
Android Malware Analysis
Based On Memory Forensics

András Gazdag and Levente Buttyán

Laboratory of Cryptography and System Security (CrySyS Laboratory)
Budapest University of Technology and Economics

{andras.gazdag,buttyan}@crysys.hu

http://www.crysys.hu

Abstract. Live forensics solutions have long been proven powerful in
various research fields. The rise of mobile platforms has created numer-
ous new challenges for the researchers. The adoption of the widely used
technologies of the traditional PC environment has limitations due to the
lack of wider control over the mobile operating system. In this paper we
present a new malware analysis solution for the Android platform using
a memory forensics approach. We explore the required modification of
the Android system to be able to use it as a memory analysis environ-
ment and demonstrate the solution with an implementation. We propose
possible analysis targets for the acquired memory image. Based on the
information gathered from the analysis steps we present a methodology
of behaviour analysis of android applications, furthermore we show the
power of this approach analysing and evaluating Android malwares. Fi-
nally we evaluate our implementation with well-known malware family
samples illustrating its efficiency and effectiveness.

Keywords: Android; malware; dynamic; analysis; memory; forensics

1 Introduction

In the last couple of years we saw a dramatic increase in the mobile malware
area. F-Secure shows in its latest Mobile Threat Report[1] that more than 99%
of the new malware samples found in the wild target the Android ecosystem.
Most of these samples (83%) are still Trojan applications followed by Backdoor
applications. Hidden SMS sending to premium services is still the most common
type of malicious behaviour.

During our research we used a memory forensics approach for analysing mo-
bile devices and detecting malware. This technique is similar to the traditional
memory forensics in the desktop environment which was first introduced by
Michael Ford in 2004[2]. The goal of memory forensics is to capture the contents
of the RAM to a memory image, which is later analysed in various ways to gain
information about the system that is otherwise not accessible. Mobile memory
forensics was first introduced by Joe Sylve in 2012[3].

We designed and implemented a system containing two components to detect
malicious Android applications. First we present UkatemiSHIELD, an Android



2 Android Malware Analysis Based On Memory Forensics

application, aiming to find suspicious applications based on their requested per-
missions. Suspicious applications can then be analysed with another component
of our system called APKAnalyser, which is a memory forensic tool for Android.
We performed extensive testing to prove the robustness of our approach.

The reminder of this paper is organised as follows. Section 2 gives an overview
of the implemented system then section 3 and 4 describe the structure and oper-
ation of the two components of the system: UkatemiSHIELD and APKAnalyser.
Finally, section 5 describes that APKAnalyzer can be used to detect malicious
behaviours and discusses the results.

2 System Overview

The complete system contains two components: UkatemiSHIELD and APKAnal-
yser. These components are capable of operating separately, but their coopera-
tion can result in a more robust defence system. Figure 1. shows the overview of
the system.

Fig. 1. The complete system overview of UkatemiSHILED and APKAnalyser.

2.1 UkatemiSHIELD

UkatemiSHIELD is an Android application with the goal of defending and
analysing the underlying Android system. It runs periodic checks of the en-
vironment searching for compromised files or malicious applications. If it finds a
suspicious file or application, then it generates an alert, and sends the available
suspicious files for further analysis to APKAnalyser.

2.2 APKAnalyser

APKAnalyser is a web service that analyses Android applications in a .apk for-
mat. It performs multiple automated analysis steps, and produces a report that



Android Malware Analysis Based On Memory Forensics 3

helps the work of human researchers. First, it searches the VirusTotal database
to check whether the submitted sample is an already known malware. Afterwards
it performs dynamic analysis on the file, and records its behavioural features.

3 UkatemiSHIELD

During the development of UkatemiSHIELD, an important objective was to stay
within the boundaries defined by Google. This approach results in an application
available for as many users as possible. On the other hand, this also restricts the
possibilities of the application, reducing the level of protection.

UkatemiSHIELD performs a system-wide file scanning. It calculates hashes
on every file, and compares them to a list of trusted file hashes.[4] This approach
is particularly powerful on the system partition, where during a normal use of
the device no modification should happen. Any discrepancy on this partition is
probably the result of malicious activity.

The software performs another type of analysis as well. It checks all the
installed applications on the system reviewing their permission request. Based
on this information, it makes an automated decision, using machine learning,
whether the application is suspicious or not. It has been shown[5] that this
methodology is useful detecting Android malware. If an applications is marked
as suspicious, then it is sent to the APKAnalyser service for further analysis.

4 APKAnalyser

APKAnalyser is a web service for analysing Android applications. It has two
goals: based on various performed steps it decides whether the submitted appli-
cation has malicious behaviour, and it generates an analysis report to ease the
work of human researchers.

APKAnalyser has multiple user interfaces for more convenient usage. It of-
fers a web interface through which users can submit files for analysis. It also
has a REST based file upload API which is used for communications with pro-
grams, such as UkatemiSHIELD. Local users of the service have the option of
adding multiple files at once from the file system allowing them to perform batch
analysis.

4.1 Analysis overview

The analysis runs on an environment specifically modified for memory analysis
purposes. We use the LiME[3] module to capture memory images. The images
are processed then with the Volatility tool[6].

4.2 Analysis environment

One of the main design decisions of APKAnalyser was to create a flexible envi-
ronment for multiple purposes. The software was developed in such a way that



4 Android Malware Analysis Based On Memory Forensics

it is capable of operating with emulated Android devices, but it also has the
option to perform all the steps on a physical device. This approach gives the
researchers the options to work with a highly scalable cost effective solution or
to work with an environment that is as close to a real device as possible.

LiME is an LKM (Loadable Kernel Module). It needs to be loaded into
the Android kernel which is by default not permitted due to security reasons.
Therefore, we needed to compile custom kernels with the required functions
enabled.

The new kernel image can be used with Android emulator without any further
modification.

However, the usage of a custom kernel with a physical device is more com-
plicated. First the bootloader of the device has to be unlocked. The mechanism
for this depends highly on the vendor. We performed the steps on a Sony Xperia
Arc S device which was easier than with other brands thanks to the support
from Sony for their developers. The unlocked bootloader allowed us to load a
new boot image with our custom kernel on the device. It is possible to use the
fastboot tool, which allows the user to load the boot.img into the memory of
the device without any modification of the permanent storage. This approach is
useful, because in case of an error, no permanent damage is made to the device.

LiME is capable of running in two modes: it can store the captured memory
image on the SD card of the device or it can send out the contents of the image
via a TCP connection. We used it in the second mode because it suited better
our environment.

Apart from a custom kernel, root privileges are also required for loading the
LiME module. It can be achieved in various ways. In the emulated environment,
we used a custom su binary copied on the system partition, which runs then with
root privileges. We developed a custom version of the Superuser.apk1 application
which handles the root privilege request from other applications to grant the root
privileges for our application automatically. This modification was required to
be able to automate the complete analysis process.

Gaining root privileges is also required on physical devices. Methodology for
this depends highly on the device.

4.3 Memory image analysis

We analysed the captured memory image with Volatilty. Android at the kernel
level shows no significant difference from a Linux system, hence all the Linux
commands can be used to analyse Android memory images.

In order to use Volatility, we needed to have a new Volatility profile set up
that describes the structure of the memory image allowing Volatility to analyse
its content.

The available Volatility commands allowed us to gather informations about
running processes, open network connections, open file descriptors or modifica-
tions of the kernel structures.

1 We obtained the su binary and Superuser.apk from the XDA developer forums.[7]



Android Malware Analysis Based On Memory Forensics 5

We examined the running processes with the following commands:
linux pslist, linux pstree, linux psaux [-p pid], linux proc maps [-p pid],
linux dump map [-s address].

Finding the process. As a first step of the memory image analysis we had to
find the process (and the associated process id) containing the analysed applica-
tion. We could achieve this in two different ways. In the first approach, there were
only known applications running in the analysis environment, which allowed for
an easy filtering of known processes. The second approach allowed us to run any
applications in the analysis environment. In this case we captured two memory
images: before and after the installation of the sample. By comparing the two
images, we could again filter out the irrelevant processes.

Analysing the memory map. With the known process id (pid) we could get
the memory map of the analysed process. Every Android application has a lot
of binaries and further apk-s loaded into their memory map in order to run as
fast as possible. The interesting memory page for this analysis is the one that
contains the Dalvik byte code of the investigated application. This page is a READ

ONLY page as the code will actually be executed by the Dalvik Virtual Machine
in another memory segment.

Dumping memory. Dumping specific parts of the memory can give us back the
Dalvik executable (dex) of the analysed application. It contains Dalvik byte code
which is readable for humans as well. Further analysis of this dex file can reveal
important informations about the behaviour of the program. Figure 2. shows a
comparison of the dumped dex file with original dex file of the application.

Fig. 2. Comparison of the dumped dex file with the original dex file of the application.

Analysis with other goals. Volatility allows researchers to analyse the mem-
ory image with other goals. It is possible to regain information about the tempfs
file system that is used as a caching partition on Android systems. Discovering



6 Android Malware Analysis Based On Memory Forensics

the contents of this file system can give us information for example about the
last opened URLs.

Volatility also has mechanisms that can be used for finding rootkits in An-
droid systems. The command linux psxview gathers information about running
processes from various sources from the kernel and cross references this informa-
tion. Any discrepancy found means that a program tried to hide itself. This is a
frequently encountered malicious behaviour. Checking the outputs of commands
like linux check fop or linux check afinfo or linux check modules can result find-
ing further attempts of hiding files, network connections or kernel modules.

5 Determining application behaviour

APKAnalyser is capable of making automated decisions about application be-
haviour. It performs a number of analysis steps described in the previous section:
it sets up an analysis environment, installs the analysed sample and performs
memory capture of the analysis device. It then searches for memory pages in the
captured memory image containing the program code. Once it has dumped the
dex files from the image, it analyses them by collecting system calls. Based on the
system calls performed by the application it distinguishes malicious applications
from the legitimate ones.

5.1 System call list

It is essential for proper functioning of APKAnalyser to have a list of system
calls to look after. If the system call list contains calls specific to malwares then
it is capable of distinguishing malicious files and legitimate ones.

A more specific selection of system calls could result in a system that can
recognise samples of the same malware family. During our testing we showed
that both of these approaches work.

For testing purposes, we created a list of system calls that is specific to
malwares in general. We used the information gathered during the development
of UkatemiSHILED: we took the most relevant permissions that malwares use
and searched for the corresponding system calls representing that permission us-
age. A system call based analysis can be much more detailed than a permission
based, so we extended further this list. For example the most common malware
behaviour is SMS sending. We included in the list all methods of the SmsMan-
ager2 class that can be associated with creating and sending new messages.

The relevance of system calls may vary in the list. Some calls are more char-
acteristic to malwares whereas some may also be frequent among legitimate
applications. To represent this relevance, we assigned a weight to each system
call that describes the impact of the presence of a particular system call on the
behaviour score.

2 The SmsManager class description can be found here: http://developer.android.
com/reference/android/telephony/SmsManager.html



Android Malware Analysis Based On Memory Forensics 7

After the system call list is completed, a threshold should be determined. If
the behaviour score for a sample is higher than the threshold then the sample
should be treated as a malware. We performed extensive testing on malicious and
legitimate applications to determine the correct threshold value for a selected
system call list.

5.2 Testing

For testing the completed system, we have chosen malware samples from various
sources. We checked the samples against the VirusTotal database to verify the
decision made by APKAnalyser. We removed those samples from the measure-
ment that crashed during their run in the environment.

This has lead to a total of 111 tests. The results show a 71,4% true positive
rate and a 26,7% false positive rate. The rates depend highly on the chosen
system call list and the corresponding threshold value. The system call list we
chose is described in section 5.1. The correct threshold value and weighting of
the system calls were determined with extensive testing.

We have performed tests to prove the malware family detection capability as
well. We chose samples from the DroidKungFu (HEUR: Backdoor.AndroidOS.
KungFu.a) family and the Lotoor (Exploit.Linux.Lotoor.b) family.3 We per-
formed the test two times: once the system call list was customised for Droid-
KungFu and once for Lotoor. We could make 25 tests in total with samples from
these families. We were able to identify samples with 80% probability from the
DroidKungFu family and with 93,3% probability from the Lotoor family.

6 Related work

The foundations for complete mobile memory forensics came from the work of
Joe Sylve et al.[8]. In his work he presented LiME[3] and showed that it is capa-
ble of capturing memory pages with higher accuracy than any other approach.
However, the authors did not analyse further the memory dumps to discover
informations about the running applications.

Joe Sylve and co-workers continued their work at 504ensics where they work
on developing Dalvik Inspector (DI)[9]. The goal of this tool is to analyse Dalvik
level structures of programs from memory images. This application is currently
under development.

Christos Xenakis et al. investigated whether authentication credentials in the
volatile memory of Android mobile devices can be discovered using freely avail-
able tools or not[10, 11]. The authors used DDMS for memory acquisition which
only captures a part of the system memory. They found out that most of the
mobile banking, e-shopping and password manager applications keep the creden-
tials informations in memory long after it is necessary. They concluded that with
the memory forensics approach it may be possible for malicious applications to
stole credential informations.
3 These naming conventions follow the Kaspersky Android malware classification ter-

minology.



8 Android Malware Analysis Based On Memory Forensics

7 Summary

In this paper we proposed UkatemiSHIELD and APKAnalyser. These new tools
form an analysis system to detect malicious Android applications. We showed
that APKAnalyser in cooperation with UkatemiSHIELD is capable to detect
malicious behaviour using a memory forensics approach.

In order to validate our method we performed 136 tests with different ap-
plication samples. Our tests showed that the selection of the system calls is
crucial for the effective operation of APKAnalyser. With careful choice of the
system call list, the corresponding weight values and a proper threshold value,
APKAnalyser is able to detect malwares with high confidence. Tests also proved
that this methodology is particularly powerful for detecting samples of a specific
malware family.

Acknowledgments. The authors extend thanks to Szabolcs Váradi for his work
on UkatemiSHIELD and Gábor Pék who contributed greatly to this project.

References

1. F-Secure Labs: Mobile Threat Report Q1 2014 http://www.f-secure.com/

documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf

2. Michael Ford: Linux Memory Forensics http://www.drdobbs.com/

linux-memory-forensics/199101801

3. Joe Sylve: Android Mind Reading: Memory Acquisition and Analysis with DMD
and Volatility (2012)

4. Kim, Gene H. and Spafford, Eugene H., ”The Design and Implementation of Trip-
wire: A File System Integrity Checker” (1993). Computer Science Technical Reports.
Paper 1084.

5. Borja Sanz and Igor Santo and Carlos Laorden and Xabier Ugarte-Pedrero and
Pablo Garcia Bringas and Gonzalo Álvarez: PUMA: Permission Usage to detect
Malware in Android (2012)

6. AAron Walters and Nick L. Petroni, Jr.: Volatools: Integrating Volatile Memory
Forensics into the Digital Investigation Process (2007)

7. xdadevelopers: [How-To] Root an Android Virtual Device (AVD) http://forum.

xda-developers.com/showthread.php?t=2227815

8. Joe Sylve, Andrew Case, Lodovico Marziale, Golden G. Richard: Acquisition and
Analysis of Volatile Memory from Android Devices, Digital Investigation Journal,
2012

9. 504ensics: Dalvik Inspector (DI) Alpha http://www.504ensics.com/tools/

dalvik-inspector-di-alpha/

10. Dimitris Apostolopoulos, Giannis Marinakis, Christoforos Ntantogian, Christos
Xenakis, ”Discovering authentication credentials in volatile memory of Android mo-
bile devices”, In Proc. 12th IFIP Conference on e- Business, e-Services, e-Society
(I3E 2013), Athens, Greece, April 2013.

11. Christoforos Ntantogian, Dimitris Apostolopoulos, Giannis Marinakis, Christos
Xenakis, Evaluating the privacy of Android mobile applications under forensic anal-
ysis, Computers & Security, Elsevier Science, 2013.


