
1

SDTP+: Securing a Distributed Transport Protocol
for WSNs using Merkle Trees and Hash Chains

Amit Dvir, Levente Buttyan, Ta Vinh Thong
Laboratory of Cryptography and System Security (CrySyS)

Budapest University of Technology and Economics, Hungary

Abstract—Transport protocols for Wireless Sensor Networks
(WSNs) are designed to fulfill both reliability and energy effi-
ciency requirements. Distributed Transport for Sensor Networks
(DTSN) [1] is one of the most promising transport protocols
designed for WSNs because of its effectiveness; however, it does
not address any security issues, hence it is vulnerable to many
attacks. The first secure transport protocol for WSN was the
secure distributed transport protocol (SDTP) [2], which is a
security extension of DTSN. Unfortunately, it turns out that
the security methods provided by SDTP are not sufficient; some
tricky attacks get around the protection mechanism. In this paper,
we describe the security gaps in the SDTP protocol, and we
introduce SDTP+ for patching the weaknesses. We show that
SDTP+ resists attacks on reliability and energy efficiency of the
protocol, and also present an overhead analysis for showing its
effectiveness.

Index Terms—Distributed Transport Protocol; WSN; DTSN;
SDTP; Hash Chain; Merkle-Tree;

I. INTRODUCTION

Numerous transport protocols specifically designed for
WSN applications, requiring particularly reliable delivery and
congestion control (e.g., multimedia sensor networks) have
been proposed [3]. Unfortunately, existing transport protocols
for WSNs do not include sufficient security mechanisms
or totally ignore the security issue. Hence, many attacks
have been found against existing WSN transport protocols
[4]. Broadly speaking, these attacks can be classified into
two groups: attacks against reliability and energy depleting.
Reliability attacks aim to mislead the nodes so that loss of a
data packet remains undetected. In the case of energy depleting
attacks, the goal of the attacker is to perform energy-intensive
operations in order to deplete the nodes’ batteries [4].

Buttyan and Grilo [2] presented the Secure Distributed
Transport Protocol (SDTP), the first secure transport protocol
for WSNs, which was based on the Distributed Transport for
Sensor Networks (DTSN) protocol [1]. We argue that the
security methods provided by SDTP are not sufficient and
are still vulnerable. In this paper we propose a novel secure
distributed transport protocol (SDTP+) for WSNs that patches
the security holes found in SDTP. Specifically, we revise the
security methods used by SDTP [2] and propose additional
security extensions. Our SDTP+ protocol contains the follow-
ing proposed mechanisms: (1) Application of Merkle-trees [5]
and Hash chains [6]; (2) Status timer; (3) Aggregate timer;
(4) Retransmission timers; (5) Sending predeleted packets;
(6) Sending and forwarding ACK packets after a certain

number of duplications; (7) Limiting EAR responding; and
(8) Limiting the retransmission number.

The rest of the paper is as follows: Section II discusses the
related works. In Sections III-IV the operation and security
of SDTP are given. Our SDTP+ protocol is described in
Section V, while its security and overhead analysis are in
Sections VI-VII. In this paper we only focus on our main
result; additional explanations can be found in our technical
report [7].

II. RELATED WORKS

In [4] the authors mentioned that the main vulnerabilities
of reliable transport protocols for wireless sensor networks
include the possibility for an attacker to replay, as well as
inject fake or modified control packets. These can lead to
unrecoverable data loss or energy depleting. Using a forged
or altered ACK packet, an attacker can give the sender the
impression that data packets arrived safely when they may
actually have been lost. Similarly, forging or altering NACK
packets to trigger futile retransmissions can lead to draining
of the node’s batteries. While futile retransmissions do not
directly harm the reliability of service, it is still undesirable.
One of the solutions that would prevent these attacks can
be authentication in lower layers. However, in our case,
intermediate nodes also cache, modify, and verify the control
packets. Hence, as already mentioned in [4], using a broadcast
authentication method at the routing layer is not suitable;
instead, the problem needs to be solved at the transport layer.
For more details about why we should focus on the transport
layer please refer to [2].

Based on the conclusion in [4], Buttyan and Grilo [2]
have proposed the first security extension of the DTSN proto-
col. Their method is based on symmetric key cryptographic
primitives, and hence, it is efficient in the WSN context.
Unfortunately, it turns out that the proposed extension in [2] is
still vulnerable to some kinds of attacks. The SDTP+ protocol
proposed in this paper improves the security extension pro-
posed in [2] and presents new security extensions to eliminate
the security holes. The security mechanisms proposed in this
paper are based on the application of hash-chains [6] and
Merkle-trees [5], which have been broadly used in designing
security protocols. Hash chains have been used in many secure
routing protocols (e.g., Ariadne [8]). Similarly, Merkle trees
have been used in securing WSN protocols [9]. In this paper,
we apply hash-chains and Merkle-trees in a new context,
namely, for securing WSN transport protocol.

2

III. THE SDTP PROTOCOL

The SDTP [2] protocol preserves the main advantage of
DTSN [1] that allows intermediate nodes to cache and retrans-
mit data packets, thus reducing the average number of hops
a retransmitted packet has to traverse. Moreover, to reduce
caching overhead each intermediate node only stores a packet
with some probability p. As in the DTSN protocol, SDTP
uses three types of control packets: Explicit Acknowledgment
Requests (EARs), Positive Acknowledgments (ACK s), and
Negative Acknowledgments (NACK s).

The source sends an EAR packet in one of the following
cases: after the transmission of a certain number of data pack-
ets; output buffer becomes full; if during a predefined timeout
period the application has not requested the transmission of
any data; or expiration of the EAR timer (EAR timer) [1].
An EAR may take the form of a bit flag piggybacked on a
data packet or an independent control packet.

Upon receipt of an EAR packet, depending on the gaps in
the sequence of received data packets, the destination sends a
control packet (ACK or NACK). An ACK refers to a packet
sequence number n indicating that all packets with sequence
number smaller than or equal to n have been received by
the destination. A NACK refers to a base sequence number
n along with a bitmap of set/unset bits, where each set
bit represents a different sequence number starting from the
base sequence number n. The meaning of the base sequence
number n is the same as in the ACK case, while the packets
corresponding to the set bits in the bitmap are required to be
retransmitted.

The main security solution of the SDTP protocol is as fol-
lows [2]: each (sequentially numbered) data packet is extended
with an ACK MAC (Message Authentication Code) and a
NACK MAC, which are computed over the whole packet
with two different keys, an ACK key (KACK) and a NACK
key (KNACK). Both keys are known only to the source and
the destination and are specific to the data packet; hence, these
keys are referred to as per-packet keys.

Upon receiving a data packet, the destination can check the
authenticity and integrity of each received data packet by ver-
ifying the two MAC values. Upon receipt of an EAR packet,
the destination sends an ACK or a NACK packet, depending
on the gaps in the received data buffer. In case an ACK packet
refers to a data packet with sequence number n, the destination
reveals its ACK key; similarly, when it wants to signal that
this data packet is missing, the destination reveals its NACK
key. Any intermediate node storing the relevant packets can
verify if the ACK or NACK message it receives is authentic
by checking if the appropriate MAC is verified correctly with
the included key. For each verification of the NACK key, the
intermediate node retransmits the corresponding data packet
(if stored), unsets the bit, and removes the corresponding key.
In case the bitmap becomes clear, the intermediate node sends
an EAR message and the NACK becomes an ACK message.
In addition, each intermediate node and the source maintain
for each session the largest verifiable acknowledged sequence
number so far, which we denote by MaxSN , to protect against
replaying control packets.

IV. SECURITY ISSUES AND DESIGN OBJECTIVES

A. Attacker Model

As most external attacks can be defeated by link layer
authentication schemes such as TinySec, we focus here on the
case of internal attackers (i.e., compromised nodes) that want
to avoid discovery of the node compromise by the network
operator; that is, stealthy attackers [10] are assumed. The main
goal of the attacker is deceiving the honest nodes that data
packets are delivered while in reality they are lost, while the
secondary goal is to mount attacks where the nodes are coerced
into spend more energy than actually needed. In particular,
we are not interested in (and actually cannot really prevent)
“brute force” Denial-of-Service type attacks. Instead we are
interested in attacks where compromised nodes misbehave in
more sophisticated ways that are more difficult to discover
while causing huge damage.

B. Security issues in the SDTP protocol

SDTP is believed to be secure because the shared secret S
is never leaked, and hence, only the source and the destination
can produce the right ACK and NACK master keys and per-
packet keys [2]. Since the source never reveals these keys,
the intermediate node can be sure that the control information
has been sent by the destination. In addition, because the per-
packet keys are computed by a one-way function, when the
ACK and NACK keys are revealed, the master keys cannot
be computed from them; hence, the yet unrevealed ACK and
NACK keys cannot be derived. Surprisingly, SDTP is still
vulnerable to some tricky attacks that we discuss below.

In the first attack, called a creating fake packets attack,
colluding attackers can cause data packets be deleted from
the caches of intermediate nodes, although they should not
be. Let us consider the following scenario: Let S, I , D be the
source, intermediate, and destination nodes, respectively; and
let A1 and A2 be the two cooperative compromised nodes.
Assume that the topology is such that there are symmetrical
links between (S,A1), (A1, I), (I, A2), and (A2, D) pairs.
First, A1 creates a data packet m containing a MAC value
computed with fake ACK and NACK keys, then node I stores
the packet without being able to verify the MAC values. Later,
even without the presence of D, A2 generates fake ACK ,
NACK packets with the corresponding fake keys, which will
match the MAC values of the stored m at node I . Hence,
node I considers these fake acknowledgment packets to be
valid. Therefore, node I deletes all the stored packets with a
sequence number that is less than m (including m) from its
cache and updates its MaxSN to be m. As a consequence,
intermediate nodes can be easily misled to believe that data
packets have been delivered, although the destination has not
received them.

Other vulnerabilities are found in the following cases: the
destination in SDTP sends ACK or NACK packets upon
reception of an EAR. Attacks aiming at replaying or forging
EAR information, where the attacker always sets the EAR
flag to 0 or 1, can have harmful effect. Always setting the
EAR flag to 0 prevents the destination from sending an ACK
or NACK packet, while always setting it to 1 makes the

3

destination send control packets unnecessarily. In SDTP the
attackers may replay NACK packets to force futile retrans-
missions of data packets. Finally, by unsetting some or even
all the bits of the bitmap in NACK packets, an attacker can
prevent the intermediate nodes from retransmitting packets.

V. THE SDTP+ PROTOCOL

SDTP+ aims at enhancing the authentication and integrity
protection of control packets, and is based on an efficient ap-
plication of asymmetric key crypto and authentication values,
which are new compared to SDTP. Our proposed mechanism
is tailored for the problem of authenticating and verifying
the ACK and NACK packets; hence, it is more effective
in the context of WSN than general purpose schemes. The
general idea of SDTP+ is the following: two types of “per-
packet” authentication values are used, ACK and NACK
authentication values. The ACK authentication value is used
to verify the ACK packet by any intermediate node and the
source, whilst the NACK authentication value is used to verify
the NACK packet by any intermediate node and the source.
The ACK authentication value is an element of a hash chain
[6], whilst the NACK authentication value is a leaf and its
corresponding sibling nodes along the path from the leaf to the
root in a Merkle-tree [5]. Each data packet is extended with
one Message Authentication Code (MAC) value (the MAC
function is HMAC), instead of two MACs as in SDTP. Unlike
SDTP where the MAC is computed over the whole packet, our
MAC is computed over the entire packet except for the EAR
and RTX flags in the header, due to the fact that the EAR and
RTX flags are legitimately modified by the intermediate nodes
during the protocol run, and they should not be embraced in
the MAC, otherwise, this may lead to verification failure at
the destination. Unfortunately, by not authenticating the flags
an attacker can modify them, which will increase the overhead
caused by the operations that nodes perform due to the faked
flag values. We will discuss the solution of this problem in
section VI-B. Finally, besides these security mechanisms we
also propose the application of timers (Status, Aggregate, and
Retransmission timer) and transmission limitation mechanisms
for mitigating the effects of the energy depleting attempts.

A. SDTP+ - Building Blocks

We discuss the two main building blocks used in SDTP+

that are new approaches compared to SDTP.
1) Hash Chain [6]: A hash chain is a sequence of hash

values that are computed by iteratively calling a one-way hash
function on an initial value. Let us denote an initial value by
x, the hash function by h, and the initial value of the hash
chain as vm = h(x). Then, the i-th element vi of the hash
chain is computed as vi = h(vi+1) = h(i)(vm). An important
property of the hash chain is that its elements can be easily
computed in one direction, but not in the reverse direction. In
other words, if someone knows vi, then she can compute any
vj = h(i−j)(vi) for any j < i, but she cannot compute any vk
for k > i. This property stems from the one-way property of
the hash function.

2) Merkle-tree [5]: A property that limits the application of
hash chains in some applications is that the elements can only
be revealed sequentially. Merkle-trees overcome this problem
by allowing for the pre-authentication of a set of values with a
single digital signature and for the revelation of those values in
any order. The operation of a Merkle-tree can be summarized
as follows: Let the set of values that we want to authenticate be
v1, v2, . . . , v2` . First, we hash each value vi into v′i with a one-
way hash function. Then, we assign the hashed values to the
leaves of a binary tree. Moreover, to each internal vertex u of
this tree, we assign a value that is computed as the hash of the
values assigned to the two children of u. Either in hash chain
or Merkle-tree, when a digital signature is used, each node has
to know the public signature verification key. A sensor node is
very costly to digitally sign and verify; therefore, it is useful to
use the signing procedure only for bootstrapping. The signing
procedure is important only for secure distributiion of the root
of the hash chain and the Merkle-tree root.

........

...............

........

S
p

S
1

K
NACK

j 2

h
2
= H (h

1
, S

1
)

h
p

H (h
p
, S

p
)

)(1j

NACKK
)(1mj

NACKK
)(mj

NACKK

)(1j

NACKK
)(1mj

NACKK
)(mj

NACKK
)(2j

NACKK

h() h() h() h()

),(
)()(

1
21 j

NACK

j

NACK KKHh

NACK secret value

NACK leaf value

Fig. 1. The structure of Merkle-tree used in our method. Each internal node
is computed as the hash of the ordered concatenation of its children.

B. SDTP+ - Authentication Value Hierarchy

In SDTP+ we adopt the notion and notations of the pre-
shared secret S, and ACK , and NACK master secrets KACK ,
KNACK given in [2]. These keys are computed in exactly the
same way as the SDTP protocol. However, in our method the
generation and management of the per-packet keys K

(n)
ACK ,

K
(n)
NACK is based on the application of hash-chains and

Merkle-trees, which is different from SDTP.
1) The ACK Authentication Values: The authentication

value associated with the ACK packet referring to the i-th
data packet is the i-th element of a hash chain as explained
in section V-A1. At the beginning of each session, the source
generates the ACK master secret KACK and calculates a hash
chain of size m+1 with the initial value K

(m)
ACK = h(KACK),

where m is the number of data packets that the source
wants to send in the session. Each element of the calcu-
lated hash-chain represents a per packet ACK authentication
value as follows: K(m)

ACK ,K
(m−1)
ACK , . . . ,K

(1)
ACK ,K

(0)
ACK , where

K
(i)
ACK = h(K

(i+1)
ACK) and h is a one-way hash function.

The value K
(0)
ACK is the root of the hash-chain, and K

(i)
ACK

represents the ACK authentication value corresponding to the
packet with sequence number i.

2) The NACK Authentication Values: Unlike ACK value,
because several NACK authentication values are revealed at

4

a time in any order, hash-chain is not applicable. Hence, for
authenticating the NACK packets we propose the application
of a complete binary Merkle-tree based on section V-A2.
First, the so-called NACK secret values, which are the set of
values that we want to authenticate, are computed as follows:
K

(n)
NACK = PRF (KNACK ,“per packet NACK secret”, n),

where n is a sequence number of a data packet. Afterwards, we
hash each NACK secret value and assign the hashed values to
the leaves of the Merkle-tree that we called NACK leaf value:
K

′(n)
NACK = h(K

(n)
NACK). The internal nodes of the Merkle-tree

are computed based on these per-packet NACK leaf values.
The Merkle-tree leaves corresponding to the NACK secret
values can be found in Fig. 1.

C. SDTP+ - Source Mechanism

When a session is opened, first, the source computes the
session master secret K, the ACK master secret KACK ,
and the NACK master secret KNACK . Then, based on the
information about the number of data packets in the session
and the master secrets, the source calculates the ACK authen-
tication values and the NACK authentication values. That is,
a hash-chain and a Merkle-tree are generated for the session.
Afterwards, the source sends an open session message with
the following parameters: the root of the hash chain (K(0)

ACK),
length of the hash chain (m+1), number of Merkle-tree roots
(t), SessionID , source ID, destination ID, and the roots of
the t Merkle-trees (we choose t = 1 for efficiency purpose,
for the reason see [7]). Finally, the source digitally signs the
whole message (we choose ECC [11] for a simple illustration,
for more options see [7]). Taking into account the possibility
that the open session packet will be lost and will not reach
the destination, the source may need to retransmit the open-
session packet. Upon sending an open session packet, the
source launches a timer (open-session timer), and when the
time has elapsed without any feedback about the successful
reception of the open session packet, the source retransmits the
open session packet. Besides setting a timer, the source also
limits the retransmission number of the open session packet.

After receiving an ACK message about the open session
packet from the destination, the source starts to send data
packets. Each data packet is extended with a MAC, computed
over the whole packet except for the flags in the header using
the shared secret with the destination. When the source node
receives an ACK packet that includes the ACK authentica-
tion value (K(i)

ACK) corresponding to the packet of sequence
number i, it hashes iteratively the ACK authentication value
i times. If the result is equal to the root hash value K

(0)
ACK ,

then the ACK packet is accepted and the source removes all
the packets with sequence numbers smaller than or equal to i
from its cache, and updates the value of MaxSN i; otherwise,
it ignores and drops the ACK packet.

When the source node receives a NACK packet that
includes the ACK authentication value K

(i)
ACK , NACK au-

thentication values (secret values K
(i+1)
NACK ,. . . , K(i+j)

NACK , and
their corresponding sibling values), it first checks the ACK
authentication value and performs the same steps as for ACK
authentication. Then the source continues with verifying the

NACK authentication values. For each set bit in the bitmap,
the node verifies the NACK authentication values. Upon suc-
cess, the NACK packet is accepted and the source retransmits
the required packets.

D. SDTP+ - Destination Mechanism

When the destination node receives an open-session packet,
it verifies the signature computed on the packet. Upon success,
the destination starts to generate the session master secret, the
ACK master secret, the NACK master secret, the hash-chain,
and the Merkle-tree. Finally, the destination sends an ACK for
the open session packet to the source.

Upon receiving a data packet with sequence number i, first,
the destination checks the authentication data field using the
secret shared between the source and the destination. Upon
success, the destination delivers the packet to the upper layer,
otherwise, the packet is ignored and dropped. Upon the receipt
of a packet with a set EAR flag, the destination sends an ACK
or a NACK packet depending on the gaps in the received
data packet stream. The ACK packet that refers to sequence
number i is extended with the ACK authentication value
(K(i)

ACK). For this purpose the structure of ACK packets is
extended with an ACK authentication value field. Similarly,
the NACK packet with base sequence number i is extended
with the ACK authentication value (K(i)

ACK), as the semantics
of the base sequence number in NACK packets is the same
as that of the sequence number in ACK packets. In addition,
if the j-th bit is set in the bitmap, then the NACK packet
is further extended with the NACK secret value K

(i+j)
NACK and

its sibling authentication values. To locate these authentication
values, the format of NACK packets is extended with an
ACK authentication value field and a variable number of
NACK secret and sibling value fields.

In the DTSN/SDTP protocol, the destination sends an ACK
or a NACK packet upon receipt of an EAR. In order to
mitigate the effect of EAR replay or EAR forging attacks
where the EAR flag is set/unset by an attacker(s), SDTP+

uses two new mechanisms: status timer (dynamic or static)
and limiting the number of responses to EARs. The status
timer is set at the destination and its duration could be a
function of the source EAR timer. To counter that attackers
always set the EAR bits, the destination limits the number of
responses on receiving a set EAR flag. In the period of the
destination’s EAR timer the destination will not send more
than X control packets, where X can be dynamic or static.
The detailed discussion about the timer duration can be found
in our report [7].

E. SDTP+ - Intermediate Node Mechanism

Upon receipt of an open session packet and the corre-
sponding ACK packet, an intermediate node verifies the
signatures computed on them, and in case of success it stores
the hash chain root value, the tree root values, and the
SessionID included in the open session packet, and forwards
the packet towards the destination. Otherwise, an intermediate
node changes its probability to store packets in the current
session to zero. Upon receipt of a data packet, an intermediate

5

node stores with probability p the data packet and forwards the
data packet towards the destination. Note that the intermediate
and source nodes have the same steps in the case of receiving
ACK or NACK control messages.

In the following we describe some extra steps for the inter-
mediate node mechanism in order to mitigate and prevent some
attacks. After successfully verifying ACK /NACK packets, an
intermediate node does not forward them immediately but only
after a certain period of time. Specifically, intermediate nodes
set a timer, called an aggregate-timer, which can be either
dynamic or static. If in this period of time more than certain
number of ACK /NACK packets arrive, the intermediate node
tries to merge the verification information from the control
packets into one control packet (i.e., a form of aggregation);
otherwise, it will send the original ACK /NACK packets. The
sum of the aggregate timers set by intermediate nodes should
not be larger than the source EAR timer. Hence, the timer
value may be a function of the source EAR timer and the
maximum number of nodes in the path between a source and
a destination.

In order to mitigate the effect of a NACK replay attack
where the attacker replays old NACK packets to force futile
retransmissions of data packets, we introduce the following ex-
tensions. The transmission rate of a retransmitted data packet
with sequence number i is limited by using a timer called the
retransmission-timer (denoted by Re timeri). In addition, the
number of retransmissions (denoted by Retransmissioni) per
stored data packet with sequence number i is limited as well.
With these extensions, on receiving a replayed NACK packet,
after a certain number of retransmissions of the same data
packet, the intermediate node only forwards the NACK packet
without retransmission, although it stored the data packet. In
the worst case, however, an intermediate node still can be made
to retransmit unnecessarily up to the limitation. We refer the
reader to the report [7] for further analysis about the overhead
of futile retransmissions in the worst case.

The attacker can also attempt to prevent intermediate nodes
from retransmitting packets by deleting some or even all the
bits of the bitmap in NACK packets. Note that the attacker
does not modify or delete the ACK value but only the bitmap
in NACK packets. To mitigate the impact of this attack, after
receiving a certain number T of ACK packets with the same
acknowledge value equal to MaxSN , the intermediate node
automatically retransmits the first packet in its buffer that
has a sequence number greater than MaxSN . In addition,
these ACK control packets are forwarded to the source.
Unfortunately, we cannot entirely prevent, but only mitigate,
this attack; however, as explained in Section IV-B, the period
of time for this kind of attack is relatively small because each
node has an aggregate timer and the source will filter the
irrelevant control packets. For more details about the impact
of the T value please refer to [7].

When an intermediate node needs to delete a packet from
its buffer because its buffer is full, it sends the first packet in
its buffer that has a sequence number greater than the stored
MaxSN to the destination with probability q, which can be
a different probability from the caching probability, and then
deletes this packet. Note that q needs to be set close to zero

in case the attacker is able to inject fake packets with a high
sequence number, which can cause a retransmission of a fake
packet. However, due to the fact that injecting fake packets
has limited effectiveness, as explained in section IV-B, q can
be larger than 0.5. Finally, when an intermediate node receives
some packet with a new session number but the same (source,
destination, application ID) tuple as the packets already stored
in its buffer, these stored packets will not be deleted from the
buffer. For the detailed processing of the NACK packets see
[7].

VI. SECURITY ANALYSIS

We synthesized some typical attacks against the reliability
and energy efficiency properties of the protocol to which both
DTSN and SDTP are vulnerable. We analyze SDTP+ and
illustrate the advantage of applying hash-chain and Merkle-
trees in preventing these attacks. For further detailed attacks
and explanations see [7].

A. Analyzing the resistance against reliability attacks

The two basic attacks against reliability are concerned with
forging ACK and NACK packets. Let n be the ACK value,
and the attacker wants to modify it to a greater m. In this
case the attacker has to include a correct ACK authenti-
cation value K

(m)
ACK . However, computing K

(m)
ACK based on

K
(0)
ACK ,...,K(n)

ACK is hard because the hash function used in
generating the hash-chain is one-way. In the NACK case,
to be successful an attacker has to include a valid NACK
authentication value (NACK secret values and their siblings)
in the NACK packet. Note that the NACK authentication
value is the leaves of the Merkle-tree, and computing the
leaves based on the upper level hash values is hard because
the hash function used to generate the Merkle-tree is one-way.

We recall the creating fake packets attack presented in
Section IV-B, which is one of the main weaknesses of SDTP.
This attack is possible because in SDTP the authenticity
of ACK /NACK packets is based on the verification of
ACK /NACK MACs with the corresponding keys. However,
the authenticity of the keys is not checked; hence, bogus MACs
with self-created keys can be created easily. The attack is not
feasible in SDTP+ because the authentication values are the
elements of hash-chain and Merkle-tree, and computing the
unrevealed ACK authentication value of packet m (K(m)

ACK)
from the already revealed K

(n)
ACK (m > n) is hard due to the

property of one-way functions. Computation of the unrevealed
NACK authentication values from the already revealed ones
is hard for the same reason. Moreover, attackers cannot send
a bogus self-generated hash-chain and Merkle-trees to honest
nodes because they cannot forge the digital signature of the
source.

B. Analyzing the resistance against energy depleting attacks

In the following, we discuss how SDTP+ resists the attacks
aimed at increasing energy consumption.

Due to the fact that the EAR flag is not protected in the
SDTP+ packets, its modification cannot be detected. Adding

6

the status timer forces the destination to send control packets
to the source even without any trigger from the source, which
mitigates the effect of this attack. Moreover, by limiting the
number of control packets sent by the destination in a given
time, we can control the overhead by setting this number.

To mitigate the effect of the attack attempt, where in order
to cause futile retransmissions the attacker intercepts a NACK
packet, and generates lots of valid “shorter” NACK packets
based on the combinations of (subset of) the authentication
values found in the original NACK , each intermediate node
has a period of time to aggregate the received NACK s into
one NACK , and only handles this NACK .

The next scenario would cause the EAR sending attempts
[1] at the source to exceed the limit and lead to session
close: an attacker intercepts a NACK and unsets some bit(s)
along with the corresponding NACK authentication values
and passes it on. To alleviate the impact of this attempt, as
described in Section V-E, honest nodes automatically send and
forward a data packets after receiving certain number of the
same ACK packets.

VII. OVERHEAD ANALYSIS

We evaluate the overhead of our new security scheme in a
wireless sensor network assuming MICAz motes. First, based
on [12], [11], we estimate the time for each building block
and, finally, calculate for each node the time overhead of the
security scheme.

Regarding the hash chain, the source and destination have
to generate a hash chain with chain length m+ 1 [12]. Only
the source has to sign, using Elliptic Curve DSA [11], the
first message. Each intermediate node and destination have
to verify the signature once and each intermediate node has
to verify the hash element per ACK message. This requires
one signing operation ECCG and (m+1) ·SHA time at the
source (ECCG + (m+1) · SHA), and one signing operation
ECCV and (m+1) hashing operations at the destination, i.e.,
(m+ 1) · SHA time. At intermediate nodes, one verification
operation ECCV and (2·m−I+1)·I

2 hashing operations are
required in the worst case, where I is the number of ACK s
that the intermediate node receives. Thus, intermediate node
needs ECCV + (2·m−I+1)·I

2 · SHA time in the worst case.
For the Merkle-tree, the source generates a complete binary

Merkle-tree of height d (recall that we choose t = 1 for
efficiency purpose [7]). Furthermore, for creating the leaves
the source and destination require m · SHA time [12], while
to distribute the tree-roots in a secured manner it requires two
signing operations ECCG and ECCV from the source and
destination, respectively. For generating the Merkle-tree, the
source hashes at each level of the tree, which takes 2m − 1
hash operations that takes (2m − 1) · SHA time. For each bit
in the bitmap of a NACK message an intermediate node that
stored the message needs to verify the NACK authentication
value, which requires d hash operations. With a given loss
probability, the nodes on the path between the source and
the destination have to retransmit m · loss propability times,
which requires d · loss propability · SHA time.

Regarding message overhead, for the ACK s, it is the hash
value size; for the NACK s, it is the number of the set bits

in the bitmap times the authentication value size (which is d
times the hash value size). Hence, intermediate node needs to
handle d · loss probability · SHA message overhead.

VIII. CONCLUSION

In this paper, we proposed security extensions to SDTP in
order to patch the weaknesses of the protocol. The security
extensions are based on a minimal amount of asymmetric
key cryptography, hash chains, and Merkle-trees. We showed
that with these proposed mechanisms, SDTP+ resists attacks
against the reliability and energy efficiency requirements,
including the attacks found against SDTP. In our future
work, we will develop a formal and automated security proof
for SDTP+, as well as implement the proposed theoretical
mechanisms to examine their efficiency in practise.

ACKNOWLEDGMENTS

The work presented in this paper has been carried out in
the context of the CHIRON Project (www.chiron-project.eu),
which receives funding from the European Community in the
context of the ARTEMIS Programme (grant agreement no.
225186). Amit Dvir has also been supported by the Marie
Curie Mobility Grant, OTKA-HUMAN-MB08-B 81654. The
last two authors are also partially supported by the grant
TAMOP - 4.2.2/B-10/1-2010-0009 at the Budapest University
of Technology and Economics.

REFERENCES

[1] F. Rocha, A. Grilo, P. R. Pereira, M. S. Nunes, and A. Casaca,
“Performance evaluation of DTSN in wireless sensor networks,” in
EuroNGI - Network of Excellence Workshop, Barcelona, Spain, Jan.
2008, pp. 1–9.

[2] L. Buttyan and A. M. Grilo, “A Secure Distributed Transport Protocol
for Wireless Sensor Networks,” in IEEE International Conference on
Communications, Kyoto, Japan, June 2011, pp. 1–6.

[3] J. Yicka, B. Mukherjeea, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, Aug. 2008.

[4] L. Buttyan and L. Csik, “Security analysis of reliable transport layer
protocols for wireless sensor networks,” in Proceedings of the IEEE
Workshop on Sensor Networks and Systems for Pervasive Computing
(PerSeNS), Mannheim, Germany, March 2010, pp. 1–6.

[5] R. C. Merkle, “Protocols for Public Key Cryptosystems,” in Symposium
on Security and Privacy, California, USA, April 1980, pp. 122–134.

[6] D. Coppersmith and M. Jakobsson, “Almost optimal hash sequence
traversal,” in Fourth Conference on Financial Cryptography, Southamp-
ton, Bermuda, March 2002, pp. 102–119.

[7] A. Dvir, L. Buttyan, and T. V. Thong, “Sdtp+: A secure
distributed transport protocol for wireless sensor networks,”
http://www.crysys.hu/members/tvthong/SDTP/DvirBTh12SDTPTech.pdf.

[8] Y. C. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure on-demand
routing protocol for ad hoc networks,” Wireless Networks, vol. 11, no.
1-2, pp. 21–38, Jan. 2005.

[9] Y. C. Hu, D. B. Johnson, and A. Perrig, “Secure efficient distance vector
routing in mobile wireless ad hoc networks,” Ad Hoc Networks, vol. 1,
no. 1, pp. 175–192, July 2003.

[10] A. Herzberg and H. Shulman, “Stealth DoS Attacks on Secure Chan-
nels,” in Network and Distributed System Security Symposium, Califor-
nia, USA, Feb 2010, pp. 1–19.

[11] R. Roman, C. Alcaraz, and J. Lopez, “A Survey of Cryptographic Prim-
itives and Implementations for Hardware-Constrained Sensor Network
Nodes,” Mobile Networks and Applications, vol. 12, no. 4, pp. 231–244,
Oct. 2007.

[12] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller,
and M. Sichitiu, “Analyzing and modeling encryption overhead for
sensor network nodes,” in Proceedings of the 2nd ACM international
conference on Wireless sensor networks and applications, CA, USA,
Sep. 2003, pp. 151–159.

