
Detection of Injection Attacks in Compressed
CAN Traffic Logs

András Gazdag1, Dóra Neubrandt1, Levente Buttyán1, and Zsolt Szalay2

1 Laboratory of Cryptography and System Security
Department of Networked Systems and Services

Budapest University of Technology and Economics
{agazdag, dneubrandt, buttyan}@crysys.hu

2 Department of Automotive Technologies
Faculty of Transportation Engineering and Vehicle Engineering

Budapest University of Technology and Economics
zsolt.szalay@gjt.bme.hu

Abstract. Prior research has demonstrated that modern cars are vul-
nerable to cyber attacks. As such attacks may cause physical accidents,
forensic investigations must be extended into the cyber domain. In or-
der to support this, CAN traffic in vehicles must be logged continuously,
stored efficiently, and analyzed later to detect signs of cyber attacks.
Efficient storage of CAN logs requires compressing them. Usually, this
compressed logs must be decompressed for analysis purposes, leading to
waste of time due to the decompression operation itself and most im-
portantly due to the fact that the analysis must be carried out on a
much larger amount of decompressed data. In this paper, we propose an
anomaly detection method that works on the compressed CAN log itself.
For compression, we use a lossless semantic compression algorithm that
we proposed earlier. This compression algorithm achieves a higher com-
pression ratio than traditional syntactic compression methods do such as
gzip. Besides this advantage, in this paper, we show that it also supports
the detection of injection attacks without decompression. Moreover, with
this approach we can detect attacks with low injection frequency that
were not detected reliably in previous works.

Keywords: CAN · Anomaly Detection · CAN traffic compression

1 Introduction

These days vehicles can be the target of various cyber attacks. In a modern
automobile, there are numerous ECUs (Electronic Control Units) which are re-
sponsible for different functionalities. These ECUs are connected together with
the Control Area Network (CAN) bus and they communicate with each other
using the CAN protocol. There are several external interfaces which can be used
to gain access to this inner network of the vehicle such as wireless interfaces
(Bluetooth, WiFi, wireless TPMS) and the on-board diagnostic port (OBD).



2 A. Gazdag et al.

The design of the inner network and its protocol and interfaces makes the CAN
vulnerable against several attacks. We will elaborate more on these attacks in
Section 3. While in the past, such attacks were considered low risk and not a
real concern, recently, researches have demonstrated [1] [2] [3] that they are not
so difficult to carry out and, hence, the risk is indeed considerable.

Cyber attacks on vehicles can cause physical accidents. This means that
when an accident happens, forensic analysis must be extended into the cyber
domain, and investigators must analyze whether the accident was caused or
made possible by a cyber attack. Imagine, for example, that a compromised ECU
provides false data and as a consequence, misleading information is displayed to
the driver on the dashboard, or the airbag is disabled silently before a crash,
or some autonomous driving function is enabled and the driver loses control
over the vehicle. All these can either lead to an accident or increase its fatality.
As the cyber attack on the vehicle may occur well before the accident that it
causes, forensic analysis can be successful only if detailed logs are recorded for
an extended period of time, not just for a few seconds before the accident3.

In our view, in the future, especially with the increased penetration of au-
tonomous vehicles, it will be indispensable to continuously record CAN traffic in
vehicles and efficiently store these logs for later forensic analysis. Efficient stor-
age of CAN logs requires compressing them. Compression not only saves storage
space, but it also makes it easier to off-load logs from the vehicle. Usually, the
compressed log must be decompressed for analysis purposes, and the analysis is
carried out on large amount of decompressed data. This increases the inefficiency
of the analysis itself. In this paper, we study the problem of detecting anoma-
lies that may indicate cyber attacks on the compressed CAN traffic log, hence
making analysis faster by not requiring decompression and most importantly by
reducing the amount of data on which the analysis must be performed.

Anomaly detection cannot be performed on any kind of compressed CAN log,
but the compression method must support the analysis of the compressed data.
Hence, for compression, we use a lossless semantic compression algorithm that
we proposed earlier [4]. This compression algorithm achieves a higher compres-
sion ratio than traditional syntactic compression methods such as gzip. Besides
this advantage, in this paper, we show that it also supports the detection of cer-
tain types of attacks in the CAN log without decompression. More specifically,
we can easily detect flooding attacks, where the attacker (e.g., a compromised
ECU) injects a given type of periodic CAN message with a smaller repetition
time (higher frequency) than its normal repetition time. Most of the attacks
demonstrated in prior work were of this kind[1][2][3]. The increased frequency of
injected false messages usually results in “overriding” the information carried in
the legitimate messages. We show that such an attack causes a well-identifiable
anomaly pattern in the compressed log even when the frequency of the fake
messages is just slightly larger than the normal frequency.

The remainder of the paper is organized as follows: In Section 2, we give an
overview on the existing anomaly detection works on CAN traffic. In Section

3 https://www.nhtsa.gov/research-data/event-data-recorder



Detection of Injection Attacks in Compressed CAN Traffic Logs 3

3, we describe how the CAN protocol and the CAN compression algorithm we
use work. In Section 4, we discuss the attack scenario and the possible attacks
against the CAN protocol that we and recent works take into consideration. We
present our anomaly detection approach and its evaluation in Section 5. Finally,
we conclude in Section 6.

2 Related Work

Anomaly detection on the CAN bus has been an actively researched field recently.
Multiple approaches have been proposed varying in the interpretation of the
CAN traffic. If the interpretation of the CAN messages are accessible it is possible
to collect the actual vehicle parameters. Approaches using this knowledge usually
perform anomaly detection on this high level data. The researches not using
a CAN matrix are mainly focused on the communications properties such as
repetition times of the messages.

A. Taylor et al. proposed a method from the first approach in [8]. They
interpreted the CAN massages to build a current state of the vehicle. Then with
a Long Short-Term Memory Network (LSTM) predicted the next state of the
car. If the actual state, based on the following messages, is diverging from the
predicted state they detect it as an anomaly.

S. N. Narayanan et al. proposed a hidden Markov models based approach to
anomaly detection[11]. They used the OBD port available in every modern car
to access the CAN bus. Packets captured through this interface are interpreted
then and used to build the Markov model. They also understand states of the
vehicle and define the possible state transitions. If an unexpected state transition
is detected that means an anomaly in their model.

In [10] M. Marchetti et al. showed that anomaly detection can be efficiently
performed based on CAN ID sequences. From the CAN traffic they only use
the ID field of the messages. They build a transition matrix to understand the
connection between messages. If during normal traffic an ID follows another
then this transition is marked as normal in the matrix. Their anomaly detection
method analyzes whether a not allowed transition appears in the traffic.

In another paper Taylor et al. [5] presented an anomaly detection approach
that is based on repetition times of the messages on the CAN bus. They first
splitted the traffic into flows. For every flow various measures are calculated such
as the number of packets in the flow, the average Hamming distance between
successive packet data fields and the average time difference between successive
packets. During their analysis they show that the only reliable parameter for
anomaly detection is the average time difference between successive packets.
They use a one-class support vector machine (OCSVM) to classify the benign
traffic and to detect anomalies. They measure the efficiency of their work only
on syntactically generated traffic.

Although anomaly detection on compressed traffic has several advantages,
this idea was not researched so far. We aim to close this gap by analyzing normal



4 A. Gazdag et al.

and attacked compressed CAN traffic to determine what kind of anomalies could
be detected with this approach.

3 Technical Background

3.1 CAN protocol

In modern cars the ECUs are controlling several processes. They measure their
surroundings and according to the available information they perform opera-
tions. They are connected together with the CAN bus and communicate by its
protocol, the CAN protocol, which uses CAN messages. In the protocol there
is no authentication, and broadcast is used, so every ECU gets every message
and selects which interests it. That is, all traffic is visible to everyone and any
controller can send any type of message. The above mentioned attributes make
the CAN vulnerable against several attacks. For example an attacker can easily
send arbitrary messages once he gained access to the inner network.

A CAN message has the following format. Every message has an ID which
can be 11 or 29 bits long. The meaning and the range of the IDs are manufacturer
specific. The lower the value of the identifier field the more prior is the message.
After the ID comes the data length field then comes the data.

1481492674.734327 0x260 8 00 00 00 00 00 00 00 6a

1481492674.736055 0x2c4 8 05 c8 00 0f 00 00 92 3c

1481492674.738092 0x2c1 8 08 03 35 01 6a d9 00 4f

1481492674.754306 0x260 8 00 00 00 00 00 00 00 6a

1481492674.759605 0x2c4 8 05 c8 00 0f 00 00 92 3c

1481492674.769823 0x2c1 8 08 03 39 01 70 d9 00 59

1481492674.774302 0x260 8 00 00 00 00 00 00 00 6a

1481492674.783129 0x2c4 8 05 c2 00 0f 00 00 92 36

1481492674.794246 0x260 8 00 00 00 00 00 00 00 6a

1481492674.801541 0x2c1 8 08 03 3b 01 74 d9 00 5f

Example 1.1. Simplified CAN traffic log

In Example 1.1 a CAN traffic log is shown. Each row corresponds to a mes-
sage. The first column is the arrival time of the message (Unix time), the second
column is the message ID, in the third column there are specific flags (which in
our captured data are not used), the fourth column shows the length of the data
in the message, and the last column is the data.

3.2 CAN compression algorithm

We used a recently published semantic compression algorithm [4] made specifi-
cally for CAN traffic compression. It achieves a good compression ratio on CAN
traffic, exceeding other state of the art syntactic compression algorithms, such



Detection of Injection Attacks in Compressed CAN Traffic Logs 5

as gzip. It is a lossless compression method which is a necessary requirement for
being able to use it in forensic investigations after an incident.

0x260

start_time:1481492674.734327

period:19984

00 00 00 00 00 00 00 6a: 0#0,1#-5,1#12,1#-40,

1#-3,1#105,1#-87,

1#-16

0x2c4

start_time:1481492674736055

period:23540

05 c8 00 0f 00 00 92 3c: 0#0,1#10

05 c2 00 0f 00 00 92 36: 1#-16, 1#20

05 c5 00 0f 00 00 92 39: 1#111

05 c8 00 0f 00 00 92 3c: 1#-113, 1#-22

0x2c1

start_time:1481492674738092

period:31728

08 03 35 01 6a d9 00 4f: 0#0

08 03 39 01 70 d9 00 59: 1#3

08 03 3b 01 74 d9 00 5f: 1#440, 1#14

08 03 38 01 72 d9 00 5a: 1#-5

Example 1.2. Compressed CAN traffic log

The compression algorithm works as follows.

1. First, it separates the messages according to their message ID-s.
2. For each message ID, it records the time of the first message in the recorded

traffic. (See ’start time’ in Example 1.2.)
3. It calculates the average time between messages with the same ID-s.
4. For a given ID, it sorts the messages into groups according to their data, so

messages with the same data go into the same group.
5. Store the number of elapsed periods and the difference between the period

based and the actual time stamp.

It is unnecessary to store the time for each message in every group, because
the periodic nature of the bus arbitration can be exploited. Thus, it is enough to
store how many periods elapsed since the previous message (in the group) and
the difference from it in microseconds. For example 1#440 means that, after the
previous message 1 period and 440 microseconds elapsed.

4 CAN attacks

An attacker could try to interfere with the normal operation of the CAN bus
in multiple ways depending on the malicious intent. It is possible to achieve an



6 A. Gazdag et al.

anomaly with just a few messages but in most cases to make an attack reliable a
large number of messages are necessary. In the following paragraphs we describe
the various possibilities of an attacker organized by the number of messages
required. In the second part of this section we describe how we recorded infected
CAN logs for this research.

4.1 Taxonomy of CAN attacks

DOS against the CAN bus: In this scenario the goal of the attacker is to
completely disable the communication on the CAN bus. This can be achieved
at least with two extreme approaches.

An attacker could disturb the transmission of every CAN packet by starting
its own dummy transmission in the middle of every other packet. This way an
error will occur during the reception of every packet. This attack does not need
a full packet to be sent by the attacker just a few bits with the correct timing.

Similar effect can be achieved with the transmission of packets with the ID
0. The ID field of the CAN packet is also determines the priority of the message.
The value of the ID decides which packet can be transmitted in case of multiple
colliding packets. The smaller the ID of a packet is the higher its priority is. If
an attacker sends continuously packets with the ID 0 then there won’t be any
resource left for the normal traffic.

Both of these attacks are operation critical for a vehicle. A complete DOS
against the CAN bus isolates the ECUs from each other disabling most of their
operations. These scenarios are trivial to detect but very difficult to handle.

Messages with new IDs: It is common in car manufacturing that the same
hardware parts are used in various car models. This practice makes it possi-
ble for an attacker to try to trigger functionality in a car that would not be
used otherwise. On the CAN level this means that messages could appear with
previously unseen IDs.

Some attacks are realized with the usage of debug packets[1]. These scenarios
also introduce packets with new IDs on the bus.

If all benign IDs are known in advance, identifying these attacks is simple.
Messages with IDs not seen before can effectively be found with basic white-
listing or simple anomaly detection.

Irregular messages with known IDs: Some CAN messages are only trans-
mitted as a response to certain events. These messages are encountered rarely
because they are responses to environmental changes and are not part of the
regular operation of a vehicle. An attacker could inject any of these messages at
random times to force an inconsistency in the operation.

Without an external source of information the only way to detect these mes-
sages is to correlate information from other packets. This is a challenging task
in most cases if even possible.



Detection of Injection Attacks in Compressed CAN Traffic Logs 7

Messages with regular repetition times: To interfere with the normal op-
eration of a vehicle the regular communication of the ECUs should be altered.
It is hard to remove a messages from the CAN bus (if en error occurs during
transmission usually a re-transmission logic is triggered at the sender) thus the
best possible option for an attacker is to send malicious packets additionally. A
packet with fake content could force the vehicle into a compromised state until
the next packet with correct content arrives. Most attacks require to keep the
vehicle in a compromised state for the majority of the time. This means that
the attacker is required to send a lot of malicious packets to minimize the effect
of the original benign traffic.

Based on the goal of the attacker the frequency of the malicious packets could
be anything between 1x and 10x of the original traffic. Our measurements and
previous research[1] results also showed that a malicious traffic with ∼10x the
frequency of the original traffic forces the vehicle to stay in a compromised state
almost constantly.

4.2 Realized attacks

We used a test vehicle to demonstrate some of the attacks described previously.
It allowed us to test our anomaly detection approach in a real life scenario as
well.

Speed indicator modification: In this attack we were able to change the
displayed speed of the vehicle. We achieved that even when the car was standing
still without the engine running.

We performed this test with different attack frequencies. In the first attempt
the frequency of the forged packets was the same as the original one effectively
doubling the number of packets with the given ID. This caused the speed in-
dicator to oscillate between the real speed (0 km/h) and the forged speed (30
km/h).

Fig. 1. Speed indicator attack with 1x frequency caused oscillation of the indicator
needle.



8 A. Gazdag et al.

In our second attempt we increased the frequency of the malicious packets
to 10x the frequency of the normal traffic. This created a stable attack where
the indicator showed continuously the speed defined by our attack.

Fig. 2. Speed indicator attack with 10x frequency. The indicator shows 28 km/h while
the real speed was 0 km/h.

Transmission dashboard modification: We also attacked the transmission
signal for the dashboard (Figure 3). The engine was still not running but we
were able to force the display to show that the vehicle was in gear 1.

Fig. 3. Original state of the transmission display.

To achieve this goal we used a packet observed during previous test drives.
The malicious packet injection frequency was also 10x of the original rate. As a
side-effect we also modified the fuel level indicator and some control lights from
the engine. In the original state the fuel level was low whereas during the attack



Detection of Injection Attacks in Compressed CAN Traffic Logs 9

it showed that the tank is half full (Figure 4). This indicates that the fuel level
and some of the control signals are transmitted in the same packet as the current
gear.

Fig. 4. Attack on the transmission display. The engine was not running but the indica-
tor showed gear 1. The control lights were switched off and the fuel level was increased.

5 Anomaly detection

5.1 Data sets

During the research we created two data sets. First, we created a synthetic data
set where the attacks were manually injected into a clean CAN traffic log. Then
we also performed some attacks against a real vehicle that gave us real life
infected traffic logs.

Synthetic data set: We have captured a few hours of benign traffic from a mid
class vehicle. With reverse engineering we found the signal used to display the
RPM of the engine on the dashboard. We used this signal during our attacks to
simulate an attack where false information is displayed to the driver. The RPM
value is sent by an ECU in a message with the ID 110. Normally this message is
send in every 10 millisecond. This attack belongs to the ”Messages with regular
repetition times” category described in Section 4.

We created a packet with a malicious content to insert into the traffic. The
packet contained a higher RPM value than found in normal traffic.

We generated the malicious traffic with multiple steps. First we splitted the
normal traffic into smaller chunks. Each chunk contained approximately 1 minute
of traffic. As a base rule we decided that every attack should be at least 5 seconds
long because a shorter attack on the dashboard would probably not disturb the
driver thus it would not achieve any goal. We also generated longer attacks. For
each attack scenario we increased the attack length with 5 seconds. This resulted



10 A. Gazdag et al.

in attacks with random length in these intervals: 5-10; 10-15; 15-20; 20-25 and
25-30 seconds.

For every attack scenario we generated 100 malicious samples. They were
each tested in our algorithm together with 100 benign samples.

We generated the malicious traffic simulating the normal operation of the
CAN bus (including the bus arbitration). First, we generated 10000 of the mali-
cious packets. The time stamp of the first packet was randomly chosen from the
first half of the benign sample, the rest of the time stamps were calculated based
on the chosen attack frequency. Then, we merged the benign and the malicious
packets according to the time stamps. If two messages overlapped than the one
with the higher time stamp was shifted after the other. If there was enough
time until the next message then the shifted message was simply inserted. Oth-
erwise the same logic was repeated again to resolve further conflicts in the time
stamps. Generally, the bus load was relatively low in our test vehicle resulting a
low number of those conflicts.

Once we had the 100 malicious and 100 benign samples for every scenario
we compressed all of the logs with the chosen compression algorithm.

Furthermore we examined how the detectability of such an attack changes
with the modification of the message injection frequency. We generated attacks
where the injection frequency was 10 times, 5 times and 2 times higher than the
original frequency of the given ID. We considered the 10 times higher frequency
the default frequency for a flooding attack as our real life tests and other re-
searchers also demonstrated it is an adequate frequency for an attack to have a
stable effect.

In our captured traffic there are 18 different IDs. There are IDs with regular
(14) and irregular (4) repetition times. We only focused on the regular IDs.

Real life data set: We implemented CAN attacks on a vehicle with real im-
pact. We targeted both the speed and the transmission indicator. For the speed
indicator we used 3 different attack frequencies: ∼10 times higher, 2 times higher
and the exact same frequency as the original messages have. For the transmis-
sion indicator we also used a frequency 10 times of the original. We also collected
benign traffic from the vehicle to compare it to the malicious logs.

5.2 Our anomaly detection algorithm

Our detection algorithm has the goal to decide whether a given message in the
compressed CAN traffic log belongs to an attack or not. To address this, first we
split the compressed log into separate ID files, where each file contains messages
of a given ID. These files are analyzed separately.

We calculated different features of the malicious and benign logs to find the
ones that distinguish them the most efficiently. Although, the changes of the
repetition times had a significant impact on the structure of the compressed
traffic log, the simplest and most powerful feature turned out to be the number
of messages during a constant time window.



Detection of Injection Attacks in Compressed CAN Traffic Logs 11

Number of messages per minute: In a time window of 1 minute we count the
number of messages for each ID. Thus we get a feature for each ID: the number
of messages in a minute. This will be different in a normal and an attacked
traffic log. This approach is also intuitive. If we inject additional messages of an
ID that has an approximately constant message rate per minute, the increase in
the message rate per minute will indicate an attack.

This feature proved to be reliable for attacks both with higher and lower
frequencies.

Attack detection: Based on the previously suggested feature, attacks can
be detected efficiently. As can be seen in section 5.3, this approach separates
malicious traffic logs from benign logs even visually making the decision easy.

5.3 Results

We evaluated our method on both synthetic and real life data with different
attack frequencies.

On synthetic data we used the above mentioned 100-100 normal and attacked
samples for attacks with different frequency. The histogram of the distribution
of the attacks can be seen in Figure 5 and Figure 6. They demonstrate that the
attacked traffic is efficiently distinguishable from the normal traffic even when
the attack frequency is as low as 2 times of the original.

5000 10000 15000 20000 25000 30000 35000
Number of messages per 1 min

0

20

40

60

80

100
ID 110 10x freq flooding

5-10 sec
10-15 sec
15-20 sec
20-25 sec
25-30 sec
normal

Fig. 5. The deviation of the number of messages per minute feature for 100 - 100
samples at 10x frequency (synthetic attack).



12 A. Gazdag et al.

5000 10000 15000 20000 25000 30000 35000
Number of messages per 1 min

0

20

40

60

80

100
ID 110 2x freq flooding

5-10 sec
10-15 sec
15-20 sec
20-25 sec
25-30 sec
normal

Fig. 6. The deviation of the number of messages per minute feature for 100 - 100
samples at 2x frequency (synthetic attack).

On the data from the real world attacks we performed the same calculations.
Figure 7 and Figure 8 show that our algorithm achieves the same reliable results
in the real life scenarios as well.

10000 20000 30000 40000 50000
Message numbers per min

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Attacking the velocity (ID 0016)

10x freq
2x freq
1x freq
normal

Fig. 7. Real attacks on the speed indicator. Comparison of the number of messages in
normal and attacked scenarios.



Detection of Injection Attacks in Compressed CAN Traffic Logs 13

0 2500 5000 7500 10000 12500 15000 17500 20000
Message numbers per min

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Attacking the gear shift (ID 0050)

10x freq
normal

Fig. 8. Real attacks on the transmission indicator. Comparison of the number of mes-
sages in normal and attacked scenarios.

These results show that with this approach it is possible to achieve correct
classification in every case. For the stable attacks, where a high message fre-
quency is used, the proposed method produces a reliable result with 0 false
positive and false negative rates. As the message injection rate decreases the
confidentiality is also reduced but even for attacks with 1x injection frequency
it remains high enough for a correct decision.

6 Conclusion

In this paper, we argued that cyber attacks on vehicles may cause physical acci-
dents, therefore, forensic investigations must be extended into the cyber domain.
In order to support this, CAN traffic in vehicles must be logged continuously
and stored efficiently for later analysis. Our main contribution in this paper
was a novel anomaly detection method that works on compressed CAN traffic
logs. The advantage of running anomaly detection on the compressed logs is
that less amount of data needs to be analyzed, hence, the efficiency of forensic
investigations can be increased.

Our anomaly detection algorithm is based on analyzing the average frequen-
cies of messages with given CAN IDs. The compression algorithm that we use
preserves the number of messages per unit time in an easily extractable form in
the compressed CAN log, which makes it possible to use our anomaly detection
algorithm on the compressed logs. We demonstrated that this approach works
reliably in a range of scenarios, including using data sets captured in real vehicles
and modified with synthetically generated attacks as well as data sets captured



14 A. Gazdag et al.

in real vehicles under real attacks. Our algorithm was capable to identify attacks
is both cases.

Observing the average frequencies of messages with given CAN IDs may
appear to be a simplistic approach for anomaly detection; nevertheless, it works
reliably for detecting injection attacks. In addition, many prior works suggested
that injection attacks are easy to carry out and they have noticeable effects,
hence, this type of attack is one of the most important attacks to consider.
Whether our method of analyzing the compressed logs can be adapted to other
types of attacks, where message frequencies are not changed, is an open question
and subject of our future work.

7 Acknowledgement

The work presented in this paper was partially supported from the grant GINOP-
2.1.1-15. The project has been supported by the European Union, co-financed
by the European Social Fund. EFOP-3.6.2-16-2017-00002.



Detection of Injection Attacks in Compressed CAN Traffic Logs 15

References

1. C. Miller and C. Valasek, ”Adventures in Automotive Networks and Control Units”,
IOActive Labs Research, Tech. Rep., Aug. 2013. [Online]

2. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Snachm, and S. Savage, Experimental security analysis
of a modern automobile, 2010, pp. 447462.

3. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K.
Koscher, A. Czeskis, F. Roesner, and T. Kohno, Comprehensive experimental anal-
yses of automotive attack surfaces, in Proceedings of the 20th USENIX Conference
on Security, ser. SEC11. Berkeley, CA, USA: USENIX Association, 2011.

4. A. Gazdag, L. Buttyan and Z. Szalay, ”Efficient lossless compression of CAN traffic
logs,” 2017 25th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), Split, 2017.

5. A. Taylor, N. Japkowicz and S. Leblanc, ”Frequency-based anomaly detection for
the automotive CAN bus,” 2015 World Congress on Industrial Control Systems
Security (WCICSS), London, 2015, pp. 45-49.

6. H. M. Song, H. R. Kim and H. K. Kim, ”Intrusion detection system based on the
analysis of time intervals of CAN messages for in-vehicle network” 2016 International
Conference on Information Networking (ICOIN), Kota Kinabalu, 2016, pp. 63-68.

7. C. Miller and C. Valasek, Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015

8. A. Taylor, S. Leblanc and N. Japkowicz, ”Anomaly Detection in Automobile Control
Network Data with Long Short-Term Memory Networks,” 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, 2016,
pp. 130-139.

9. E. Evenchick, ”Hopping On the CAN Bus”, Black Hat Asia, 2015
10. M. Marchetti and D. Stabili, ”Anomaly detection of CAN bus messages through

analysis of ID sequences,” 2017 IEEE Intelligent Vehicles Symposium (IV), Los
Angeles, CA, 2017, pp. 1577-1583.

11. S. N. Narayanan, S. Mittal and A. Joshi, ”OBD SecureAlert: An Anomaly Detec-
tion System for Vehicles,” 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), St. Louis, MO, 2016


