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Abstract. The Internet of Things (IoT) provides us with a vast amount
of new data day by day, however, currently, most of these are only stored
without utilizing their full potential. The attractive concept of data mar-
kets can change this situation in the near future and thus we initiate the
study of security aspects of such systems. In this work, as a first step,
we analyse the data markets based on the possible security requirements
of the different participants. We identify more than 30 possible scenarios
and connect these to the relevant areas of cryptography. Our analysis also
highlights several open problems motivating further research on certain
cryptographic primitives.
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1 Introduction

Current technological trends, as the proliferation of smart devices and the Inter-
net of Things (IoT), made the rapidly increasing amount of data a new raw
material waiting for utilization. The main barrier of this is that in most cases
the collected data is only available for the user and manufacturer of a sensor or
smart device. One possible way of exploiting the full potential of this informa-
tion is to build an ecosystem around it. This is exactly the idea of Data Markets
[5], where data brokers (DB) buy data from the owners and resell the collected
data (possibly together with computing resources) to a third party that provides
some value-added services (VAS) to its users. These services can typically help
predictions or support optimization via analysing a wide range of data.
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Our Contribution. The issue of security and privacy arises naturally whenever
data get out of the control of its owner. In this work, we investigate the possible
security issues related to data markets. Compared to a simple cloud comput-
ing scenario, where only two roles (user and cloud service provider) are present,
data markets involve parties of three type (data owner, DB, and VAS provider)
which can all trust or distrust the others. Based on the level of trust between
the parties, we identify 31 different scenarios, some of which can be handled
straightforwardly, some are closely related to different areas of cryptography,
while others motivate further research on specific problems. We found that the
two most interesting open questions are the following. Is it possible to provide
the secrecy of a computation and at the same time verify that it obeys certain
restrictions? Can an encryption scheme allow for computation on certain hid-
den data but not on others such that the admissible data can be determined in a
fine-grained manner? Our work also motivates the adjustment of existing cryp-
tographic primitives to the use-cases provided by data markets.

Related Works. While to the best of our knowledge, the concept of data mar-
kets has not been implemented yet, several pioneering projects are approaching
towards this goal. Their common property is that only limited information is
available about their design (in the form of white papers). These initiatives
include the Data Market Austria Project [3]; the pilot study of IOTA Data
Marketplace [9]; Ocean Protocol [12] that aims to connect data providers and
consumers; the decentralized marketplace of Datum [4]; and the Enigma Pro-
tocol [15] based on secure multiparty computation (MPC). Market formation
through automatic bidding [6,7] can also be considered in the context of data
markets.

2 System Model for Data Markets

The resources of a data market are provided by owners of sensors and “IoT”
devices (DO), who provide (sell) data directly to the data broker (DB) and indi-
rectly to VAS providers. In our model, DB is not decentralized but rather a single
entity, investing in infrastructure for data storage and executing computations.
Naturally, different DBs might compete with each other in the future and most
probably also with different distributed systems (improving the service quality),
but our focus is the inner working of a single, centralized marketplace (with one
DB).

DBs offer their services to different value-added service providers (VASPs)
that can utilize data in order to fulfil the various needs of end users (either
individuals or companies). It is important to note that we do not want to restrict
the scope of offered services, but from statistical analysis to the training of AI
(artificial intelligence) models, any service is included. Even if the final goal of
such ecosystems is to serve the end users, they are less important in our study
as we are interested in the security aspects of data markets. More precisely, all
the available information for an end user is a subset of the information handled
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Fig. 1. System model of the envisioned data market.

by the corresponding VASP and vice versa, any information about the end user
is exposed in the system through the VASP so for our purposes it is enough to
consider VASPs.

The imagined model of the ecosystem is depicted in Fig. 1, containing also the
rough business models of the different parties. At the same time, the economic
aspects of such system are out of the scope of this work.

3 Related Tools

In this part, we provide a brief and informal description of the concepts appearing
later in this work. These are the following.

Trusted Execution Environment (TEE) refers to an isolated processing
environment in which computations can be securely executed irrespective of
the rest of the system. In a high level, when considering information leakage,
outsourced computation that is executed in TEE (by an untrusted party) is
equivalent to local computation and thus in the rest of this work we do not
differentiate between these two cases. For more details on TEE, see [14].

Differential Privacy is a mathematical framework for the privacy protection
of data used for statistical analysis (see [11]). While in some very specific
cases it can be useful for privacy protection also in Data Markets, we will not
consider this solution because of two reasons. We do not restrict the scope
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of computable functions to statistics (i.e., individual data values may be of
interest instead of only cumulated data) and we are interested in enforcing
access control policies belonging to data, while differential privacy does not
restrict access to data.

Homomorphic Encryption (HE) enables to execute computations on
encrypted data that results in an encrypted output. This capability can be
used to make outsourced computation secure, by maintaining the secrecy
of inputs and outputs (while the applied function is public). Depending on
the supported functions, there exist additively, multiplicatively, somewhat
and fully homomorphic encryption schemes. While the latter one supports
an arbitrary number of multiplications and additions, in somewhat homo-
morphic schemes the number of computable multiplications is restricted. See
details in [1].

Functional Encryption (FE) is a generalization of traditional (either private-
or public-key) encryption schemes that integrates function evaluation into
decryption. More precisely, so-called functional secret keys can be issued for
a function f , that when used in the decryption of a ciphertext corresponding
to a value x, results in the value f(x) without leaking any more information
about x, than exposed by f(x). For details, we refer to [8].

Attribute-Based Encryption (ABE) is a subtype of FE, that realizes fine-
grained access control. Ciphertexts and secret keys are associated with access
control policies and “attributes” (or vice versa) and decryption is possible
only if the attributes satisfy the policy.

Oblivious Transfer (OT) and Private Information Retrieval (PIR) are
dealing with transmission of data between two parties, such that the receiver
does not have to reveal the data, she wants to retrieve from a dataset (PIR).
We call this OT when the receiver obtains no other information, besides the
desired data, from running the protocol. In the sequel, prime is going to
denote that the protocol is non-interactive. For more details about OT and
PIR, see [13].

Secure Multi-party Computation (MPC) allow n parties to jointly com-
pute an n variate function on their inputs, often through several rounds of
interaction, without revealing their inputs to each other. Among those cryp-
tographic primitives that aim to achieve some form of secure computation,
realizations of MPC are the closest to practical usability [10].

Obfuscation (Obf.) is a program transformation that preserves the function-
ality but alters the description and operation such that the inner workings of
the program remains hidden at the expense of some efficiency loss. In other
words, the inputs and outputs of an obfuscated program are plaintexts but
the computed function is hidden. In spite of several breakthrough results in
the past years, obfuscation is still an exotic area within cryptography with
several open questions (see [8]).

We emphasize that MPC and FHE are about to protect the input(s) of a
given public computation. However, as it is possible “to turn computation into
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data”, with the help of so-called universal circuits1, these primitives can also
be used to conceal the executed computation besides its inputs and outputs
(although its overhead is significant). In the sequel, we denote with an asterisk
if MPC or FHE is complemented with this tool.

4 Problem Domain Analysis

Our analysis is started with the investigation of the relations between the par-
ticipants of the system. After identifying their possible goals regarding security
(see also Fig. 1), we organize the emerging use-cases and identify the relevant
branches of cryptography and also pointing out open problems.

4.1 Trust and Distrust Between the Parties

The main goal of this study is to identify the different scenarios that emerge
when some of the actors in a data market does not trust all the other parties. In
order to go through all possible cases and identify already solved and still open
problems, we investigate the possible forms of trust between data owners, data
broker and VAS providers.

DO → DB If the DB is trusted by the DO, then it is straightforward to store
the data as a plaintext. In this case, access control policy enforcement can
be outsourced to the DB. On the other hand, an untrusted DB should not
store its clients’ data in the clear but in encrypted form together with the
corresponding meta-data in cleartex. Note that the latter one is necessary for
providing the data brokering service. Access control of data becomes more
challenging that can be resolved e.g., by solving the key-exchange between
DOs and VASPs.

DO → VASP While a trusted VASP may access plaintext data, access control
might still be important as most probably only smaller sets of data are sold
to the VASP and thus even in this case VASP should have only conditional
access to data. When the VASP is not even trusted by the DO, it is natural
to expect that it has no direct access to any data and it is only allowed to
get results of non-trivial computations on some specific data.

DB → DO Trusting DOs from the viewpoint of a DB is equivalent to trusting the
data source i.e. the DB assumes that the received data is not fake, its source
is the claimed sensor and the result of the measurement was not modified.
The lack of this confidence can only be remedied partly using algorithmic
measures (e.g., by checking the consistency of the data) and thus this type of
distrust is out of the scope of this work. At the same time, this problem can
be addressed e.g., using pricing based on game theoretic considerations.

1 A universal circuit can be considered as a programmable function, taking as input
a program description (that is going to be executed) and the ordinary input.
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DB → VASP As the DB is selling information to the VAS provider, pricing
should scale with the amount of provided information that can be measured
using two different metrics as well. The first is the available amount of data
for the VAS provider that can be controlled using some access control policy
for the data. Note that in this regard, the interests of the DO and the DB
coincides and thus we assume that either of them enforces a common access
policy. The second possible way of measuring the sold information is through
the scope of computable functions on the data that is available for a VASP.
One natural way of restricting the computing capabilities of the VASP is via
providing it with a restricted interface that naturally determines restrictions.
However, we are interested in a more general setting, where such limitation is
not present, especially because it leaves no room for the interests of the VAS
provider (see the next part). Accordingly, we assume that arbitrary function
descriptions are forwarded to the DB that are evaluated if they are in an
allowed function class (for which the VASP has paid). Alternatively, if the
computation of the functions is not outsourced to the DB, it should be solved
that the data, sent to the VAS provider, is only useful for the computation
of “allowed functions” and cannot be used as input for any other functions.

VASP → DO When purchasing data from DB, the VAS providers naturally rely
on the honesty of the DOs, however, the enforcement of honest behaviour
is the duty of the DB according to the system model of the data market.
Accordingly, this trust relationship is indirect and thus not investigated.

VASP → DB The business model of a VAS provider is built around the func-
tions, that are evaluated on the data, bought from the DB. This highlights
the importance of this asset and shows that VAS providers are motivated to
hide the computation logic they use even if the computation is executed by
the DB as a part of its services. In case of so-called learnable functions, that
can be reconstructed merely from input-output pairs, hiding these values is an
important pillar of keeping the function private. Moreover, the output alone
has also business value as the end user pays for this to the VAS provider.
When talking about the input data, it is important to differentiate the data
value from the meta-data. If the DB stores plaintext data, VAS providers
can only obscure the accessed data if both the accessed values and meta-data
remain hidden from the DB. When only encrypted data is available to the
DB, typically meta-data can help to feed the proper input to the function of
the VASP but hiding both information can be the goal of a deliberate VAS
provider.
Depending on which of these four assets are intended to be hidden from the
DB, 24 different scenarios can occur. For the ease of exposition, we denote
a VAS provider’s confidentiality goals with 4-tuple (F, I, I ′, O), where each
variable correspond to a binary value, 0 meaning public and 1 denoting con-
fidential. The variables represent the function to be computed (F ), its input
value(s) (I), meta-data for the input(s) (I ′) and the output (O) of the com-
putation (e.g., (1, 0, 0, 0) represents that the VASP only wants to hide the
computational logic form the DB). Some of the resulting scenarios are con-
tradictory so we ignore them in the rest of the work. These are the following.
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– If a function is public then its domain is public as well. Practically, the
function description must include the expected input that is described
with the help of the meta-data, which then cannot be hidden (ruling out
(0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1)).

– Hiding the accessed meta-data from the DB implies that the used data
values are hidden as well and accordingly (1, 0, 1, 0), (1, 0, 1, 1) are also
meaningless.

– (0, 0, 0, 1) is also contradictory as given a function and its input, the
output can be obtained so it cannot be hidden.

In case of outsourced computation, the VASP might also want to verify the
soundness of the received output. Variants of publicly verifiable computation
can help to enable this (e.g., in case of MPC [15]), however, we assume the
DB is only honest-but-curious and not malicious, especially as the DB is
motivated to provide reliable service in order to keep its customers.

4.2 On the Used Notations

Having identified the possible requirements of the different parties in the system,
we introduce a notation to refer to the possible scenarios that depend on the
fulfilled requirements. From the viewpoint of the DOs, four main scenarios, called
worlds, can be distinguished based on whether the DB and the VAS provider are
trusted or not. Each world can be further subdivided based on the trust between
DB and VAS providers. Accordingly, let SD(V )

V (F,I,I′,O) denote a scenario, which is
specified by the values of the different variables. D,V ∈ {T,U} refer to the DB
and the VAS providers and their value shows thether they are considered to be
“trusted” (T ) or “untrusted” (U) by the DO; V ∈ {0, 1} indicates whether the
DB intends to verify the functions, computed by VAS providers (1) or not(0);
and finally F, I, I ′, O ∈ {0, 1} form the 4-tuple, introduced in the previous part,
representing the goals of the VASP. When any of the above parameters are not
specified in the notation, we always mean a general scenario in which any of the
more specific sub-scenarios can occur (e.g., ST denotes all the scenarios where
the DB is Trusted).

One might miss from the description of the scenarios the specification of the
enforcer of an access policy, which can be done either by a DO or by the DB. We
find that this question is rather technology related and the effect of the options
are the same, so we do not determine this in the use-cases.

In the subsequent parts, we are going to go through the scenarios, discussing
their relevance, the related cryptographic solutions, and the open problems.

4.3 Trusted Data Broker

Our first observation is that whenever the DB is trusted (ST ), it is straightfor-
ward to delegate the enforcement of access control policies to the DB. We inves-
tigate the arising use-cases, while keeping this in mind. As a second remark, also
note that those scenarios are contradictory, where the inputs (of a function from
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Table 1. A rough summary of meaningful subscenarios of ST
U with the related concepts

and open questions.

VASP cannot have access to plaintext data
function 0 1 1 1 1
input value 0 0 0 1 1
input metadata 0 0 0 1 1
output 0 0 1 0 1

D
B

st
or

es
p
al
ai
n
te

x
ts

(0
)

No restriction on
the computed
function (0)

Outsourced
computation or

local
computation +

FE

Obf. / TEE /
MPC∗

(Obf. / TEE) +
output Enc.

(TEE + OT) or
(Obf. + OT’) or

MPC∗

(TEE + OT) or
(Obf. + OT’) +
output Enc.

Limited function
queries (1)

Straightforward
verification in
both cases

Function verification is challenging when the computed function is
hidden

a VASP) are intended to be hidden, while the meta-data of the same input is
accessible for the DB (ST

(0,1,0,0),ST
(0,1,0,1),ST

(1,1,0,0) and ST
(1,1,0,1)). The reason is

that a trusted DB stores data as plaintext and thus the meta-data of the input
directly reveal the input value.
Trusted VAS Provider (ST

T ). When DOs trust both the DB and VASPs,
the occurring problems are almost trivial to solve. ST

T (0,0,0,0) corresponds to a
scenario where the DB provides value-added services (DB = VASP) and it is
trusted by the DO so challenges do not arise. All the other use-cases can be
handled if the necessary computations are executed locally by the VASPs and
for this plaintext data is accessible. ST

T (1,0,0,1) represents exactly this case, while
in ST

T (1,1,1,0), ST
T (1,1,1,1) the application of PIR can obscure the used inputs from

the DB. ST
T (1,0,0,0) and ST

T (1,1,1,0) represents such situations where the VASP
publishes the computed results (e.g., indirectly by buying specific stocks).
Untrusted VAS Provider (ST

U ). The use-cases that can emerge in the world
of trusted DBs and untrusted VASPs are summarized in Table 1. Outsourcing
the computation to the DB simply solves ST

U(0,0,0,0) even if function verification
is required, as it is accessible to the DB. Local computation is also possible when
DB encrypts the required data using FE and provides the VASP with functional
secret keys for the required computation. In order to hide the computation logic,
either the approach of TEE can be applied or techniques for obfuscation are nec-
essary. Besides these direct solutions, the usage of MPC together with universal
functions is also viable. At the same time, hiding the function endangers its
verifiability. Indeed, the compatibility of these properties is a challenging open
problem. When further information is intended to be concealed, besides the func-
tion, OT or the encryption of the output has to be integrated with a solution
that hides the function.

4.4 Untrusted Data Broker

Moving along to the case of untrusted DB, access control to the data is not
trivial anymore. The fact that the DB has only access to ciphertexts makes
those scenarios meaningless in which the input values of the computed functions
are revealed to the DB (SU

(0,0,0,0),SU
(1,0,0,0) and SU

(1,0,0,1)).
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Table 2. A rough summary of meaningful subscenarios of SU
U with the related con-

cepts and open questions. (The computation, executed in TEE after finishing the OT
protocol, is indicated in square brackets.)

VASP cannot have access to plaintext data only to the results of computations
function 0 0 1 1 1 1
input value 1 1 1 1 1 1
input metadata 0 0 0 0 1 1
output 0 1 0 1 0 1

D
B

ow
n
s
ci
p
-

h
er

te
x
ts

(1
) No restriction on

the computed
function (0)

Function
revealing FE

HE
Function hiding

FE

Locally
computed

function hiding
FE or FHE∗

OT +
TEE[Decr-Eval]

OT + TEE[Decr-
Eval-Enc]or

FHE∗

Limited function
queries (1)

The verification of public functions
is straightforward

Using the above function hiding
FE, DO can verify functions

Open question

Trusted VAS Provider (SU
T ). According to the trust between DO and VASP,

the latter one can have access to plaintext data e.g., by using public key encryp-
tion (e.g., ABE if fine-grained access control is required). In this case, the DB
only stores and sells data but computation is executed locally by the VASPs.
Therefore all the scenarios in SU(1)

T are impossible because VASPs are allowed to
access the plaintext data preventing the control of computable functions. Local
computation also makes SU(0)

T (0,1,0,0) and SU(0)
T (0,1,0,1) unrealistic while the remain-

ing scenarios (especially SU(0)
T (1,1,0,1)) are trivially solved by the separation of DB

from the computation (in SU(0)
T (1,1,1,0),SU(0)

T (1,1,1,1) PIR can hide the accessed meta-

data from the DB). SU(0)
T (1,1,0,0) and SU(0)

T (1,1,1,0) again represents that the services
of VASPs reveal their functions output to the public.
Untrusted VAS Provider (SU

U ). This is the most restricted scenario, where
DOs are the only parties having access to (their own) plaintext data values.
For a concise summary, see Table 2. SU

U(0,1,0,0) and SU
U(0,1,0,1) exactly match the

problems that are considered by FE and (F)HE respectively and as the functions
of VASPs are not concealed even their verification is straightforward. When the
function is intended to kept secret as well (SU

U(1,1,0,0) and SU
U(1,1,0,1)), a special

form of FE, called function hiding FE, can be invoked either with decryption
by DB or local decryption (actually computation) by the VASP after having
received functional keys (from DO) and ciphertexts (from DB). However, in these
cases function verification is possible, unfortunately, the verifier is not the DB but
the issuer of functional keys. SU(0)

U(1,1,0,1) can also be handled using FHE∗ (i.e.,
homomorphically evaluating a universal function). The strictest requirements
can be satisfied by relying on TEE and OT. After running the OT protocol
between DB and the TEE the resulting ciphertext is decrypted, the function
can be evaluated on it and either the output is returned (in SU(0)

U(1,1,1,0)) or its

encrypted form (in SU(0)
U(1,1,1,1)).



66 M. Horváth and L. Buttyán

These use-cases highlight that the integration of computation on hidden data
and fine-grained access control is an important challenge as in complex scenarios
like these the two goals can arise together. While there are attempts to realize
Attribute-Based FHE [2], to the best of our knowledge the integration of FE (for
secure function evaluation) and ABE is an entirely open problem.
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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