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ABSTRACT
Similarity digest schemes are used in various applications (e.g.,
digital forensics, spam filtering, malware clustering, and malware
detection), which require them to be resistant to attacks aiming
at generating semantically similar inputs that have very different
similarity digest values. In this paper, we show that TLSH, a widely
used similarity digest function, is not sufficiently robust against
such attacks. More specifically, we propose an automated method
for modifying executable files (binaries), such that the modified
binary has the exact same functionality as the original one, it also
remains syntactically similar to the original one, yet, the TLSH
difference score between the original and the modified binaries be-
comes high. We evaluate our method on a large data set containing
malware binaries, and we also show that it can be used effectively
to generate adversarial samples that evade detection by SIMBIoTA,
a recently proposed similarity-based malware detection approach.
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1 INTRODUCTION
Similarity digest schemesmap an input of arbitrary length to a small
size output, such that similar inputs result in similar digest values.
Such schemes are different from cryptographic hash functions that
map even very similar inputs, differing only in a single bit, to
completely different hash values. Similarity digest schemes, such
as Ssdeep [9], Sdhash [17], Nilsimsa [7], and TLSH [14] are used
in, for instance, digital forensics [3], spam filtering [5], malware
clustering [10, 19], and malware detection [21]. In each of these
applications, similarity of various files are measured based on the
similarity of their digest values.
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In many applications, including the ones mentioned above, what
we expect from a similarity digest scheme is that it makes it rather
difficult for an attacker to generate semantically similar inputs
that have very different similarity digest values. If that was easily
possible, then attackers could defeat similarity-based spam filtering
and malware detection; and similarly, file similarity analysis in
forensic investigations and clustering malware samples based on
their similarity digests would make no sense. For this reason, the
robustness of existing similarity digest schemes against such attacks
have been extensively studied [2, 11, 13, 18], and the authors of
[13] concluded that Ssdeep and Sdhash are not sufficiently robust
for practical use, while TLSH is more difficult to exploit.

In this paper, we show that it is rather easy to exploit TLSH too.
More specifically, we propose an automated method for modifying
executable files (binaries), such that the modified binary has the
exact same functionality as the original one, while their similarity
digest values are very different. Our method does not involve any
encryption or packing techniques: it preserves the original text and
data segments of the binary, hence, besides remaining semantically
equivalent, the modified file also remains syntactically similar to
the original one, yet, the difference score returned by the official
TLSH difference calculation function for the digests of the modi-
fied and the original binaries is high. Our method heavily relies on
the details of how TLSH computes similarity hashes and how the
TLSH difference score is calculated. As a practical application of
our method, we also show how it can be used for generating adver-
sarial malware samples that evade SIMBIoTA, a recently proposed
similarity-based malware detection mechanism for embedded IoT
devices [21]. Finally, we note that our method can be adapted to
other types of inputs (e.g., images and documents) where the file
format allows for the modification of some parts of the file without
affecting its semantics and corrupting its formatting rules.

The paper is organized as follows: In section 2, we introduce
the necessary background on the operation of the TLSH similarity
digest scheme, we discuss its robustness analysis presented in [13],
and we introduce some details of the ELF file format. In section 3,
we present the design of our method for modifying ELF binaries
such that the functionality of the modified binary remains the same,
its appearance remains similar to the original binary, yet the TLSH
difference score between the original and the modified binaries
becomes high. In section 4, we evaluate our method on a large data
set containing malware binaries, and we study how effectively it
can be used to evade similarity-based malware detection, as well as
how it could be adapted to other configurations and applications
of TLSH. Finally, in section 5, we conclude our paper.
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2 BACKGROUND
TLSH is a similarity digest scheme. As such, it provides two algo-
rithms, the first of which calculates the fixed size 35 byte TLSH
hash of a file, which preserves its characteristics in a way that the
second algorithm can quantify how different the two files are based
on their corresponding TLSH hashes. In terms of design the closest
ancestor of TLSH among the well adopted similarity schemes is
Nilsimsa, another locality sensitive hash. TLSH can be perceived
as its much advanced, more complex, and fine-tuned version. In
the analysis of Nilsimsa [7] multiple adversarial possibilities where
shown against the scheme, the final one of which was a targeted
(aimed) attack that entailed precise and efficient manipulation of
the scheme utilizing deeper understanding of the algorithm. As
our attack against TLSH is similar in nature, it requires detailed
discussion of the TLSH algorithm.

2.1 The TLSH algorithm
In this section we discuss the TLSH algorithm. Note that its pre-
sentation in [12] is somewhat confusing regarding details like byte
order. The following is based on the official reference implemen-
tation1. TLSH has a few alterable parameters; however, they all
have default values, which are carefully chosen [14], and TLSH is
mostly used with these defaults. Hashes calculated with different
parameters are incompatible for difference calculation. For these
reasons we only discuss TLSH with default parameters.

The TLSH algorithm takes groups of 3 bytes (byte triads) as
input features, which are selected the following way. The file is
traversed with a 5 byte sliding window stepped byte-by-byte. For
each window position the algorithm takes all possible selections of
three bytes that where not contained in previous window positions
(i.e. the ones containing the last byte of the window). For each
window position these are 6 new byte triads. With the terminology
of k-skip-n-grams2, from all window positions together they are
the 2-skip-3-grams (𝑛 = 3, 𝑘 = 2) of the whole processed byte
stream3. Each of these byte triads is hashed to a single byte (Figure
1). The occurrences of different hash values (throughout all the
processed byte triads in all the window positions) are counted in
a zero initialized 256 element array. With the analogy of bucket
hashing, the elements of the array are called bucket counts. As it
is possible that more than one of the 6 hash values are the same,
a bucket count can be increased by more than one over a single
position of the sliding window. The most extreme examples of
this, which we have found by exhaustive search, are the window
contents 533df60525, 212be01325, 95f932c125, and 4aef24d725
as each of them increases a single bucket count (for hash values
228, 210, 9, and 47 respectively) by 6. Along with increasing the
bucket counts, a single-byte checksum is also calculated (Figure 1).

Default TLSH preserves the bucket counts only for hash values
0-127, discarding the second half of the array.

After traversing the file for the bucket counts and the checksum,
next the quartiles𝑞1,𝑞2, and𝑞3 of the kept 128 bucket counts are cal-
culated. If we sort the bucket counts in ascending order, 𝑞1, 𝑞2, and

1https://github.com/trendmicro/tlsh Last accessed: June 26, 2023
2Groups of 𝑛 almost consecutive bytes with skipping at most 𝑘 bytes in total in
between.
3Excluding the ones that could be formed using the first 4 bytes of the file.

b_mapping( 2, , ),
b_mapping( 3, , ),
b_mapping( 5, , ),
b_mapping( 7, , ),
b_mapping(11, , ),
b_mapping(13, , ),

checksum := b_mapping( 0, , , checksum)

Figure 1: The TLSH sliding window and the calculations with
the selected bytes: the formula for the 6 single-byte hash val-
ues, and the update of the checksum value for each window
position. b_mapping is a deterministic hash function based
on the Pearson hash [15].

𝑞3 will be the values of the 32nd, 64th, and 96th ones respectively,
in other words, the last in each of the first three quarters.

The TLSH hash itself consists of the following values:
• checksum: the one byte checksum;
• lvalue: the length of the file on a logarithmic scale in one
byte;

• Q1ratio and Q2ratio: two half bytes for the ratios of the
quartile ratios in percentage modulo 16:
Q1ratio = ⌊100𝑞1𝑞3 ⌋ mod 16 and Q2ratio = ⌊100𝑞2𝑞3 ⌋ mod
16;

• codes: 128 quarter bytes for relations of each bucket count
to the quartiles in the original order:

code𝑖 =


0 = 00 if 𝑏𝑖 ≤ 𝑞1
1 = 01 if 𝑞1 < 𝑏𝑖 ≤ 𝑞2
2 = 10 if 𝑞2 < 𝑏𝑖 ≤ 𝑞3
3 = 11 if 𝑞3 < 𝑏𝑖

For easy reference, we refer to each of them in the same way as
the already mentioned official TLSH implementation does.

TLSH does not provide hashes for some low-entropy data, like
repetitions of a short pattern. This could cause only a few bucket
counts being increased and most of them left zero, leading to all
quartiles being zero too. In this case, if we tried calculating the hash
header values, specifically the quartile ratios, we would have to
divide by zero.

The difference between two TLSH hash values is calculated from
the relations of the above described values in the two compared
hashes. Each field has its own possible contribution to the dif-
ference, and these contributions are simply summed. To compare
fields that are stored modulo-N, the mod_diffmethod is introduced.
mod_diff(𝑥,𝑦, 𝑅) is the smallest non-negative integer congruent
to either 𝑥 − 𝑦 or 𝑦 − 𝑥 modulo 𝑅. The contributions of the various
TLSH fields to the total difference are the following (subscripts 𝑎
and 𝑏 mark fields of the two compared TLSH hashes):

• checksum: diffchecksum =

{
0 if checksum𝑎 = checksum𝑏
1 if checksum𝑎 ≠ checksum𝑏

• lvalue: having ldiff = mod_diff(lvalue𝑎, lvalue𝑏 , 256);
(the use of mod_diff is interesting here4)

4lvalue has a maximal value 169. mod_diff is most likely chosen here instead of
|lvalue𝑎 − lvalue𝑏 | , to limit difflvalue to 12 · 128; however, it results in lvalue

https://github.com/trendmicro/tlsh
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difflvalue =

{
ldiff if ldiff ≤ 1
12 · ldiff if ldiff > 1

• Q1ratio: having q1diff = mod_diff(Q1ratio𝑎, Q1ratio𝑏 , 16),

diffQ1ratio =

{
ldiff if q1diff ≤ 1
12 · (q1diff − 1) if q1diff > 1

• Q2ratio: having q2diff = mod_diff(Q2ratio𝑎, Q2ratio𝑏 , 16),

diffQ2ratio =

{
ldiff if q2diff ≤ 1
12 · (q2diff − 1) if q2diff > 1

• codes: having 𝑑𝑖 = |code𝑖,𝑎 − code𝑖,𝑏 |,

diffcodes =

127∑︁
𝑖=0

{
𝑑𝑖 if 𝑑𝑖 ∈ {0, 1, 2}
6 if 𝑑𝑖 = 3

The non-linear scoring of ldiff, q1diff, q2diff, and each 𝑑𝑖
are approximations of functions defined by (probabilistic) consider-
ations of the effects of random modification.

2.2 Robustness of TLSH
Robustness of Ssdeep, Sdhash and TLSH was compared in [13].
This entailed tests on spam images, texts, and web pages, as well as
executable files. Here, we review some key features and conclusions
of their tests and results on executable files.

In [13], the similarity detection threshold of TLSH difference
was tuned based on the resulting false positive rate of tagging pairs
of different executable files similar. The executable files used in
this step were executable binaries from a Linux distribution. Based
on the results, they stated that if an executable could be modified
without altering its functionality in a way that the TLSH difference
of the original and modified versions are at least 86, they would
consider the digest scheme broken (see section 5.1 of [13]).

They conducted different random modifications in the source
codes of some programs without altering their functionality, and
compiled them with the modifications. To name a few of their
choices of modifications: reordering operands of commutative logi-
cal operations, introducing new variables, changing the order of
function definitions, adding NOP instructions, or adding random
binary data in character arrays. With extents of such random modi-
fications that caused Ssdeep and Sdhash to mark the files completely
different, TLSH still showed that they were related. One of the high-
lighted advantages of TLSH is that it does not have a concept of
completely different files, as TLSH does not have a hard maximum
of difference score5, while Ssdeep and Sdhash score similarity on a
0-100 scale, and are likely to give the score 0 to a pair of unrelated
files.

2.3 Modifying ELF binaries
Wedemonstrate our attack against the TLSH scheme on the example
of IoT malware samples, so the files we want to modify are ELF
binaries, more specifically ELF executables. These files contain
the instructions of the program and the data required during its
execution.Modifying these in a previously unknown binarywithout
0 and 169 (ldiff = 87) being scored much less different than lvalue 0 and 128
(ldiff = 128).
5Technically there is maximum possible TLSH difference score as the TLSH difference
is a sum of a fixed number of smaller differences that all have their maximum values.
The sum of these individual maximums is 2473 points of total difference. While this
value is not achievable as a difference of two TLSH hashes, the real maximal value is
definitely smaller.

changing the behavior of the program would be a very hard task.
Fortunately these files have parts that are not essential to their
execution, and thus, are promising candidates for modification.

As most file formats, ELF files can have multiple different parts,
which are addressed in headers. The first header is the ELF header.
Every ELF file must have this, and it must be right at the beginning
of the file. As there are multiple types of ELF files (executables
being only one of them) and ELF files support countless system
architectures, the ELF header contains values that specify what
the current file is in terms of these possibilities. One of the first
few of these is the EI_CLASS byte, which specifies whether the
current file is for a 32-bit or a 64-bit architecture. The value of this
byte is important, because the structure of the ELF header itself
is different for these two cases. The reason of this difference is
the presence of memory-offset-like values in the header, which
take up the corresponding amount of bytes to the designation of
each architecture: 4 bytes for 32-bit and 8 bytes for 64-bit. The
ELF header has three values of such type: e_entry, e_phoff, and
e_shoff. Generally all of these three are optional as not all kinds
of ELF binaries need them. If the file does not use one of them, it
will have the value 0.

e_entry is required in executable files as this specifies the start-
ing point of the execution of the instructions. e_phoff marks the
start of the so called program header table, while e_shoff marks
the start of the section header table.

Both the program header table and the section header table are
called header tables, because they both are arrays of equal-sized
headers called program headers and section headers, respectively.
Program headers describe how segments of the file are mapped to
memory ranges when loading the binary for execution. These are
also required in executable files. Section headers, on the other hand,
describe parts of the file itself, and usually are not used at all for
the execution of the file. The size of these header types and the
number of headers in each table are also usually specified in the
ELF header. The only exceptions to this are when the number of
headers in one or both of the tables is very high6, in which case that
count is stored in fields of the first special element of the section
header table.

The section header table can contain references to many parts
of the file that could be overwritten without any fear of damaging
the behavior of the program, but for simplicity we target only the
section header table itself. This is done by calculating the start and
end of the table in the file, and then making sure that no one is
reading the data we corrupt with our modifications. This is achieved
by removing the reference to the table by changing the ELF header
values e_shoff and e_shnum to 0. The latter is the field that stores
the number of entries in the section header table, which must be 0
if there is no section header table at all in the file.

3 DESIGN
Our ultimate goal is to modify ELF binaries in such a way that

(1) their functionality remains unaffected;
(2) their size remains unchanged; and

60xffff or larger for the program header table and 0xff00 or larger for the section
header table
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(3) the TLSH difference of their modified and original versions
(self difference) becomes as high as possible.

Requirement 2 serves to rule out the exploitation of a known
limitation of TLSH, namely the fact that it can be easily manipulated
by appending large amounts of random data or the bytes of benign
software (see for example [20]). While this is a weakness in this
case, it is by design and needs to be dealt with in applications like
malware detection. We would like to manipulate TLSH in a more
sophisticated way without adding much unused content to the file.
While not changing the file size at all is definitely overkill, it is a
great challenge to test the space efficiency of our method, which
might be crucial for a stealth attack against possible more advanced
detection methods.

3.1 Manipulating the TLSH difference
The TLSH hash is almost entirely defined by the bucket counts. As
these are simply summarized over the whole file, a trivial way of
manipulating the TLSH hash of a file consists in appending huge
amounts of data to it. For example, if we take some large chunk of
data that affects enough bucket counts, then appending this chunk
of data to the file again and again would result in the ratios of the
bucket counts of the modified file converging to the bucket count
ratios of the periodically appended data.

However, our goal is to manipulate the TLSH hash, and thus the
TLSH difference of the modified and the original versions of the file,
by modifying only a limited portion of the file and keeping the file
size unchanged. As every part of the TLSH hash affects the TLSH
difference, we have a few choices to achieve the desired difference
by our modifications.

The checksum is basically irrelevant as it can provide only a
single point of difference. The lvalue likewise, because we do not
want to change the size of the file. This leaves us the Q1ratio,
Q2ratio and the codes.

Our chosen strategy is the following: Let’s try to increase 𝑞3
to 𝑞′3 > 𝑞3 without changing 𝑞1 or 𝑞2 to have both 𝑟1 = ⌊100𝑞1𝑞3 ⌋
and 𝑟2 = ⌊100𝑞2𝑞3 ⌋ decrease by the integer numbers 𝑑1 and 𝑑2 (i.e.,
𝑟 ′
𝑖
= 𝑟𝑖 −𝑑𝑖 ), such that 2 ≤ 𝑑1, 𝑑2 ≤ 8 and (𝑑1 − 1) + (𝑑2 − 1) ≥ ⌈ 𝑡

12 ⌉,
where 𝑡 is the target self difference score to achieve. This would
result in at least 12 · ⌈ 𝑡

12 ⌉ ≥ 𝑡 difference in total from the original
version. For 𝑟𝑖 to decrease by 𝑑𝑖 , the new 𝑞′3 value needs to be
at least ⌊ 100·𝑞𝑖

𝑟𝑖−(𝑑𝑖−1) ⌋ + 1. We choose the minimal 𝑞′3 target value
that provides the above difference in this way. For example, for
32 < 𝑡 ≤ 48, this strategy usually provides 𝑑1 = 𝑑2 = 3.

If we had a way of precisely increasing a few selected bucket
counts, this could allow us to increase 𝑞3 to 𝑞′3 by increasing the
bucket count corresponding to 𝑞3, as well as the few following
bucket counts in the ascending order that are still below the desired
𝑞′3 value (see Figure 2). To be able to precisely modify a single
bucket count or just a few at a time like this, we have to learn how
different byte-patterns written to the file affect the bucket counts.

3.2 Patterns
As the space for modification is limited, the challenge is not just
to find an array of bytes that, when inserted to the file, changes
the bucket counts in the desired way, but to find one that also fits
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Figure 2: The sorted bucket counts for one of the tested mal-
ware samples. Highlighted are the quartile defining counts,
the described minimal required changes to increase 𝑞3 to the
target value, and the bucket count limits that must not be
exceeded not to increase 𝑞1 or 𝑞2.

into this limited space. We can say that the cost of each pattern we
decide to use is its length.

3.2.1 Periodic patterns. Whenever the sliding window selects the
same 5 bytes, the same 6 values are calculated, and so the same
bucket counts increase by the same amounts. If we want to sig-
nificantly increase a few bucket counts without changing others,
which is indeed needed for modifications like the one visualized
in Figure 2, periodic patterns can be very efficient, as they cause a
few fives of byte values to be selected, and thus the same bucket
counts increased again and again.

As an example, let’s see what bucket counts increase when the
slidingwindow traverses the periodic ASCII encoded text lalalala:

(1) The first five bytes selected are the characters lalal. The
six hash values calculated from them are 155, 195, 63, 100,
193, and 43. As each of these are different, each of the corre-
sponding bucket counts are increased by 1.

(2) The next selection is alala, which hashes to 104, 43, 119, 41,
10, and 105.

(3) The next selection is lalal again, which again hashes to
155, 195, 63, 100, 193, and 43.

(4) Finally, the last selection is alala again, which again hashes
to 104, 43, 119, 41, 10, and 105.

If we discard the bucket counts for the values ≥ 128, as default
TLSH does, we get the following total increments from this: 10: +2,



A Practical Attack on TLSH ARES 2023, August 29-September 1, 2023, Benevento, Italy

41: +2, 43: +4, 63: +2, 100: +2, 104: +2, 105: +2, 119: +2. The count
for bucket 43 is increased by 4 as all four steps increased it by 1.
In other cases, as stated earlier, it is also possible that a count is
increased by more than 1 in a single step.

These 4 steps in total were over 2 iterations of a pattern with
period length 2. If we continue, and add more iterations by append-
ing the bytes la more times to the end, the total count increments
for each affected bucket will scale linearly with the number of
iterations.

For a pattern with period length 𝑝 , adding an extra iteration only
costs additional 𝑝 bytes; however, the first iteration costs more as it
takes at least five bytes to fill the sliding window. Hence, the total
length (cost) of a periodic pattern is 4 + 𝑛 · 𝑝 bytes, where 𝑛 is the
number of iterations that all linearly provide the same increments in
the bucket count contributions. So, for example, with the repetition
of the characters la from the above example, the total pattern that
takes up 4 +𝑛 · 2 bytes would increase the bucket counts by: 10: +𝑛,
41: +𝑛, 43: +2𝑛, 63: +𝑛, 100: +𝑛, 104: +𝑛, 105: +𝑛, 119: +𝑛.
3.2.2 Neutral periodic patterns. There is an interesting consequence
of TLSH discarding bucket counts 128-255: there are arrays of bytes
which do not increase the kept first 128 bucket counts at all. This is
because the hashes of all of their processed byte triads are ≥ 128.

Merging this with the idea of periodic patterns we can find
what we call neutral periodic patterns: periodic patterns that do
not increase the kept 128 bucket counts. While there are many
examples of such neutral patterns, we use the easy to remember
ASCII string YYYYY. With its period length one, we can fill out any
ranges of bytes, thus erasing their contributions to the kept bucket
counts.

3.2.3 The pattern database. We know what bucket counts to in-
crease, and that there might be some periodic patterns that can
achieve this efficiently in terms of used space in bytes without af-
fecting many other bucket counts. Next, we just have to find the
appropriate patterns.

We take the trivial approach and try every possible periodic pat-
tern up to a limited period length. There are 256 different patterns
with period length 𝑝 = 1, 2562 with 𝑝 = 2, and generally 256𝑝
patterns with period length 𝑝 .

In our experiments we tried using period lengths up to 3, but
only used 1 and 2 in the final setup, as these proved to be sufficient
to efficiently manipulate most required combinations of bucket
counts. These are 2562 patterns in total as the ones with 𝑝 = 1 are
all included in the set of patterns with 𝑝 = 2.

For this data to be quickly available, we created files containing
the single iteration bucket count contributions of each of these
patterns. Another set of bucket contributions is also stored for each
pattern, which is discussed in Section 3.3.4. We stored data for both
𝑝 = 1 and 𝑝 = 2 patterns, as 𝑝 = 1 patterns can be easily scaled to
an odd number of bytes as well.

3.3 The steps of patching
Equipped with all the ideas described above, the steps of modifying
ELF binaries are the following:

3.3.1 Load the binary. The first step is to load the binary. As we
have to achieve the TLSH difference from its original version, we

calculate 𝑟1 and 𝑟27 from the data before any modifications. Let’s
call these 𝑟1,orig and 𝑟2,orig.

3.3.2 Take the range. Now we can take the section header table,
and we will have the range that we can freely modify. This is done
as described in Section 2.3.

Note that if we write a given periodic pattern in this range,
we increase some bucket counts in a predictable manner, but at
the same time, some bucket counts would also decrease, as we
also remove data by overwriting them with the chosen periodic
pattern. To address this uncertainty, the next step is to overwrite
the available range with the neutral periodic pattern YYYYY. This
is expected to change many bucket counts; they mostly decrease,
but technically it might increase a few along the edges of the range,
where the Y bytes meet the last 4 and first 4 bytes before and after
the range. Neither of these are problematic, as this will be the
new reference state of the whole file, and the starting point for
calculative modifications. We calculate the starting bucket count
quartiles 𝑞1, 𝑞2, and 𝑞3 now.

3.3.3 Calculate target. Now we are ready to calculate the target
𝑞′3 value to achieve a self difference score ≥ 𝑡 , which we do as
described in Section 3.1. The only difference is that we have to
achieve the difference from the original values 𝑟1,orig and 𝑟2,orig,
not the current values that could be calculated from 𝑞1, 𝑞2, and
𝑞3. We are looking for the minimal 𝑞′3 target value that satisfies
Inequality 3 and Inequality 6. This can be done by trying each value
increasingly, beginning from the current 𝑞3 value.

𝑟 ′𝑖 = ⌊100 · 𝑞𝑖
𝑞′3

⌋ 𝑖 = 1, 2 (1)

𝑑𝑖 = 𝑟𝑖,orig − 𝑟 ′𝑖 𝑖 = 1, 2 (2)
2 ≤ 𝑑𝑖 ≤ 8 𝑖 = 1, 2 (3)

diffQ1ratio = (𝑑1 − 1) · 12 (4)
diffQ2ratio = (𝑑2 − 1) · 12 (5)

diffQ1ratio+diffQ2ratio ≥ 𝑡 (6)

Now that we have 𝑞′3, we calculate the required bucket count
increments exactly as explained in Section 3.1 and visualized in
Figure 2.

3.3.4 Choose and fill the patterns – Strategy. At this point we have
a byte range currently filled with the neutral pattern of Y bytes,
to which we can write anything. We know exactly which bucket
counts to increase to what values to increase 𝑞3 to the desired
𝑞′3 value; and which bucket values we must not increase above
certain limits (not to increment 𝑞1 or 𝑞2 by doing so). We also have
2562 different periodic patterns, which we can use to space (cost)
efficiently increase bucket counts.

If we use a periodic pattern, its periodic bucket count contri-
butions scale linearly with the number of its iterations. There is
another contribution, which we have not discussed to this point
yet. This is the pattern’s side contributions, which are the bucket
count increments it causes in the sliding window positions at the
beginning and at the end when the window is only partially filled

7Note that these are not the final Q1ratio and Q2ratio values. Q1ratio = 𝑟1 mod 16
and Q2ratio = 𝑟2 mod 16
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with the bytes belonging to the pattern (i.e., when the window also
contains some of the bytes surrounding the periodic pattern). As the
sliding window always selects 5 consecutive bytes, this interaction
in the bucket count contribution is only to the last and first 4 bytes
before and after the pattern.

To be able to pre-calculate this side contribution of each pattern
and store it in the pattern database as well, we always surround each
used pattern with YYYY (i.e., at least 4 bytes of our neutral periodic
pattern) on each side. This means that the complete modifiable
range, which is currently filled with Y bytes, will still have ranges
of at least 4 such bytes after all of our modifications at the beginning,
at the end, and in between separating the used patterns from each
other and from the bytes surrounding the whole modifiable range.

The choice of using Y bytes for this purpose too has two reasons.
One is that sliding window positions ending in at least 3 Y bytes
have some guaranteed neutral (128-255) hashes, which makes the
expected bucket count increments for passing these in between
arrays of bytes a little lighter (this is actually only

(4
3
)
= 4 out

of 8 · 6 = 48 hashes), which is favorable, since we use periodic
patterns for their periodic contributions. While side contributions
can be lucky sometimes, they are harder to control, and sometimes
harmful, as they can make good patterns unusable by increasing
bucket counts that we must not.

The other, much more significant reason is that this way we do
not have to fill the whole modifiable range if there is a solution that
requires fewer bytes of the selected patterns; because the trailing
YYYY after the last pattern will blend with the remaining neutral
pattern at the end of the range.

3.3.5 Choose and fill the patterns – Problem. Now the task of choos-
ing patterns to write to the range in a way that the desired bucket
count increments and limitations are fulfilled comes down to solv-
ing inequalities (7) and (8) for 𝑛 𝑗 .

In the sequel, we use the following notation:

• 𝐿 is the length of the whole modifiable range,
• 𝑝 𝑗 is the period length of pattern 𝑗 ,
• 𝑛 𝑗 is the number of its used iterations,
• 𝑐𝑃

𝑗,𝑖
is its primary/periodic contribution to bucket count 𝑖 ,

• 𝑐𝑆
𝑗,𝑖

is its secondary/side contribution to the same bucket
count,

• 𝑡𝑖 is the target increment for bucket count 𝑖 , and
• 𝑙𝑖 is the increment limit for bucket count 𝑖 .

For the bucket counts that have no target increment, 𝑡𝑖 is 0, and
for bucket counts that are not limited, 𝑙𝑖 is∞.

𝑡𝑖 ≤
∑︁
𝑗

(
𝑛 𝑗𝑐

𝑃
𝑗,𝑖 +

{
0 if 𝑛 𝑗 = 0
𝑐𝑆
𝑗𝑖

if 𝑛 𝑗 > 0

)
≤ 𝑙𝑖 (7)

4 +
∑︁
𝑗

(
𝑛 𝑗𝑝 𝑗 +

{
0 if 𝑛 𝑗 = 0
4 + 4 if 𝑛 𝑗 > 0

)
≤ 𝐿 (8)

Inequality (7) is about the increments of each bucket count. The
increment has to be at least 𝑡𝑖 and at most 𝑙𝑖 to achieve the goal of
increasing 𝑞3 to 𝑞′3 without increasing 𝑞1 or 𝑞2. The increment is
the sum of the total periodic and side increments for each pattern.

The total periodic increment for a pattern is 𝑛 𝑗𝑐𝑃𝑗,𝑖 , a single itera-
tion increment times the number of iterations used; while the side
increment is always 𝑐𝑆

𝑗𝑖
, but of course it is only there if we choose

to use at least one iteration of the pattern.
Inequality (8) is the requirement of the selected patterns fitting

into the whole modifiable range. So the complete number of bytes
used must be at most 𝐿. The modifiable range starts with YYYY,
which is 4 bytes; then there is 4 + 𝑛 𝑗𝑝 𝑗 bytes with another 4 bytes
of trailing YYYY for each pattern used. The formula is structurally
very similar to the one in inequality (7), because just as there is a
set of constant bucket count contributions for each used pattern
regardless of the number of iterations, there is also a constant
amount of bytes used.

3.3.6 Choose and fill the patterns – Solution. To solve the system
of inequalities (7) and (8), we use a solver. Solvers are great, but
can take ages to solve a hard problem with lots of variables. In this
problem the variables are the 𝑛 𝑗 numbers of used iterations of all
patterns, which are 2562 variables.

To decrease the number of these variables, we select the "best"
few8 patterns for the current problem based on some heuristics: we
give each pattern a score that attempts to quantify how useful its
contributions are to solve the concrete current problem.

The scoring rules are simple:
(1) If the pattern has any periodic contribution to any limited

bucket count, we disqualify it by assigning the score 0.
(2) If the pattern has a side contribution that increases a limited

bucket count over its limit by itself, we also disqualify it by
assigning the score 0.

(3) Otherwise, each pattern is scored to the sum of its increments
for each bucket countwith a target value divided by its period
length.

Note that the applicability of rule 1 is heavily dependent on
our chosen strategy to increase 𝑞3 specifically, and thus there are
no bucket counts that have both a target value and a limit (see
Figure 2).

So we find the few patterns with the highest scores, and we use
a solver to solve the system of inequalities (7) and (8), consider-
ing them to be all the available patterns. If we got a solution, we
compile it to a patch on the whole modifiable range as described in
Section 3.3.4.

The version of the binary patched in this way
• should work just like the original version of the executable,
• has the same size as the original file,
• is guaranteed to have a self difference larger than or equal
to the desired target value 𝑡 .

4 EVALUATION
4.1 Data set
The data set used for the evaluation of our attack setup is the
CrySyS-Ukatemi benchmark dataset of IoT malware 2021 or CUBE-
MALIoT-20219. This data set is publicly available for research and
education purposes, and consists of 29,209 ARM and 18,715 MIPS
malicious ELF binaries (also called malware samples).
832 or 16 in our experiments
9https://github.com/CrySyS/CUBE-MALIoT-2021 Last accessed: June 27, 2023

https://github.com/CrySyS/CUBE-MALIoT-2021
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4.2 Results of patching
We tested our attack on 2000 randomly selected ARM malware
samples from CUBE-MALIoT-2021. We tried a few different con-
figurations of the attack with various self difference target values,
trying more periodic patterns including the ones with a period
length 3, and preselecting different amounts of patterns for the
solver to work with. In our final experiment, we tried to adaptively
patch for guaranteed self differences in steps of 12 points, which is
the increment achievable with each additional percent of change in
any of the quartile ratios. Each increment is tried if the previous one
succeeded, until one fails or the maximal difference is reached. We
used all the patterns with period lengths 1 and 2, and preselected
the best 16 patterns for the solver to work with in each patching
attempt.

A failed attempt to patch might fall into four categories by dif-
ferent reasons:

• No SHT – there was no section header table in the binary,
which is the only part that our setup currently supports
modifying;

• Bad patterns – the patterns chosen by our heuristics were
insufficient to solve the problem;

• Short ranges – the section header table was too short to solve
the problem with the selected patterns;

• Timed out – the solver hung for a long time without finding
a solution or proving that there is none.

As the section header table is not required in executable files, it
was alreadymissing in 221malware samples out of the 2000 samples
that we tested. Our setup does not support the modification of these
files (No SHT ). The remaining 1779 samples contain section header
tables, with the smallest in size of these tables being 120 bytes, the
largest being 1560 bytes, and the average size being 774.4 bytes.

Bad patterns and Short ranges mark the solver failing at two
different steps. We do not include separate failing rates on one or
the other of these reasons as not determining the cause of solver
failure proved to speed up the attack significantly. In our earlier
experiments we distinguished the two separate failure causes to
evaluate our heuristics to preselect the patterns, and based on the
small relative frequency of Bad patterns, we concluded that the
method is good enough.

Timed out was frequent in experiments with high target differ-
ence settings and a larger number of patterns passed to the solver
to work with. This cause of failure was completely eliminated by
reducing this number of passed patterns to the current 16. As this
change reduced the success rate on lower target difference set-
tings where Timed out was not a problem, further optimization is
possible.

In Figure 3, the number of successfully patched binaries is pre-
sented for each increment of target difference. The actual achieved
differences on the highest successful setting for each sample are
visualized in Figure 4.

4.3 Comparison to other research
As reviewed in Section 2.2, the robustness of TLSH (along with
other similarity hashes) was tested in [13] on a few kinds of data
including executable files.
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Figure 3: Results on 2000 ARM samples. Each value repre-
sents how many samples were successfully patched on the
given or a higher setting. Setting 0 refers to the number of
all samples that had a section header table to work with.

Their goal, just as ours is to modify an executable binary with-
out changing its functionality, in a way that the original and the
modified version have a high TLSH difference. However, there are
some key differences between their and our current approach:

• they modify source code and compile it again, while we
modify the binary directly without having access to the
source code;

• they consider changing and reordering functional elements
without actual change in functionality, while we attack by
removing and overwriting an unnecessary part of the binary
itself, without even touching functional parts, like the text
or data segments;

• theirmodifications are random, and their purpose is to equally
challenge multiple different similarity schemes, while our
modifications are very targeted and try to exploit certain
weaknesses of TLSH hash and difference calculation.

Their proposed similarity detection threshold for executables
is the TLSH score of 86; and in the context of their research, they
stated that they consider the digest scheme broken if an executable
can be modified both preserving its functionality and achieving
a TLSH difference ≥ 86 from its original version (see section 5 of
[13]).

The first setting of our attack that guarantees at least 86 points
of self difference is setting 96; however, most binaries patched with
setting 84 also exceed 86 in achieved self difference (see Figure 4).
In total 710 of 2000 binaries (35.5%) were successfully patched in a
way that their self difference was ≥ 86.

4.4 Adversarial examples to SIMBIoTA
SIMBIoTA [21] is a malware detection solution for IoT devices. Mal-
ware detection on IoT devices is problematic, because IoT devices
have very limited resources regarding computational power, mem-
ory, and storage, so they do not meet the heavy requirements of
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Figure 4: Final results of adaptively patching each of the 2000 ARM samples. Samples are only evaluated and displayed at the
maximum setting they were successfully patched at. Samples are marked with different colors representing whether they
where detected by SIMBIoTA or evaded detection (see Section 4.4).

traditional malware detection solutions. To fit these constraints,
SIMBIoTA does similarity based malware detection on IoT devices,
which entails the use of the TLSH similarity hash and difference
score.

The computation done on the IoT device to classify a binary as
malware or non-malware is as simple as calculating its TLSH hash,
which is then compared to the TLSH hashes of a set of malware
samples. These malware hashes are picked by and received from
an antivirus server. A new binary is classified as malware if its
TLSH difference from one of the TLSH hashes of malware is under
a given threshold. The threshold used in SIMBIoTA is 40 points
of difference score. Note that this is well beneath the proposed 86
in [13].

The server has a large database of malware samples and their
TLSH hashes. Whenever the database is updated by adding new
malware, which is inevitable to keep the pace with the constant
evolution of malware, it computes a preferably small dominating
set of all malware in the database. A dominating set is a subset
of the greater set, which has at least one similar sample to any
sample in the greater set. When the client IoT device requests an
updated set of malware hashes, the server sends the hashes of its
current dominating set. Hence, the device with a fresh set of hashes
is guaranteed to recognize any malware, which is present in the
server’s database.

The relatively small size of the dominating set suggests that
malware form crowded clusters of similar samples, and thus new
samples can be detected with high probability. Indeed, SIMBIoTA
achieved 90% detection rate on previously unseen malware, while
its false positive rate stayed 0%. These rates were measured in
a realistic simulation, where the client received weekly updates
of the dominating hash set, and malware was "released" on the
simulated timeline based on the time of its actual first submission
to VirusTotal10.

If we were to create adversarial examples to SIMBIoTA by patch-
ing malware samples in a way that the modified versions evade its
detection, we would have to guarantee that its TLSH hash is not
similar (diff > 40) to any of the hashes in the current dominating set.
While this is quite a complex task even if the attacker knows the
dominating set, evading detection can be made very probable by
simply patching the sample with a high target self difference. This
works because of the same reason SIMBIoTA is effective against
unknown malware: malware tend to form dense clusters of similar
samples [6]. If the modified version is very different from the origi-
nal version, it is likely to be outside of its cluster, not being similar
to any samples within, while it is also unlikely to become similar
to a sample from another cluster.

10https://virustotal.com Last accessed: June 27, 2023

https://virustotal.com
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Consider a version of SIMBIoTA that has seen exactly the 29,209
ARM samples of CUBE-MALIoT-2021. Due to the dominating set
mechanism, it would be guaranteed to detect any of the 29,209
samples; however, it would not detect samples that are similar to
some of the 29,209, but not to any of the chosen dominating set.
We test our patched samples by comparing them to each and every
one of the 29,209 samples, and thus we classify all samples detected
that might be detected with any dominating set selection. As we
conducted our tests on a subset of the CUBE-MALIoT-2021 ARM
samples, the original version of our patched samples are all present
in the 29,209 known samples.

Let’s evaluate our method as a tool to create adversarial exam-
ples to this simulated version of SIMBIoTA: From the 2000 input
malware samples, 221 did not have section header tables, and thus
the method had no chance to modify them. From the other 1779
samples, 1722 were successfully modified to some extent of self
difference, including 1005 patched samples (50.3% of all, 56.5% of the
samples that had a section header table) that evaded the detection
of SIMBIoTA.

Figure 4 presents these detection results, marking detected and
evading patched versions differently. As the original versions are
all known to the simulated antivirus, no patches below the self
difference of 40 points can evade its detection. Some patches not
far past this threshold are already undetected, and with higher self
differences the detection rates gradually drop to zero. By regression
over this data, the attacker can approximate the probability of
detection on any single patched sample.

4.5 Discussion – Other applications and
configuration of TLSH

Wepresented and evaluated our attack against the fuzzy blacklisting
of ELF binaries with default TLSH; however, the same approach
should interfere with clustering and closest match search as well.
While currently these seem to be themost common applications and
configuration of TLSH, in this section we discuss our speculations
on adaptation possibilities of the attack against others.

4.5.1 Other configurations. There are a couple of variables in the
configuration of TLSH; however, as stated in Section 2.1, practically
only the defaults are used. In spite of this, it is interesting how
these settings would affect our attack. The two officially supported
adjustable settings in the build-time configuration11 of the reference
implementation are checksum size – 1 or 3 bytes, and number of
buckets – 128 or 256, with the first option beeing default for both.

The checksum in TLSH is an attempt to identify completely in-
dentical files; however it can be easily changed to any desired value
by changing a single byte of the file. Using a bit longer checksum
makes this a bit more difficult, but it should still be achievable by
changing a few bytes only. As the difference of checksums can
only contribute a single point to the TLSH difference score, this is
irrelevant to our attack.

The number of buckets used is more interesting, as using 256
buckets (i.e. not discarding the upper 128 bucket counts) disables
neutral patterns, as the addition of any sequence of 𝑛 bytes will
increase the bucket counts by 6𝑛 in total. While the use of neutral

11https://github.com/trendmicro/tlsh#building-tlsh Last accessed: June 23, 2023

patterns might seem crucial in our attack, it is only a convenience.
We use the neutral patterns as separator between the applied pat-
terns and to fill up the rest of the modification window after the
last pattern (see Section 3.3.4). While the separator bytes could be
anything without harmful bucket count contribution in themselves,
without neutral patterns we could not trivially fill the rest of the
modification window if we had found a shorter solution to achieve
the desired bucket count contributions.

4.5.2 Other applications. We showed that most ELF binaries can
be patched in a way that the result has a high TLSH difference from
the original version even without changing the size of the file. The
requirement that enabled this attack was the fact that the binary
had continuous regions that the attacker could overwrite without
affecting the program’s behavior. Patching any other type of file
with this same method has the same requirement: containing one
or more continuous ranges of bytes that the attacker can freely
modify without damaging the essential semantic content of the file.
As a few examples how this might be possible, file formats may
enable adding bytes at the end of the file which are later ignored,
adding metadata that is never validated, or adding comments. Also
note that the pattern construction might be successful even if the
allowed bytes or byte sequences are limited (e.g. printable ASCII
only).

Security of some other proposed applications of TLSH depend
on the robustness of the scheme just as it is the case with malware
detection. One of these is the system described in [8], a blockchain
based decentralized searching solution, where data owners receive
payment proportionally to the number of provided search results.
The authors adopt TLSH to ensure that greedy providers do not
duplicate matching results to receive double payment. Another one
is [1], where accesses to confidential documents are logged along
with the TLSH hashes of the accessed documents, for in case of
document leakage the perpetrator can be more easily identified
through comparing the hash of the leaked document to the ones
in the access log and identifying the entries that are most likely
the source of the leak even if the corresponding document was
somewhat edited between access and the leak. Neither of these
proposals detail the type of files that are compared using TLSH,
both refering to them as "documents". So they might be vulnerable
depending on whether the file type enables the above discussed
way of editing without consequences.

Another class of applications is fuzzy whitelisting. Similarity
digest schemes can be used in whitelisting to allow not only exact
matches, but similar files to the file hashes of the whitelist as well.
Whitelisting software binaries with TLSH is discussed in [16]. A
more complex whitelisting application is [4], where the network
traffic of IoT devices is inspected to detect anomalous (probably ma-
licious) activity. This is possible because such devices have limited
functionality, thus their network traffic flow follows usual patterns.
Similarity digest schemes are utilized to compare current traffic to
recorded benign traffic patterns. While our anti-blacklisting attack
requiredmodifyingmalicious files in anyway that their new version
had a high TLSH difference from the original, an anti-whitelisting
attack would require modifying the files so they become similar (i.e.
have low difference score) to the allowed file hashes of the whitelist.
This is something we are planning to work on in the near future.

https://github.com/trendmicro/tlsh#building-tlsh


ARES 2023, August 29-September 1, 2023, Benevento, Italy Fuchs et al.

5 CONCLUSION
In this paper, we propose a targeted attack against the TLSH similar-
ity digest scheme and conduct experiments regarding its robustness
against said attack. For evaluation, we used IoT malware samples,
since malware detection and malware clustering are a prominent
use-cases of TLSH. The proposed attack attempts to modify binaries
by overwriting an unused portion of the binary, thus preserving its
functionality, while creating the largest possible TLSH difference
compared to the original file. Out of the 2000 malware samples
that we tried to patch with our attack method, 1779 samples were
suitable for modification; we were able to achieve the self difference
of at least 86 (a limit determined by the authors of TLSH) for 710
samples; and we could patch 1465 samples to have a self difference
score of at least 40, which is a similarity threshold used by SIM-
BIoTA, a malware detection solution built on TLSH. Furthermore,
in 1005 cases the patched samples achieved a 40 difference score to
every other sample known by SIMBIoTA, thus they surely evade
the malware detector.

To summarize our findings, although TLSH is considered to be ro-
bust against random attacks, we proved that it is not robust enough
against targeted attacks. We outlined an algorithm to create modi-
fications in order to achieve the highest possible TLSH difference,
and tested it on malware samples. We were able to patch 40% of all
modifiable samples to the point where even the authors of TLSH
consider the scheme broken, while in 56% of the cases we could
fool a malware detector built upon TLSH. Our method does not
change the size of the samples, it preserves their functionality, and
it alters only one of the small modifiable portions of them.
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