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Abstract. Private Function Evaluation (PFE) enables two parties to
jointly execute a computation such that one of them provides the input
while the other chooses the function to compute. According to the tradi-
tional security requirements, a PFE protocol should leak no more infor-
mation, neither about the function nor the input, than what is revealed
by the output of the computation. Existing PFE protocols inherently re-
strict the scope of computable functions to a certain function class with
given output size, thus ruling out the direct evaluation of such problem-
atic functions as the identity map, which would entirely undermine the
input privacy requirement. We observe that when not only the input x
is confidential but certain partial information g(x) of it as well, standard
PFE fails to provide meaningful input privacy if g and the function f to
be computed fall into the same function class.

Our work investigates the question whether it is possible to achieve a rea-
sonable level of input and function privacy simultaneously even in the
above cases. We propose the notion of Controlled PFE (CPFE) with dif-
ferent flavours of security and answer the question affirmatively by show-
ing simple, generic realizations of the new notions. Our main construc-
tion, based on functional encryption (FE), also enjoys strong reusability
properties enabling, e.g. fast computation of the same function on differ-
ent inputs. To demonstrate the applicability of our approach, we show a
concrete instantiation of the FE-based protocol for inner product com-
putation that enables secure statistical analysis (and more) under the
standard Decisional Diffie–Hellman assumption.
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1 Introduction

Secure two-party computation (2PC) a.k.a. secure function evaluation (SFE)
protocols enable two parties, Alice and Bob, to compute a function of their
choice on their private inputs without disclosing their secrets to each other or
anyone else (see Fig. 1a). In real life, however, the participants not necessarily
have interchangeable roles. We call private function evaluation (PFE) a protocol
if one party can alone choose the function to evaluate, while the other provides
the input to it (see Fig. 1b) while both of them intends to hide their contribution.
PFE can be realized by invoking 2PC after the function was turned into data.
A universal function [25] is a “programmable function” that can implement any
computation up to a given complexity. It takes two inputs, the description of the
function to be computed and the input to it. By evaluating a public universal
function using 2PC, all feasibility results extend from 2PC to PFE. Improving
efficiency turns out to be more challenging. Indeed, universal functions cause
significant – for complex computations even prohibitive – overhead, and the
elimination of this limitation was the primary focus of PFE research [20,18].

In this work, we initiate the study of a security issue that – to the best of
our knowledge – received no attention earlier. More concretely, we focus on the
opportunities of the input provider to control the information leakage of her
input. As PFE guarantees Bob that his function is hidden from Alice, he can
learn some information about the input of Alice such that it remains hidden
what was exactly revealed. Disclosing the entire input by evaluating the identity
function is typically ruled out by the restriction that the computable function
class has shorter output length than input length. At the same time, the following
question arises: is it really possible to determine the computable function class
so that no function is included which could reveal sensitive information about
the input? We argue that most often exceptions occur in every function class,
so measures are required to also protect such partial information besides the
protection of the input as a whole. As intentional partial information recovery
does not cause anomalies when only the function provider, Bob receives the
function’s output, later on we consider this scenario.

For a simple and illustrative example, let us recall one of the most popular
motivating applications for PFE. In privacy-preserving credit checking [22, §7],
Alice feeds her private data to a Boolean function of her bank (or another ser-
vice provider) that decides whether she is eligible for credit or not. Using PFE
for such computation allows Alice to keep her data secret and the bank to hide
its crediting policy. Notice that the function provider can extract any binary
information about the input and use it, e.g. to discriminate clients. The leaked
partial information can be, e.g. gender or the actual value of any indicator vari-
able about the data that should not be necessary to reveal for credit checking.
Our goal is to enable Alice to rule out the leakage of specific sensitive information
in PFE without exposing what partial information she wants to hide.
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Fig. 1: Comparison of the ideal functionality of different concepts for secure func-
tion evaluation, realized with the help of a trusted third party (TTP). The key
difference lies in which information Alice and Bob can or cannot have access to.

1.1 Our Contributions

Our contributions can be summarized as follows.

– We initiate the study of partial information protection in the context of
private function evaluation.

– To take the first step, we put forward the notion of Controlled PFE (CPFE)
and formally define its security (see Fig. 1c for its ideal functionality). We
also devise a relaxed definition, called rCPFE (see Fig. 1d) that guarantees
weaker (but still reasonable) k-anonymity style function privacy leading to
a trade-off between security and efficiency.

– Then we show conceptually simple, generic realizations of both CPFE and
rCPFE. In the latter case, we utilize the modified function privacy guaran-
tee (through using functional encryption) to enable the reusability of the
protocol messages in case of multiple function evaluations. As a result, in
our rCPFE when evaluating the same function(s) on multiple, say d inputs,
the communication and online computation overhead only increases with
an additive factor proportional to d instead of a multiplicative factor as in
ordinary PFE.

– To demonstrate the practicality of the rCPFE approach, we instantiate our
generic protocol for the inner product functionality enabling secure statistical
analysis in a controlled manner under the standard Decisional Diffie–Hellman
(DDH) assumption. Our proof of concept implementation shows that the
reusability property indeed results in a significant performance improvement
over the state of the art secure inner product evaluation method [9].

1.2 Applications

We believe that in most PFE applications, the evaluated function class also
permits the leakage of potentially sensitive partial information about the input as
our above example demonstrates this even for very restricted Boolean functions.
To motivate our inner product rCPFE, we mention two of its possible application
scenarios.



Logistic Regression Evaluation. The linear part of logistic regression com-
putation is an inner product of the input and weight vectors. Our inner
product rCPFE can help to rule out weight vectors that are unlikely to be-
long to a model but are base vectors that could reveal a sensitive input vector
element.

Location Privacy. Let us assume that a “data broker” (DB) periodically col-
lects location-based information in vector form, where vector elements corre-
spond to information related to specific positions. Such data can be impor-
tant for service providers (SP), offering location-based services, without the
proper infrastructure to collect the necessary data. During their interaction
that can be an inner product computation,1 the SP should hide the loca-
tion of its users, while the DB may want to protect the exact information in
specific locations or to adjust higher price if specific measurements are used.
These can be achieved by having control over the possible queries of SP.

1.3 Related Work

Some PFE variants share ideas with our concepts. Semi-private function evalu-
ation (semi-PFE) [22,17] for instance, also relaxes the function privacy require-
ment of PFE by revealing the topology of the function being evaluated. While
this relaxation also leads to a useful trade-off between function privacy and ef-
ficiency, unfortunately, the available extra information about the function does
not necessarily allow Alice to rule out the evaluation of functions that are against
her interest.

Selective private function evaluation (SPFE) [7] deals with a problem that
is orthogonal to the one considered in this paper. Namely, SPFE also aims to
conceal information that is leaked in PFE. However, instead of protecting Alice
(the data owner), it intends to increase the security of Bob by hiding from Alice
the location of the function’s input in her database via using private information
retrieval (PIR).

Leaving the field of PFE and comparing our work to related problems in
secure computation, we find that hiding the computed function raises similar
issues in other contexts. [4] put forth the notion of verifiable obfuscation that
is motivated by the natural fear for executing unknown programs. The goal
here is similar than in our setting: some assurance is required that the hidden
functionality cannot be arbitrary. However, the fundamental difference between
our CPFE and the verifiable obfuscation and verifiable FE of [4] is that while the
latter ones enforce correctness when an obfuscator or authority may be dishonest,
CPFE tries to disable semi-honest parties to evaluate specific functions (i.e. to
handle exceptions in PFE).

Our rCPFE is built upon functional encryption (FE) in a black-box manner.
This generalization of traditional encryption was first formalized by [6]. While

1 E.g. multiplying the data vector with a position vector (that is non-zero in all posi-
tions representing locations close to the user – possibly containing weights depending
on the distance – and zero otherwise) can give useful information.



The functionality is parametrized by two integers k < n, and two parties: a sender S
and a receiver R.

Functionality:
On input m1, . . . ,mn messages from S and an index set {i1, . . . , ik} ⊂ [n] from R
– S obtains no output,
– R receives mi1 , . . . ,mik but nothing else.

Fig. 2: Ideal functionality FOTn
k

of k out of n OT.

general-purpose FE candidates [12,13] currently rely on untested assumptions
like the existence of indistinguishability obfuscation or multilinear maps, our
application does not require such heavy hammers of cryptography (see details in
§2.2). In the context of FE, [21] raised the question of controllability of function
evaluation. The essential difference, compared to our goals, is that they want
to limit repeated evaluations of the same function2 that they solve with the
involvement of a third party.

Finally, we sum up the state of the art of private inner product evaluation.
The provably secure solutions are built either on partially homomorphic encryp-
tion schemes [14,10] or 2PC protocols [9] but public-key inner product FE [1]
is also capable of the same task. At the same time, several ad-hoc protocols
achieve better performance in exchange for some information leakage (see, e.g.
[26] and the references therein), but these constructions lack any formal security
argument.

2 Preliminaries

In this section, we briefly summarize the relevant background for the rest of the
paper. We will always assume that the participants of the considered protocols
are semi-honest, i.e. while following the protocol honestly, they try to recover as
much information from the interactions as they can. We also use the OT-hybrid
model that assumes that the parties have access to an ideal process that securely
realizes oblivious transfer, which we discuss in more detail in §2.1.

2.1 Oblivious Transfer

Oblivious transfer (OT) is one of the most fundamental primitives in cryptog-
raphy and a cornerstone of secure computation. It enables transferring data
between two parties, the sender (S) and the receiver (R, a.k.a. chooser), in a
way that protects both of them. S can be sure that R only obtains a subset
of the sent messages, while R is assured that S does not know which messages

2 In FE schemes, the control over the computable functions is in the hand of the
master secret key holder, so this is not an issue unlike in PFE.



he selected to reveal. In Fig. 2 the ideal functionality of k out of n OT [8] is
represented that we are also going to rely on.

While being a public-key primitive, so-called OT-extension protocols enable
rather efficient OT evaluation. To do so, the participants first pre-compute a lim-
ited number of “base-OTs” with certain inputs that are independent of their real
inputs. Then using the obtained values, they can evaluate a much larger number
of OTs by executing more efficient symmetric-key operations only. This kind of
efficiency improvement automatically applies to our protocols after substituting
plain OT, with OT-extension with the same functionality [19,23].

2.2 Functional Encryption

As we already introduced, FE is a generalized encryption scheme that enables
certain computations on hidden data for authorized parties. Both public- and
secret-key variants are known, but here we limit ourselves to the secret-key
setting that suffices for our purposes. An sk-FE scheme consists of the following
four algorithms.

FE.Setup(λ)→ (mskFE, ppFE) Upon receiving a security parameter λ it produces
the public system parameters ppFE and the master secret key mskFE.

FE.Enc(mskFE, x)→ ct The encryption algorithm takes the master secret key
mskFE and a message x and outputs a ciphertext ct.

FE.KeyGen(mskFE, f)→ fskf The key generation algorithm can be used to gen-
erate a functional secret key fskf for a function f with the help of the mskFE.

FE.Dec(ct, fskf)→ y Having a functional secret key fskf (for function f) and a
ciphertext ct (corresponding to x), the decryption outputs the value y.

The correctness of FE requires that if fskf and ct were indeed generated with
the corresponding algorithms using inputs f and x respectively, then y = f(x)
must hold. Regarding security, in this work we are going to use the non-adaptive
simulation-based security definition of FE [15], which we recall in Appendix A.
We note that while the SIM security of FE is impossible to realize in general [6],
for several restricted – yet important – cases it is still achievable, e.g. when the
number of functional keys are a priori bounded [15], or when the computable
function class is restricted [2]. As our applications also use these restrictions,
known FE impossibility results do not affect the way we use FE.

3 General Approaches for Securing Partial Input
Information in PFE

In this part, we introduce the notion of controlled PFE and in §3.1 formally
define its security in different flavours. Next, in §3.2–3.3, we propose two general
protocols satisfying these security requirements.



Parameters: participants P1, P2, a class F = {f : X → Y} of deterministic functions
[and an integer κ > k]

Functionality:
On inputs x1, . . . , xd ∈ X and FA ⊂ F from P1; and FB = {f1, . . . , fk} ⊂ F from P2

– P1 receives no output, [or P1 receives FR s.t. FB ⊂ FR ⊂ F and |FR| = κ]
– P2 obtains {y′i,j = f ′j(xi)}i∈[d],j∈[k] ⊂ Y ∪ {⊥} for

f ′j(xi) =

{
fj(xi) if fj /∈ FA
⊥ otherwise.

Fig. 3: Ideal functionalities for FCPFE and FrCPFE (see the extensions in brack-
ets) formulated generally for multiple inputs and multiple functions.

3.1 Definitional Framework

Our first security definition for controlled PFE captures the intuitive goal of
extending the PFE functionality with a blind function verification step by P1 to
prevent unwanted information leakage. See the corresponding ideal functionality
FCPFE in Fig. 3 that we call controlled PFE, and the security definition below.
For the ease of exposition, later on we denote the inputs of the participants as
inp = ({xi}i∈[d],FA, {fj}j∈[k]) with the corresponding parameters.

Definition 1 (SIM security of CPFE wrt. semi-honest adversaries).
Let Π denote a Controlled PFE (CPFE) protocol for a function class F with
functionality FCPFE (according to Fig. 3). We say that Π achieves SIM security
against semi-honest adversaries, if the following criteria hold.

– Correctness: the output computed by Π is the required output, i.e.

Pr[outputΠ(1λ, inp) 6= FCPFE(inp)] ≤ negl(λ).

– Function Privacy: there exist a PPT simulator SP1
, s.t.

{SP1
(1λ, {xi}i∈[d],FA)}λ,xi,FA

c≡ {viewΠP1
(1λ, inp)}λ,xi,fj ,FA

.

– Data Privacy: there exist a PPT simulator SP2 , s.t.

{SP2
(1λ, {fj}j∈[k], {y′i,j}i∈[d],j∈[k]}λ,fj

c≡ {viewΠP2
(1λ, inp)}λ,xi,fj ,FA

where inp = ({xi}i∈[d],FA, {fj}j∈[k]), fj ∈ F ,FA ⊂ F , xi ∈ X , y′i,j ∈ Y ∪ {⊥},
and λ ∈ N.

We also propose a relaxation of Def. 1, which on the one hand gives up per-
fect function privacy but on the other, allows us to construct efficient protocols
while still maintaining a k-anonymity style guarantee for function privacy. As
SIM security alone cannot measure how much information is leaked by a set
of functions, we formulate an additional requirement to precisely characterise
function privacy.



Definition 2 (SIM security of relaxed CPFE wrt. semi-honest adver-
saries). Let Π denote a relaxed CPFE (rCPFE) protocol for a function class F
with functionality FrCPFE (according to Fig. 3). We say that Π achieves SIM
security against semi-honest adversaries, if the following criteria hold.

– Correctness: the output computed by Π is the required output, i.e.

Pr[outputΠ(λ, κ, inp) 6= FrCPFE(κ, inp)] ≤ negl(λ).

– Function Privacy: is defined in two flavours:

• κ-relaxed function privacy holds, if ∃ SP1
, a PPT simulator, s.t.

{SP1
(1λ, κ, {xi}i∈[d],FA)}λ,xi,FA

c≡ {viewΠP1
(1λ, κ, inp)}λ,xi,fj ,FA

.

• Strong κ-relaxed function privacy holds if besides the existence of the
above SP1

, it also holds that for any PPT A:∣∣∣∣Pr[A(aux,FR) = f ∈ FB ]− k

κ

∣∣∣∣ ≤ negl(λ)

where aux ∈ {0, 1}∗ denotes some a priori known auxiliary information
about FB.

– Data Privacy: there exist a PPT simulator SP2
, s.t.

{SP2
(λ, κ, {fj}j∈[k], y′i,j}λ,fj

c≡ {viewΠP2
(λ, κ, inp)}λ,xi,fj ,FA

where inp = ({xi}i∈[d],FA, {fj}j∈[k]), fj ∈ F ,FA ⊂ F , xi ∈ X , y′i,j ∈ Y ∪ {⊥},
and λ, κ ∈ N.

3.2 Universal Circuit-based CPFE

The natural approach for realizing CPFE comes from the traditional way of
combining universal circuits and SFE to obtain PFE. Fig. 4 shows how the
same idea with conditional evaluation leads to CPFE in the single input, single
function setting. The following theorem is a straightforward consequence of the
security of SFE.

Theorem 1. The CPFE protocol of Fig. 4 is secure according to Def. 1, if the
used SFE protocol is SIM secure in the semi-honest model.

The main drawback of this approach is that when extending the protocol to
handle multiple inputs or functions, its complexity will multiplicatively depend
on the number of inputs or functions because of the single-use nature of 2PC.



Protocol ΠCPFE
F

Parameters: λ parametrizing security, a function class F = {f : X → Y}, and a
universal circuit UC for the function class F
Inputs:
– P1: x,FA ⊂ F
– P2: f ∈ F

Protocol:
Using a secure two-party computation protocol, P1 and P2 executes the following com-
putation on their inputs:
– If f ∈ FA, return ⊥ to both P1 and P2.
– Otherwise compute the universal circuit UC(f, x) = f(x) ∈ Y outputting ⊥ to P1

and f(x) to P2.

Fig. 4: General 2PC-based CPFE

3.3 Reusable Relaxed CPFE from FE

We observe that the notion of rCPFE not only allows the input provider to verify
the functions to be evaluated but also opens the door for making parts of the
protocol messages reusable multiple times, thus leading to significant efficiency
improvements.

A naive first attempt to realize rCPFE is to execute the computation on the
side of P1. Upon receiving a κ function descriptions (including both the intended
and dummy functions) P1 can easily verify the request and evaluate the allowed
ones on her input. The results then can be shared with P2, using an OT scheme
achieving both the required data and function privacy level. Unfortunately, the
κ function evaluations lead to scalability issues. The subsequent natural idea
is to shift the task of function evaluation to P2, to eliminate the unnecessary
computations and to hide the output from P1 entirely. Since at this point P1

has both the inputs and the functions to evaluate, the task resembles secure
outsourcing of computation where function evaluation must be under the strict
control of P1. These observations lead us to the usage of FE and the protocol
in Fig. 5 in which both ciphertext and functional keys can be reused in multiple
computations. When instantiated with the FE scheme of [15], ΠrCPFE

F can be
used for all polynomial sized functions in theory (in practice verifying the circuits
would be a bottleneck).

Theorem 2. The protocol of Fig. 5 is SIM secure according to Def. 2 achieving
κ-relaxed function privacy for k function queries by P2, if the underlying FE
scheme is k-query non-adaptive SIM secure (k-NA-SIM) for a single message
and the used OT protocol is SIM secure against semi-honest adversaries.

The proof of the theorem is postponed to Appendix B.



Protocol ΠrCPFE
F

Parameters: κ, λ parametrizing security and function class F = {f : X → Y}
Inputs:
– P1: x1, . . . , xd ∈ X ,FA ⊂ F
– P2: FB = {f1, . . . , fk} ⊂ F

Protocol:
Online Phase

Step I. To initiate the evaluation of functions in FB , P2

(1) samples κ− k functions randomly: {fi ←$F}k<i≤κ,
(2) takes a random permutation on κ elements to set FR := (f̂1, . . . , f̂κ), where

f̂i = fσ−1(i) so that each fi ends up at position σ(i) in the sequence,

(3) finally, sends3FR to P1.
Step II. Upon receiving a function request FR, P1

(1) samples (mskFE, ppFE)←$FE.Setup(λ),
(2) encrypts the input data: ctj ←$FE.Enc(ppFE,mskFE, xj) for all j ∈ [d],
(3) determines the index set of allowed functions I := {i | f̂i /∈ FA},
(4) generate functional keys fskf̂i ←$FE.KeyGen(ppFE,mskFE, f̂i) for all i ∈ I.
(5) finally, sends ppFE and {ctj}j∈[d] to P2.

Step III. P1 and P2 invoke the FOTn
k

-functionality:
(1) P1 act as sender with κ messages as input: mi = fskf̂i for i ∈ I and mi = ⊥

for i ∈ [κ] \ I.
(2) P2 act as receiver with input (σ(1), . . . , σ(k))
(3) P2 receives mσ(1), . . . ,mσ(k) where mσ(i) = fskfi or mσ(i) = ⊥ if it was not an

allowed function (thus implicitly also obtaining the index set I ∩ [k]).

Offline Phase

P2 can evaluate the allowed functions from FB on all input of P1 by running
FE.Dec(fskfi , ctj) = fi(xj) for all i ∈ I ∩ [k].

Fig. 5: General rCPFE construction.

Corollary 1. The protocol of Fig. 5 also achieves strong κ-relaxed function
privacy if in (1) of Step I., all fi are sampled from the same distribution as the
elements of FB and aux = ⊥.

4 Concrete Instantiation for Inner Products

To demonstrate the practicality of our approach, we instantiate our generic
rCPFE protocol (Fig. 5) using the k-NA-SIM secure FE scheme of [2] for the

3 Depending on F and the sampling of the dummy functions, communication cost
of transferring the function descriptions can be reduced. In [16] we describe such
optimizations for the inner product function class.



inner product functionality and the semi-honest 1 out of κ OT protocol of [24].
Theorem 2 and the assumptions of [2,24] directly imply the following theorem.

Theorem 3. There is a SIM secure rCPFE protocol (according to Def. 2) for
inner product computation, achieving κ-relaxed function privacy, if the DDH
assumption holds.

Corollary 2. The inner product rCPFE protocol derived from ΠrCPFE
F (on Fig.

5) also achieves strong κ-relaxed function privacy (as defined in Def. 2) if aux =
⊥ and the dummy function vectors are chosen from the same distribution as the
real ones.

For the detailed description of the inner product rCPFE (or IP-rCPFE for short)
we refer to the full version of this paper [16].

4.1 Performance and Possible Optimizations

For our IP-CPFE protocol, we prepared a proof of concept implementation using
the Charm framework [3]. To evaluate its performance in two scenarios, we com-
pared its running times and communication costs with that of the state of the
art secure arithmetic inner product computation method of the ABY framework
[9]. For our experiments we used a commodity laptop with a 2.60GHz Intel R©

CoreTM i7-6700HQ CPU and 4GB of RAM.

Simulating regression model evaluation. In the first use-case, we do not assume
that the vectors have a special structure. The vectors to be multiplied can corre-
spond to data and weight vectors of a binary regression model, in which case it
is likely that the same model (weight vector) is evaluated over multiple inputs.
Fig. 6a and 6d depict running times and overall communication costs respec-
tively depending on the number of inputs to the same model. Fig. 6c and 6f
show the cost of the dummy queries. In the same setting, our experiments show
that without optimizations4 IP-rCPFE reaches the running time of ABY for
κ ≈ 6200. For this scenario, we also propose a method (denoted as rCPFE opt)
to pre-compute the dummy function queries of Step I. thus reducing both the
online communication and computation costs. The key insight of this is that
sending a value together with dummy values is essentially the same as hiding
the value with a one time pad (OTP) and attaching the OTP key together with
dummy keys. The gain comes from the fact that the OTP keys can be computed
and sent beforehand, moreover it is enough to transmit the used seeds for a
pseudo-random generator instead of the entire keys (see details in [16]). Security
is not affected as long as aux = ⊥.

4 We note that while our implementation is only a proof of concept without any code
level optimization, ABY has a very efficient and parallelizable implementation.



(a) `=100, k=1, κ=1000 (b) `=1000, d=10, κ=100 (c) `=1000, d=100, k=1

(d) `=100, k=1, κ=1000 (e) `=1000, d=10, κ=100 (f) `=1000, d=100, k=1

Fig. 6: Comparisons of the overall running times (6a–6c) and communication
costs (6d–6f) of our rCPFE protocols with the ABY framework [9] and the naive
OT-based approach for inner product computation (` denotes vector dimension,
d and k are the number of input and “function” vectors, while κ is the number
of dummy vectors).

Sparse vector products for location privacy. The location privacy scenario of §1.2
implies the usage of sparse query vectors. Fig. 6b and 6e show how the number of
queries (k) affects running time and message sizes respectively, when roughly 5%
of the vector elements are non-zero. We note that as queries are related to real-
time user requests, batching these requests, as done in Step I. of the protocol,
can be unrealistic when data vectors are not changing in real time but, e.g.
periodically. Because of this, in our implementation, we allowed P2 to repeat Step
I. for a single function and P1 to answer the queries independently of encrypting
the data.5 While sparsity disables the above optimization, after masking the
places of non-zero elements, the above idea can be extended for sparse vectors
as long as other structural properties are not known about the vector in form
of auxiliary information. For more details on the optimized variants, we refer to
[16].

5 It means that (3)–(4) of Step II., and Step III. are repeated until the input data
changes at the end of the period.



5 Conclusion and Open Directions

In this work, we attempted to draw attention to the problem of possibly sen-
sitive partial information leakage in the context of private function evaluation.
We proposed a definitional framework for protocols that aim to prevent such
leakage and showed both generic and concrete protocols to solve the problem.
The main advantage of our FE-based protocol is that it turns the privacy sac-
rifice required by controllability into performance improvement whenever more
function evaluations are necessary.

Our work also leaves open several problems for future work. For instance, it
would be important to investigate the effects of having different types of auxil-
iary information about the evaluated functions. Transmission and verification of
dummy functions can be serious bottlenecks in our rCPFE in case of complex
functions, making further efficiency improvements desirable. A first step towards
this could be to find a way for restricting the set of forbidden functions – as most
often very simple functions are the only undesired ones. Finally, looking for dif-
ferent trade-offs between function privacy and efficiency can also be interesting
direction for future work.
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16. Horváth, M., Buttyán, L., Székely, G., Neubrandt, D.: There is always an exception:
Controlling partial information leakage in secure computation (full version). Cryp-
tology ePrint Archive, Report 2019/ (2019), https://eprint.iacr.org/2019/

17. Kennedy, W.S., Kolesnikov, V., Wilfong, G.T.: Overlaying conditional circuit
clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryp-
tology - ASIACRYPT 2017, Proceedings, Part II. LNCS, vol. 10625, pp. 499–528.
Springer (2017). https://doi.org/10.1007/978-3-319-70697-9 18
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Appendix

A Simulation Security of Functional Encryption

For completeness we recall the simulation security of FE as defined in [15].

Definition 3 (q-NA-SIM and q-AD-SIM Security of FE). Let FE be a
functional encryption scheme for a circuit family C = {CK : XK → YK}K∈N. For
every PPT adversary A = (A1,A2) and a PPT simulator S = (S1, S2) consider
the following two experiments:
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ExprealFE,A(λ)

1 : (ppFE,mskFE ←$FE.Setup(λ)

2 : (x, st)←$AFE.KeyGen(mskFE,·)
1 (ppFE)

3 : ct←$FE.Enc(ppFE, x)

4 : β←$AO(mskFE,·)
2 (ppFE, ct, st)

5 : Output(β, x)

ExpidealFE,S(λ)

1 : (ppFE,mskFE)←$FE.Setup(λ)

2 : (x, st)←$AFE.KeyGen(mskFE,·)
1 (pp)

− Let (C1, . . . , Cq) be A′1s oracle queries

− Let fskfi be the oracle reply to Ci
− Let V := {yi = Ci(x), Ci, fskfi}.

3 : (ct, st′)←$S1(ppFE,V, λ)

4 : β←$AO
′(mskFE,st

′,·)
2 (ppFE, ct, st)

5 : Output(β, x)

We distinguish between two case of the above experiment:

1. The adaptive case, where:
– the oracle O(mskFE, ·) = FE.KeyGen(mskFE, ·) and
– the oracle O′(mskFE, st

′, ·) is the second stage of the simulator, namely

S
Ux(·)
2 (mskFE, st

′, ·) where Ux(C) = C(c) for any C ∈ CK.
The simulator algorithm S2 is stateful in that after each invocation, it updates
the state st’ which is carried over to its next invocation. We call a simulator
algorithm S = (S1, S2) admissible if, on each input C, S2 just makes a single
query to its oracle Ux(·) on C itself,
The functional encryption scheme FE is then said to be q-query-simulation-
secure for one message against adaptive adversaries (q-AD-SIM secure for
short) if there is an admissible PPT simulator S = (S1, S2) such that for
every ppt adversary A = (A1, A2) that makes at most q queries, the following
two distributions are computationally indistinguishable:{

ExprealFE,A(λ)
}
K∈N

c
≈
{
ExpidealFE,S(λ)

}
K∈N

2. The non-adaptive case, where the oracles O(mskFE , st, ·) are both the ”empty
oracles” that return nothing: the functional encryption scheme FE is then
said to be q-query-simulation-secure for one message against non-adaptive
adversaries (q-NA-SIM secure, for short) if there is a PPT simulator S =
(S1,⊥) such that for every PPT adversary A = (A1, A2) that makes at most
q queries, the two distributions above are computationally indistinguishable.

As shown by [15, Theorem A.1.], in the non-adaptive setting (that we also
use), q-NA-SIM security for one message is equivalent to q-NA-SIM security for
many messages.

B Proof of Theorem 2

We prove Theorem 2, by showing that the protocol of Fig. 5 fulfils the require-
ments of Definition 2 with the assumption that the underlying FE and OT are
SIM secure against semi-honest adversaries. As correctness directly follows from



the correctness of the underlying FE and OT, we turn our attention towards
the security requirements. We argue input and weak relaxed function privacy by
showing that the view of both parties can be simulated (without having access
to the inputs of the other party) using the simulators guaranteed by the SIM
security of FE and OT.

Corrupted P1: Weak Relaxed Function Privacy. Besides its input and output,
the view of P1 consists of the received OT messages and the function query
FR. Simulation becomes trivial because of the fact that the output of P1 also
contains FR. Thus SP1((x1, . . . , xd),FR) can return FR and the output of the
sender’s simulator SSOT guaranteed by the SIM security of OT. The simulated
view is clearly indistinguishable from the real one.

Corrupted P2: Input privacy. The following simulator SP2 simulates the view of a
corrupt P2, that consists of its input (f1, . . . , fk), output {y′∗i,j = f ′i(xj)}i∈[k],j∈[d],
the used randomness and the incoming messages. SP2

first determines the index
set I∗ = {i | ∃j : y′i,j 6= ⊥} ⊆ [k]. Next, it sets up the parameters of the ideal ex-
periment according to Def. 3. To do so, it samples (mskFE

∗, ppFE
∗)←$FE.Setup(λ)

and then for all i ∈ I∗ generates keys fsk∗fi ←$FE.KeyGen(ppFE
∗,mskFE

∗, fi). For
the simulation of the FE ciphertexts (corresponding to unknown messages), we
can use the FE simulator SFE for many messages (implied by one-message q-
NA-SIM security [15]). Thus SFE(ppFE

∗, {yi,j = fi(xj), fi, fsk
∗
fi}i∈I∗,j∈[d], λ) =

(ct∗1, . . . , ct
∗
d) can be appended to the simulated view together with ppFE

∗. The
incoming messages of Step III. are simulated using the OT simulator SROT for
the receiver. Finally the output of SROT (λ, {fsk∗fi}i∈I∗ ∪{⊥i}i∈[k]\I∗) is appended
to the simulated view.

Now we show the indistinguishability of the real and simulated views. As
the inputs and outputs are the same in both cases, we have to compare the
randomness and the incoming messages. First notice that ppFE and ppFE

∗ are
generated with different random choices. At the same time, these cannot be told
apart as otherwise the choices were not random. The rest of the incoming mes-
sages depend on these parameters. Observe that I∗ = I ∩ [k]. The security of
the used FE scheme guarantees that (ct∗1, . . . , ct

∗
d) even together with functional

keys {fsk∗fi}i∈I∗ are indistinguishable from (ct1, . . . , ctd) with {fskfi}i∈I∩[k]. Fi-

nally, the security of the OT simulation guarantees that (msgOT
1 , . . . ,msgOT

κ )
and (msgOT

1
∗
, . . . ,msgOT

κ
∗
) are indistinguishable. This also implies that func-

tional keys for the same functions (with respect to either ppFE or ppFE
∗) can

be obtained both from the real and simulated OT messages. In other words,
FE ciphertexts and functional keys are consistent in both cases (i.e. they allow
one to obtain the same decryption outputs) due to the correctness of the FE
simulation, which concludes our proof. ut
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