If these verifications fail, then the message is dropped.

4.1.2 Analysis
In this subsection, we present some observations that we

made while we attempted to prove the security of SRP. In-
stead of a proof of security, these observations has actually
led to the discovery of a novel attack against SRP.

In the following discussion, we will refer to the machines
that represent the devices in the network by their labels.
This does not lead to ambiguity since the labelling function
L is a bijection.

Let us suppose that for some configuration conf = (G, ṽ)
and adversary A, the following message is received by a non-
corrupted machine �ini in sys ideal

conf ,A:

msg = (rrep, �ini , �tar , id , sn, (�1, . . . , �p), mac�tar )

Let us further suppose that msg has been received with a
corruption flag set to true, and that msg passed all the ver-
ifications required by SRP at �ini . This means that mac�tar

is correct, �1 is a neighbor of �ini , and (�ini , �1, . . . , �p, �tar )
is a non-existent route in G.

Observation 1. Given that the assumptions above hold,
adversary A must have output msg.

Proof. Let us assume that A has never output msg .
This means that only non-corrupted machines have output
it. In other words, �ini received msg from a non-corrupted
machine, who received it from another non-corrupted ma-
chine, etc. Note that a non-corrupted machine � processes
msg only if it was sent to it (i.e., a non-corrupted ma-
chine does not process overheard messages). Furthermore,
� passes on msg only if it finds itself in the list (�1, . . . , �p)
and if the preceding machine on the list is a neighbor of �.
All these observations lead to the conclusion that msg must
have reached �ini by passing through �p, . . . , �1. This con-
tradicts with the assumption that (�ini , �1, . . . , �p, �tar ) is a
non-existent route.

Observation 2. Given that the assumptions above hold,
machine �tar has output msg with overwhelming probability.

Proof. We know from Observation 1 that A has out-
put msg . Let the earliest round in which this happened be
ρ. Since mac�tar in msg is a correct MAC, A can generate
msg by himself only with negligible probability. So, with
overwhelming probability, A received msg in round ρ′ ≤ ρ.
Since correct machines apart from �tar output msg only if
they received it earlier, there must be a round ρ′′ < ρ′ in
which �tar generated and output msg .

By assumption, �1 is a neighbor of �ini , and (�ini , �1, . . . , �p,
�tar ) is a non-existent route. This means that there exists
1 ≤ i ≤ p such that �i and �i+1 (where �p+1 stands for �tar )
are not neighbors.

Observation 3. If �i is a non-corrupted machine, then
it does not output msg.

Proof. Before outputting msg , �i verifies that it is on
the list (�1, . . . , �p) and that �i+1 is its neighbor. Since the
latter does not hold, �i drops msg .

Observation 4. If �i+1 is a non-corrupted machine, then
it does not output msg.

The proof of Observation 4 is similar to that of Observa-
tion 3.

In summary, we know that �tar has output msg , where
msg carries the list of machines (�1, . . . , �p). We also know
that there must be an 1 ≤ i ≤ p such that �i and �i+1

are not neighbors. In addition, if �1, . . . , �p, and �tar are all
non-corrupted machines, then neither �i nor �i+1 has output
msg . The question is then how msg could reach �ini from
�tar? The key observation is that A must have output msg .
Can A bridge the gap between �i and �i+1? This is possible
if A overhears the transmission of msg by a machine �x for
some x > i+1 and can transmit msg to another machine �y

for some y < i.

W

X

Y

V

S D... ...
A

Figure 2: Part of a configuration where an attack
against SRP is possible

4.1.3 Attack
Let us consider Figure 2, which illustrates part of a con-

figuration where an attack against SRP based on the above
observations is possible. The attacker is denoted by A. The
attack scenario is the following: Let us assume that S sends
a route request towards D. The request reaches V that re-
broadcasts it. Thus, A receives the following route request
message:

msg1 = (rreq, S, D, id , sn, macS, (. . . , V))

where id is a randomly generated request identifier, sn is a
sequence number maintained by S and D, and macS is the
initiator’s MAC. A then broadcasts the following message
in the name of X:

msg2 = (rreq, S, D, id , sn, macS, (. . . , V, W, λ, X))

where λ is an arbitrary sequence of identifiers. Since Y is
a neighbor of A, it will hear the transmission. In addition,
since the list of nodes in the message ends with X, which
is also a neighbor of Y, it will process the request and re-
broadcast it. Later, D sends the following route reply back
to S:

msg3 = (rrep, S, D, id , sn, (. . . , V, W, λ, X, Y, . . .), macD)

where macD is the MAC of the target. When Y sends this
message to X, A overhears the transmission, and forwards
the message to V in the name of W. V will accept the mes-
sage and passes it on towards S. Finally, S will output the



route (S, . . . , W, λ, X, . . . , D), which is clearly a non-existent
route.

Note that when A generates msg2, it cannot be sure that
V and W are neighbors. Similarly, it does not know if X
and Y are neighbors. Hence the attack may fail. However,
the success probability of the attack is non-negligible, given
that V, W, X, and Y are all neighbors of A, and it is known
that in this case, the probability that V and W, as well as
X and Y are also neighbors is significantly higher than if we
just put these nodes on the plane randomly.

4.2 An attack on Ariadne with signatures

4.2.1 Operation of Ariadne with signatures
Ariadne has been proposed in [12] as a secure on-demand

source routing protocol for ad hoc networks. Ariadne comes
in three different flavors corresponding to three different
techniques for data authentication. More specifically, au-
thentication of routing messages in Ariadne can be based
on TESLA [20], on digital signatures, or on MACs. We
discuss Ariadne with digital signatures.

There are two main differences between Ariadne and SRP.
First, in Ariadne not only the initiator and the target au-
thenticate the protocol messages, but intermediate nodes
too insert their own digital signatures in route requests. Sec-
ond, Ariadne uses per-hop hashing to prevent removal of
identifiers from the accumulated route in the route request.

The initiator of the route discovery generates a route re-
quest message and broadcasts it to its neighbors. The route
discovery message contains the identifiers of the initiator
and the target, a randomly generated request identifier, and
a MAC computed over these elements with a key shared by
the initiator and the target. This MAC is hashed iteratively
by each intermediate node together with its own identifier
using a publicly known one-way hash function. The hash
values computed in this way are called per-hop hash values.
Each intermediate node that receives the request for the first
time re-computes the per-hop hash value, appends its iden-
tifier to the list of identifiers accumulated in the request,
and generates a digital signature on the updated request.
Finally, the signature is appended to a signature list in the
request, and the request is re-broadcast.

When the target receives the request, it verifies the per-
hop hash by re-computing the initiator’s MAC and the per-
hop hash value of each intermediate node. Then it verifies
all the digital signatures in the request. If all these veri-
fications are successful, then the target generates a route
reply and sends it back to the initiator via the reverse of the
route obtained from the route request. The route reply con-
tains the identifiers of the target and the initiator, the route
and the list of digital signatures obtained from the request,
and the digital signature of the target on all these elements.
Each intermediate node passes the reply to the next node
on the route (towards the initiator) without any modifica-
tions. When the initiator receives the reply, it verifies the
digital signature of the target and the digital signatures of
the intermediate nodes (for this it needs to reconstruct the
requests that the intermediate nodes signed). If the verifi-
cations are successful, then it accepts the route returned in
the reply.

We assume that every node performs the same verifica-
tions on the accumulated routes found in the routing mes-

sages as those described in the previous subsection in the
context of SRP.

W X

V

S D... ...
A

Figure 3: Part of a configuration where an attack
against Ariadne is possible

4.2.2 Attack
Due to lack of space, we omit the analysis of Ariadne (the

interested reader is referred to [8]), and we present only the
attack that we have discovered while trying to prove Ariadne
secure in our model.

Let us consider Figure 3, which illustrates part of a con-
figuration where the discovered attack is possible. The at-
tacker is denoted by A. Let us assume that S sends a route
request towards D. The request reaches V that re-broadcasts
it. Thus, A receives the following route request message:

msg1 = (rreq, S, D, id , hV, (. . . , V), (. . . , sigV))

where id is the random request identifier, hV is the per-hop
hash value generated by V, and sigV is the signature of V.
A does not re-broadcast msg1. Later, A receives another
route request from X:

msg2 = (rreq, S, D, id , hX, (. . . , V, W, X),

(. . . , sigV, sigW, sigX))

From msg2, A knows that W is a neighbor of V. A computes
hA = H(A, H(W, hV)), where hV is obtained from msg1, and
H is the publicly known hash function used in the protocol.
A obtains the signatures . . . , sigV, sigW from msg2. Then, A
generates and broadcasts the following request:

msg3 = (rreq, S, D, id , hA, (. . . , V, W, A),

(. . . , sigV, sigW, sigA))

Later, D generates the following route reply and sends it
back towards S:

msg4 = (rrep, D, S, (. . . , V, W, A, . . .),

(. . . , sigV , sigW , sigA, . . .), sigD)

When A receives this route reply, it forwards it to V in the
name of W. Finally, S will output the route (S, . . . , V, W,
A, . . . , D), which is a non-existent route.

4.3 A provably secure routing protocol
Inspired by Ariadne, we present a routing protocol that

can be proven to be statistically secure. We call the protocol
endairA (which is the reverse of Ariadne), because instead
of signing the route request, we propose that intermediate
nodes should sign the route reply. The operation and the
messages of endairA are illustrated in Figure 4.

In endairA, the initiator of the route discovery process
generates a route request, which contains the identifiers of
the initiator and the target, and a randomly generated re-
quest identifier. Each intermediate node that receives the



S → ∗ : (rreq, S, D, id , ())
V → ∗ : (rreq, S, D, id , (V))
W → ∗ : (rreq, S, D, id , (V, W))
D → W : (rrep, S, D, (V, W), (sigD))
W → V : (rrep, S, D, (V, W), (sigD, sigW))
V → S : (rrep, S, D, (V, W), (sigD, sigW, sigV))

Figure 4: Operation example and messages of
endairA. The initiator of the route discovery is S,
the target is D, and the intermediate nodes are V
and W. id is a randomly generated request identi-
fier. sigV, sigW, and sigD are digital signatures of V,
W, and D, respectively. Each signature is computed
over the message fields that precede the signature.

request for the first time appends its identifier to the route
accumulated so far, and re-broadcasts the request. When
the request arrives to the target, it generates a route reply.
The route reply contains the identifiers of the initiator and
the target, the accumulated route obtained from the request,
and a digital signature of the target on these elements. The
reply is sent back to the initiator on the reverse of the route
found in the request. Each intermediate node that receives
the reply verifies that its identifier is in the route carried by
the reply, and that the preceding and following identifiers on
the route belong to neighboring nodes. If these verifications
fail, then the reply is dropped. Otherwise, it is signed by
the intermediate node, and passed to the next node on the
route (towards the initiator). When the initiator receives
the route reply, it verifies if the first identifier in the route
carried by the reply belongs to a neighbor. If so, then it ver-
ifies all the signatures in the reply. If all these verifications
are successful, then the initiator accepts the route.

Theorem 1. endairA is statistically secure if the signa-
ture scheme is secure against chosen message attacks.

Proof. In order to prove that endairA is statistically se-
cure, it is enough to show that for any configuration conf
and any adversary A, a route reply message in sys ideal

conf ,A is
dropped due to its corruption flag set to true with negligible
probability.

Let us suppose that for some configuration conf = (G, ṽ)
and adversary A, the following message is received by a non-
corrupted machine �ini in sys ideal

conf ,A:

msg = (rrep, �ini , �tar , (�1, . . . , �p), (sig�tar
, sig�p

, . . . , sig�1
))

Let us further suppose that msg has been received with a
corruption flag set to true, and that msg passed all the ver-
ifications required by endairA at �ini . This means that all
signatures in msg are correct, �1 is a neighbor of �ini , and
(�ini , �1, . . . , �p, �tar ) is a non-existent route in G. It follows
that there exists 1 ≤ i ≤ p such that �i and �i+1 (where �p+1

stands for �tar ) are not neighbors.
We prove that the above is only possible if A forged the

signature of �i or �i+1. (a) Let us assume that �i �= A.
Then, �i is non-corrupted, and it verifies the route in the
route reply before signing it. Consequently, it detects that
�i+1 is not its neighbor and it does not sign the route reply.
As other non-corrupted machines do not generate signatures
in the name of �i, �ini can receive msg only if A forged sig�i

.
(b) Now let us assume that �i = A. Then, �i+1 is non-

corrupted, and an argument similar to the one above leads
to the conclusion that A must have forged sig�i+1

.

It should be intuitively clear that if the signature scheme
is secure, then A can forge a signature only with negligible
probability, and thus, a route reply message in sys ideal

conf ,A is
dropped due to its corruption flag set to true only with neg-
ligible probability. Nevertheless, we sketch how this could
be proven formally. The proof is indirect. We assume that
there exist a configuration conf and an adversary A such
that a route reply message in sys ideal

conf ,A is dropped due to
its corruption flag set to true with probability ε, and then,
based on that, we construct a forger F that can break the
signature scheme with probability ε/n. If ε is non-negligible,
then so is ε/n, and thus, the existence of F contradicts with
the assumption on the security of the signature scheme.

The construction of F is the following. Let puk be an
arbitrary public key of the signature scheme. Let us assume
that the corresponding private key prk is not known to F ,
but F has access to a signing oracle that produces signatures
on submitted messages using prk . F runs a simulation of
sys real

conf ,A where all machines are initialized as described in
the model, except that the public key of a randomly selected
non-corrupted machine �i is replaced with puk . During the
simulation, whenever �i signs a message m, F submits m to
the oracle, and replaces the signature of �i on m with the
one produced by the oracle. This signature verifies correctly
on other machines later, since the public verification key of
�i is replaced with puk . By assumption, with probability ε,
the simulation of sys real

conf ,A will result in a route reply mes-
sage msg such that all signatures in msg are correct and msg
contains a non-existent route. As we saw above, this means
that there exists a non-corrupted machine �j such that msg
contains the signature sig�j

of �j , but �j has never signed

(the corresponding part of) msg . Let us assume that i = j.
In this case, sig�j

is a signature that verifies correctly with

the public key puk . Since �j did not signed (the correspond-
ing part of) msg , F did not call the oracle to generate sig�j

.

This means that F managed to produce a signature on a
message that verifies correctly with puk . Since F selected
�i randomly, the probability of i = j is 1

n
, and hence, the

success probability of F is ε/n.

Note that the proof uses only the fact that the adversary
has only a single compromised key. In particular, the same
proof seems to work for an Active-1-x adversary, which has
a single compromised key, but owns several devices in the
network.

While we designed endairA purely for demonstration pur-
poses, it has some noteworthy features. Besides being prov-
ably secure against an Active-1-1 adversary (and most prob-
ably against an Active-1-x adversary too), it is extremely
simple and intuitive (e.g., it does not use per-hop hash val-
ues). In addition, it requires the nodes to sign only route
reply messages, which means that the nodes need to produce
orders of magnitude less signatures than in Ariadne, where
the route request is signed by every node in the network due
to the flooding of the request.

We must also note, however, that endairA is not very re-
sistant against DoS attacks. In particular, it allows the net-
work to be flooded with fake route request messages. How-
ever, its resistance to such attacks can be increased by re-
quiring the initiator to sign the request and the intermediate



nodes to verify this signature.

5. RELATED WORK
There are several proposals for secure ad hoc routing pro-

tocols (see [14] for a recent overview). However, these pro-
posals come with an informal security analysis with all the
pitfalls of informal security arguments. Another set of pa-
pers deal with provable security for cryptographic algorithms
and protocols (see Parts V and VI of [16] for a survey of the
field). However, these papers are not concerned with ad hoc
routing protocols. The papers that are the most closely re-
lated to the approach we used in this paper are [5], [23],
and [21]. These papers apply the simulation paradigm for
different security problems: [5] and [23] deal with key ex-
change protocols, and [21] is concerned with security of re-
active systems in general, and secure message transmission
in particular. To the best of our knowledge, we are the first
who applied the notions of provable security and used the
simulation-based approach in the context of routing proto-
cols for wireless ad hoc networks.

A different approach with similar goals to ours is pre-
sented in [25]. The authors of [25] propose a formal model
for ad hoc routing protocols with the aim of representing in-
sider attacks (which correspond to our notion of corrupted
nodes). Their model is similar to the strand spaces model
[10], which has been developed for the formal verification of
key exchange protocols. Routing security is defined in terms
of a safety and a liveness property. The liveness property re-
quires that it is possible to discover routes, while the safety
property requires that discovered routes do not contain cor-
rupted nodes. In contrast to this, our definition of security
allows the protocol to return routes that pass through cor-
rupted nodes. As we mentioned earlier, our definition cor-
responds to the informal definitions of security given in [19]
and [12]. In addition, it seems to be impossible to guarantee
that discovered routes do not contain corrupted nodes, since
corrupted nodes can behave correctly and follow the routing
protocol faithfully.

Another approach, presented in [17], is based on a formal
method, called CPAL-ES, which uses a weakest precondition
logic to reason about security protocols. Unfortunately, the
work presented in [17] is very much centered around the
analysis of SRP, and it is not general enough. For instance,
the author defines a security goal that is specific to SRP,
but no general definition of routing security is given. In ad-
dition, the attack discovered by the author on SRP is not
a real attack, because it essentially consists in setting up a
wormhole between two non-corrupted nodes, and SRP is not
supposed to defend against this. In our opinion, wormhole
attacks are attacks against the neighbor discovery mecha-
nism and not against routing. The CPAL-ES analysis of
SRP in [17] does not identify the attack presented in Sec-
tion 4, which we have discovered with our approach. On the
other hand, the advantage of the approaches of [17] and [25]
is that they can be automated.

Finally, we must mention that SRP has been analyzed by
its authors in [19] using BAN logic [6]. However, BAN logic
has never been intended for the analysis of routing protocols.
The main problem with using BAN logic in this context is
that BAN logic assumes that the protocol participants are
trustworthy and do not release secrets [7]. This assump-
tion does not hold in the typical case that we are interested
in, namely, when there are corrupted nodes in the network

controlled by the adversary that may not follow the rout-
ing protocol faithfully. It is dangerous to draw conclusions
from a BAN analysis of the protocol when the basic assump-
tions of BAN logic are not satisfied. The fact that the BAN
analysis of SRP in [19] was inappropriate is best illustrated
by the attack presented in Section 4, which was completely
overlooked by the authors of [19].

6. CONCLUSION AND FUTURE WORK
In this paper, we made the first steps toward a formal

model in which one can precisely define what secure rout-
ing means and prove (or fail to prove) that a given routing
protocol indeed satisfies that definition (under some crypto-
graphic assumptions). Our approach is based on the com-
monly known simulation paradigm for proving cryptographic
protocols correct. The main contribution of the paper is the
application of this approach to on-demand source routing
protocols proposed for wireless ad hoc networks.

More specifically, we formally defined a real-world and an
ideal-world model that capture the basic features of wire-
less ad hoc networking in general, and ad hoc routing pro-
tocols in particular. The real-world model describes the
real operation of the routing protocol, while the ideal-world
model formalizes the requirement that a secure routing pro-
tocol should not return non-existent routes to honest par-
ties. Then, we gave a formal definition of routing security in
terms of computational indistinguishability of the two mod-
els from the point of view of honest parties.

We demonstrated the usefulness of our approach by an-
alyzing two “secure” ad hoc routing protocols, SRP and
Ariadne. This analysis has led to the discovery of as yet un-
known attacks against both protocols. Finally, we proposed
a novel on-demand source routing protocol for wireless ad
hoc networks, which can be proven to be secure in our model.
This protocol served purely illustrative purposes in this pa-
per, however, it has interesting features that make it worthy
to consider by protocol designers when building their future
protocols.

In terms of future work, we intend to extend our model
to handle parallel protocol runs and Active-x-y adversaries
(currently it handles only Active-1-1 adversaries). We also
intend to adopt our model for routing protocols that use
routing tables instead of source routes (e.g., SEAD [13] and
ARAN [22]).

7. ACKNOWLEDGEMENT
The authors are thankful to Markus Jakobsson for his

comments on an earlier version of this paper.
This work has partially been supported by the Hungar-

ian Scientific Research Fund under project number T046664.
The first author has been further supported by IKMA and
by the Hungarian Ministry of Education.

8. REFERENCES
[1] M. Backes and B. Pfitzmann. A Cryptographically

Sound Security Proof of the Needham-Schroeder-Lowe
Public-Key Protocol. to appear in IEEE Journal on
Selected Areas in Communication.

[2] D. Beaver. Foundations of secure interactive
computing. In Proceedings of Crypto’91, 1991.

[3] M. Bellare and P. Rogaway. Entity authentication and
key distribution. In Proceedings of Crypto’93, 1993.



[4] M. Bellare and P. Rogaway. Provably secure session
key distribution – the three party case. In Proceedings
of the ACM Symposium on the Theory of Computing,
May 1995.

[5] M. Bellare, R. Canetti, and H. Krawczyk. A modular
approach to the design and analysis of authentication
and key exchange protocols. In Proceedings of the
ACM Symposium on the Theory of Computing, 1998.

[6] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Transactions on Computer
Systems, 8(1):18–36, February 1990.

[7] M. Burrows, M. Abadi, and R. Needham. Rejoinder to
Nessett. ACM Operating Systems Review, 24(2):39–40,
April 1990.

[8] L. Buttyán and I. Vajda. Towards provable security
for ad hoc routing protocols. Techical Report No.
2004/159, http://eprint.iacr.org/, July 2004.

[9] R. Canetti. Studies in Secure Multiparty Computation
and Applications. PhD dissertation, Department of
Computer Science and Applied Mathematics,
Weizmann Institute of Science, June 1995.

[10] J. Guttman. Security goals: packet trajectories and
strand spaces. In Foundations of Security Analysis and
Design, edited by R. Focardi and R. Gorrieri, Springer
LNCS 2171, 2000.

[11] Z. Haas, M. Perlman, and P. Samar. The Interzone
Routing Protocol (IERP) for ad hoc networks.
Internet Draft, IETF MANET Working Group, June
2001.

[12] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A
secure on-demonad routing protocol for ad hoc
networks. In Proceedings of the ACM Conference on
Mobile Computing and Networking (Mobicom), 2002.

[13] Y.-C. Hu, D. Johnson, and A. Perrig. SEAD: Secure
efficient distance-vector routing for mobile wireless ad
hoc networks. In Proceedings of the IEEE Workshop
on Mobile Computing Systems and Applications
(WMCSA), 2002.

[14] Y.-C. Hu and A. Perrig. A survey of secure wireless ad
hoc routing. IEEE Security and Privacy Magazine,
2(3):28–39, May/June 2004.

[15] D. Johnson and D. Maltz. Dynamic source routing in
ad hoc wireless networks. In Mobile Computing, edited
by Tomasz Imielinski and Hank Korth, Chapter 5,
pages 153–181. Kluwer Academic Publisher, 1996.

[16] W. Mao. Modern Cryptography: Theory and Practice.
Prentice Hall PTR, 2004.

[17] J. Marshall. An Analysis of the Secure Routing
Protocol for mobile ad hoc network route discovery:
using intuitive reasoning and formal verification to
identify flaws. MSc thesis, Department of Computer
Science, Florida State University, April 2003.

[18] S. Micali and P. Rogaway. Secure computation. In
Proceedings of Crypto’91, 1991.

[19] P. Papadimitratos and Z. Haas. Secure routing for
mobile ad hoc networks. In Proceedings of SCS
Communication Networks and Distributed Systems
Modelling Simulation Conference (CNDS), 2002.

[20] A. Perrig, R. Canetti, J. D. Tygar, and D. Song.
Efficient authentication and signing of multicast
streams over lossy channels. In Proceedings of the

IEEE Symposium on Security and Privacy, May 2000.

[21] B. Pfitzmann and M. Waidner. A model for
asynchronous reactive systems and its application to
secure message transmission. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2001.

[22] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E.
Belding-Royer. A secure routing protocol for ad hoc
networks. In Proceedings of the International
Conference on Network Protocols (ICNP), 2002.

[23] V. Shoup. On formal models for secure key exchange
(version 4), revision of IBM Research Report RZ 3120,
November 1999.

[24] M. G. Zapata and N. Asokan. Securing ad hoc routing
protocols. Proceedings of the ACM Workshop on
Wireless Security (WiSe), 2002.

[25] S. Yang and J. Baras. Modeling vulnerabilities of ad
hoc routing protocols. In Proceedings of the ACM
Workshop on Security of Ad Hoc and Sensor
Networks, October 2003.


