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Abstract—In this paper, we present Tresorium, a cryptographic
file system designed for cloud based data storage. In Tresorium,
files are encrypted before they are uploaded to the cloud storage
providers, therefore, not even the cloud storage providers can
access the users’ data. Yet, Tresorium allows the sharing files
within a group of users by using an underlying group key
agreement protocol. A key feature of Tresorium is that it handles
changes in group membership and modification of files in an
extremely efficient manner, thanks to the usage of so called key-
lock-boxes and a lazy re-encryption approach. Finally, Tresorium
supports an ACL-like abstraction, so it is easy to use. We describe
Tresorium, and analyze its security and performance. We also
present some simulation results that clearly show the efficiency
of the proposed system.

Index Terms—Untrusted Cloud, Dynamic Groups, Crypto-
graphic File System, Collaborative work

I. INTRODUCTION

The tendency of modern companies and organizations is that

they outsource their storage systems into the cloud. Storing

data in the cloud has various advantages: cloud based storage

can be distributed an redundant, providing better dependability,

and it is much cheaper for a company to outsource its data

than to build and maintain its own data warehouse. In addition,

a cloud storage provider solves the backup and the off-site

backup. Finally, the costs of a cloud are easily calculable –

which is crucial for every company.

The big question is trusworthiness and privacy: can a

company trust any storage cloud provider? Legal questions

are also important: even if a bank trusted a storage cloud

provider, could this bank upload customers’ data to the cloud

legally? The problem is that a cloud storage provider also has

access to the stored data, because usually the authentication

and authorization is also done by this provider – think about

e.g. Google Storage, a user has to log in by providing a user

name and a password in order to access his or her files.

After the authentication, user authorization is based on the

information in an Access Control List (ACL) – a simple list

of users and their permissions. The problem with ACL based

protection is that it needs an entity, which enforces the access

control policy defined by the ACL by blocking the access

to a non-permitted file. This is a simple and fast approach,

however, problematic. Firstly, if the cloud storage provider is

compromised, an attacker can access every file in contempt

of the ACL. Secondly, the administrators of the cloud storage

provider can override the ACL settings, so they have access to

the users’ private files. Although ACL based systems may be

implemented in more complex and secure way, the basic idea

is still the same. To overcome these problems, authorization

should not be done on the storage provider side. This leads us

to the idea of cryptographic network file systems.

In cryptographic file systems there is no problem with an

outside attacker or the curiosity of the administrators, because

every file is encrypted before being uploaded to the storage

cloud. On the other hand, because of encryption, sharing files

becomes problematic.

In this paper we present Tresorium, a cryptographic file

system that builds on existing traditional storage clouds. We

designed Tresorium in such a way that it is extremely flexible,

supports dinamic groups and handles changes very efficiently.

This means that it is possible to define traditional permissions

on the file system in a simple way, so that it is easy to

understand and implement.

Security is achieved by the encryption of files before up-

loading them to the cloud (this solves the problem of limited

trust in the operator). Simplicity is achieved with an ACL-

like abstraction towards users which is easy to adopt and use.

Tresorium also supports groups and content sharing within a

group, which makes collaborative work easier. Collaborative

applications can leverage cloud services greatly, but they need

to be secured, and that is what Tresorium offers.

For efficiency, Tresorium minimalizes the usage of asym-

metric cryptography and file uploads/downloads. For flexibil-

ity, we rely on encrypting content with different keys so that

a subset of the content can be shared at any time.

We first discuss the different players in the environment

in section II. In section III, we present what requirements we

set, afterwards we present the exact scheme in section IV, with

an analysis in section V, with simulation and implementation

results in section VI. The related work is presented in section

VII. Finally, we conclude the paper in section VIII.

II. SYSTEM MODEL

In this section, we introduce the different entities that inter-

act with the file system. We also describe what assumptions we

have about these entities and how they are structured. Finally,

we present exactly what adversaries there are in the system.
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A. Entities and Terminology

The endpoints of the system are the users and their software

clients who would like to share files with each other. These

users form groups with those users whom they would like to

collaborate. A group consists of a set of users or even other

groups. Every group has its content in a tresor. The tresor

contains all the files of the group in an encrypted form. The

tresor is protected by the group key; using this key the content

of the tresor can be decrypted.

The tresor itself is stored on multiple storage clouds hosted

by service providers. The storage clouds enable the users to

upload cloud objects. A set of these cloud objects make up

the group’s tresor.

B. Assumptions

In this section, we state the assumptions we have about the

entities. This is the context which our solution was designed

for.

First of all, we assume that the users of the system would not

always like to collaborate with the same people. This means

that the aforementioned groups dynamically change in time.

Users can be added or removed from an existing group, new

groups may appear while others disappear.

During the lifetime of a group the content shared would

also change. This means that the group’s tresor dynamically

changes. Files and directories can be added, removed or

changed.

Currently, in storage clouds the service providers enforce the

security of the cloud objects using ACL’s, which are vulnerable

to software bugs or override by an administrator or hacker.

The service providers are assumed to be honest but curious,

therefore, the service providers cannot be fully trusted. The

storage clouds simply act as a passive storage to which users

can upload or download cloud objects.

C. Structure

Every group has its own tresor on one or more cloud

storages. Each and every user of the group can access the

files in this tresor using the group key.

To provide high level privacy and security, all files are stored

in an encrypted form on the cloud and only the clients of the

group members can locally decrypt them using the group key.

D. Adversaries

The main objective of the adversaries in the system is to

access the sensitive data in a chosen group’s tresor. A potential

adversary may be a former member of a group. The former

member has knowledge of many previous keys of the group

and could have access to the communication channels between

group members and, in particular, could access the channel

through which files are uploaded and downloaded to and from

the cloud. Another adversary may be an operator at one of the

cloud providers who may be able to read the uploaded contents

of the group. The administrator has the ability to perform

denial of service attacks like deleting tresors and blocking

connections. However, we assume that the operator is honest

but curious which means that the operator would not perform

denial of service attacks, but would like to access the contents

of the tresors. Last but not least, there are outsiders, possibly

a competitor, who would like to access the group’s files.

III. REQUIREMENTS AND DESIGN OBJECTIVES

The requirements we set out to reach were so that we do not

lose any advantage of what the cloud has to offer, but ensure

the maximal amount of security. We first list the security

requirements.

The first objective is secrecy: Any user not part of the group

cannot access any content in the group’s tresor. To further

characterize the secrecy of the group we have to specify what

previous users and future users of a group can access.

Any previous user of a group who has knowledge of group

keys until his or her removal from the group should not be

able to read any new content created in the group’s tresor since

his/her departure from the group. This is known as Forward
Secrecy.

Any new user that joins the group only knows the group

keys from the moment of entering into the group. The new

user should be able to read all contents currently in the group’s

tresor but not deleted files. This we will refer to as Weak
Backward Secrecy. Simply expecting Backward Secrecy would

mean that the new user would only be able to access new

content that is created during his/her participation in the group,

but the reason the user was added to the group was to share

the current and future states of the group’s tresor.

As previously stated, we would like to preserve the advan-

tages the cloud has to offer. Keeping this in mind we would

like the system to be reliable meaning that any user that is

authorized to access the contents of a group’s tresor should

always be able to decrypt the contents efficiently.

Imagine that a group of users have agreed in some group key

and they encrypt every file in the groups tresor with that group

key. This solution at first glance seems to satisfy everything

that we would expect from such an environment, but very

quickly we discover that there are many problems with this

construction. The main problem is that if a user is removed

from the group then the group key would have to change,

this would mean that all the existing contents of the group’s

tresor would have to be re-encrypted. In order to solve the

latter problem efficiently, in this paper we propose an efficient

symmetric key derivation method that derives keys from the

current group key to encrypt the files in the group’s tresor.

IV. PROPOSED SCHEME

In this section, we present our core solution. First, we

introduce the different components or building blocks that

we use, afterwards we present a high level overview of the

solution and finally a detailed and formal static and dynamic

overview of the system.

A. Building Blocks

We require the ability for the current users in a group to be

able to calculate one common group key. The assumption is
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that only those users can calculate the common group key at

time t who are part of the group at time t. For this we use a

distributed group-key agreement protocol such as Invitation-

oriented TGDH, which we describe in the companion paper

[1]. We assume that the group-key agreement protocol sup-

ports the following operations on groups:

• Leave: Remove an existing user/group from a group.

• Join: Add a new user/group to a group.

• Calculate: Let a user/group calculate the common group

key.

• Refresh: In case of compromise a user/group can refresh

its key.

The encryption of the file system is done using symmetric

cryptography. Our aolution uses AES in CFB mode, likewise

to the OpenPGP standard [2].

B. High level Overview

In our solution, we propose to manage multiple key-lock-

boxes in a tree structure. For simplicity, this tree is identical to

the directory structure of the tresor. Every directory has a key-

lock-box associated with it, and in this key-lock-box we can

find the keys of the files within the directory. The key that

opens or decrypts a key-lock-box can be found in the key-

lock-box above it in the tree structure. The key-lock-box at

the top of the tree structure is called the master key-lock-box

which can be opened by the group key.

C. Detailed description - static view

N Number of users in a group
K set of keys, where K ⊆ {0, 1}∗
T set of encryption algorithms
Kt set of keys for some encryption algorithm t ∈ T

(Kt ⊂ K)
F set of files
M set of users in a group
B set of key-lock-boxes where B ⊂ F , which means that

the key-lock-boxes themselves are files
a � b a is the key of b, or opened ascendant key-lock-box

of b
Et

k(·) encryption algorithm, where t ∈ T , k ∈ Kt

Dt
k(·) decryption algorithm, where t ∈ T , k ∈ Kt

GK Group Key agreement protocol
gk Group key generated by a Group Key agreement

protocol
kt
i key, where kt

i ∈ Kt

Table I
TRESORIUM NOTATION

Definition 1 (Group Key agreement protocol): Let GK be

a group key agreement protocol that assigns every current

member of a group Mi a common group key gki unique to

that group:

GK :M �−→ gk
Definition 2 (Key to a file): k ∈ Kt, t ∈ T is the key to

some file f ∈ F if the encrypted file f∗ can be decrypted so

that Dt
k(f

∗) = f Notation:

k � f

Root directory

Directory 1File 1

Master
Key
Lock
Box

Pointer

File nFile 2

...

Key Key Key Key

Directory 1File 1

Key
Lock
Box

Pointer

File nFile 2

...

Key Key Key Key

Carol

Carlos

Charlie

Group Key

Group Info

Directory 2

Key

...

Figure 1. Example Tree

Definition 3 (Key-lock-box): b ∈ B ⊂ F key-lock-box is an

encrypted file in which file–key pairs are stored. This means

that b is a discrete function b(f) : F �−→ K that maps

encryption keys to files in the following manner:

∀f ∈ Dom(b) ∃k ∈ Ran(b) : b(f) = k ∧ k � f

Dom(b) ⊂ F is the set of files mapped in key-lock-box b,
Ran(b) ⊂ K is the set of keys mapped in key-lock-box b.

As noted in section IV-B, every file’s and directory’s key is

in the key-lock-box that is associated with its parent directory.

Definition 4 (Key-lock-box of a file, parent key lock box):
A b ∈ B key-lock-box is the key-lock-box of an f ∈ F file,

if b(f) � f
Definition 5 (Ancestor, descendant of a file): b ∈ B is an

ancestor of file f ∈ F and f is a descendant of b. – with

notation b�f – if: ∃b1, . . . , bn ∈ B : b(b1)�b1∧ . . .∧bi(bi+1)�
bi+1 ∧ . . . ∧ bn(f) � f
Claim 1: From definition 5 it immediately follows that if

a user has knowledge of the contents of some key-lock-box

b ∈ B then the user can decrypt the contents of all files f ∈ F
where b � f . Intuitively, b ”opens” f .
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Definition 6 (Master key-lock-box): mb ∈ B key-lock-box

is master key-lock-box if it is at the top of the key lock box

hierarchy and encrypted with a group key gki:

�bj ∈ B : bj � mbi ∧ ∃gkl : gkl � mbi

D. Detailed overview - dynamic view

In this section, we present the different operations like the

changing of a group and the modification of files. We first

introduce a few definitions that help determine if an existing

key can be still used and afterwards present the algorithms of

the operations.

1) Definitions:
Definition 7 (group change): A group M changes when a

user is added or removed from the group or a user’s key is

changed (e.g. in case of compromise). The amount of group

changes is counted from 0. The amount of changes in a group

is GC(M) ∈ N
Definition 8 (Key version, key version of file): A key k ∈
K has a version of n if only those users of a group know

or have the ability to determine the key that were part of the

group when GC(Mi) ≥ n. Notation:

KV (k) ∈ N

A file f ∈ F has a key version n, if k ∈ K : k �f ∧KV (k) =
n. Notation:

KV (f) ∈ N

Claim 2 (Key version of subtree): The key version of any

key-lock-box is at least as big as any descendants’ key version.

∀b ∈ B, ∀f ∈ F , b � f : KV (f) ≤ KV (b)

see proof: IX-A

The next definition is the concept of dirty keys, which states

that a key cannot be used anymore as a removed user has

knowledge of that key. The dirtiness of a key can be decided

using Algorithm 1

Definition 9 (Dirty keys): A key k ∈ Ran(b), b ∈ B is dirty

– noted: k̃ – , if

(∃bj ∈ B bj � b ∧KV (k) < KV (bj))

Algorithm 1 The determination of the dirtiness of a key: the

is dirty(k) function

1: mb, b ∈ B : mb � b ∨mb = b
2: k ∈ Ran(b)
3: if KV (k) < KV (mb) then
4: return true

5: else
6: return false

7: end if

2) Group Change: Let us assume that group M has

changed in some way. Let the changed group be M∗. Due

to this, the gki group key changes to some gk∗i . In this case

the user that conducted the change – called the sponsor – re-

encrypts the master key-lock-box mb with the new group key

and in the same transaction records the group change (uploads

the file that contains the plublic group information) to keep

consistency. These steps can be seen in Algorithm 2.

Algorithm 2 Handling of group change

1: begin transaction()
2: gk∗ ← calc key(user private key, new group info)
3: write file(new group info)
4: mb ← Dgk(read file(master key lock box)) {Read

master key-lock-box with old group key}
5: KV (mb) + + {With this step all descending key-lock-

boxes become dirty}
6: write file(Egk∗(mb)) {Write out master key-lock-box

with new group key}
7: commit transaction()

3) File Change: Let us imagine that Carol and Carlos

remove Charlie from their group. As we stated before, this

means that master key-lock-box is re-encrypted with the

new group key. However, we would like to avoid having to

immediately re-encrypt all contents of the group. This leads to

the idea of lazy re-encryption where only those files need to

be encrypted with a new key that are changed after Charlie has

been removed from the group. At this point, dirtiness becomes

useful: only dirty keys have to be replaced with a new key.

After Charlie’s removal, keys are only changed when a new

file is created or an existing one is modified. In other words,

keys are only changed when writing the tresor. This is the

idea of lazy re-encryption when only newly created or changed

files’ key-lock-box hierarchy is re-encrypted.

For example, in Figure 1, Carlos has just been re-

moved from the group, so every key except the new

group key is dirty. Carol would like to change Root
directory/Directory1/F ile1. Before uploading this file, the

master key-lock-box is uploaded containing a newly gen-

erated key for the key-lock-box. Afterwards the key-lock-

box, encrypted with this new key, is uploaded containing a

newly generated key for Root directory/Directory1/F ile1.

Finally, the file can be uploaded with a new key. After these

steps Carlos would not be able to read the contents of the

uploaded content anymore.

The get key(b ∈ B, f ∈ F) key-lock-box function per-

forms the above described procedure (see Algorithm 3). It is

important that the calling of get key(·, ·) and the upload of

the new encrypted file has to happen in the same transaction.

4) Cross group share: Up until now we have shown how

a variable group of users can share a set of variable files.

In practice, the ability to share a whole directory with another

group is also desirable. Let us consider the following example,

illustrated in Figure 2. Alice and Bob form a group, called ,,IT
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Algorithm 3 Lazy re-encryption in function get key(b, f)

1: b ∈ B, f ∈ F : b � f {were b is opened}
2: mb ∈ B,mb � b {A master key-lock-box}
3: if use of key = read then
4: return b(f)
5: else
6: if is dirty(b(f)) then
7: k∗f ← generate new random key(t)
8: add key(b, f,KV (mb), k∗f )
9: if b = mb then

10: pb ∈ B : pb(b) � b {find parent}
11: k∗b ← get key(pb, b) {recursive call}
12: else
13: k∗b ← calc group key()
14: end if
15: write file(Ek∗

b
(b))

16: return k∗f
17: else
18: return b(f)
19: end if
20: end if

department”, while Carol, Carlos and Charlie form another

group, called ,,Financial department”. Those two departments

might have a lot of documents to share, which has to be

accessible only for the current employees of ,,IT department”

and ,,Financial department”, regardless who are the actual

members of those groups. This is a common situation in a

corporate environment, when permissions are defined for a

group of users, and a change of group membership implies

change of permissions, too.

In order to support this, in Tresorium a new, hidden group is

created whose users are the groups that the directory is shared

with (see Figure 2).

Root directory

Shared DirFile 1

Key
Lock
Box

File nFile 2

...

Root directory

File 1

Key
Lock
Box

File nFile 2

...

K<2>K<1>

Carol
Carlos

Charlie

Group Key

Alice
Bob

Group Key

gkS

Figure 2. Cross group share example

LetM1,M2, . . . ,Mn be different groups that may overlap,

which form another group, M̂ =
⋃n
i=1Mi. Let the shared

files and directories be S = {f1, f2, . . . , fm} ⊂ F .

Let mbS ∈ B be the master key-lock-box of files S.

Let b1, b2, . . . , bn ∈ B be key-lock-boxes of groups

M1,M2, . . . ,Mn where every key-lock-box is the mounting
point of the shared files. In Figure 2, the mount points are the

root directories. From these mount points the shared folder

can be directly accessed.

Let every group Mi store a K<i> private key, in an

encrypted key-lock-box, that can be used by some chosen

key agreement protocol, such that gkS = GK(M̂) where

Mi ⊂ M̂ and gkS � mbS � S. The calculated shared group

key gkS will be the group key of the shared directory. The

private keys are stored in the mount points of the groups:

K<1> ∈ Ran(b1), . . . ,K<n> ∈ Ran(bn)

Imagine that in Figure 2 Carlos is removed from the group

on the right. In this case the master key of the group on the

right changes, but due to the fact that Carlos has knowledge of

key K<2> it should also be changed to some K∗
<2>. This can

be done by refreshing the key used in the distributed group key

agreement protocol of the shared group according to section

IV-A.

Similarly, in case a user’s key is compromised, the effected

user should refresh his or her key in each group that he or she

belongs to.

V. ANALYSIS

In Tresorium, the key-lock-boxes are managed in a tree

hierarchy, which has multiple advantageous properties, like the

ability to share a subdirectory with another group, the small

size of a key-lock-box and the ability to use any encryption

algorithm. In this section we give some informal arguments

on why the scheme fulfills the security requirements set in

section III and analyze the performance of the algorithms of

section IV.

A. Security

In section III, we stated that the scheme should satisfy

Forward and Weak Backward Secrecy. In this section we

intuitively show that both these properties hold.

Claim 3: (Forward Secrecy and Weak Backward Secrecy
properties in Tresorium key-lock-box trees): Using algorithms

2, 1, 3 the Forward and Weak Backward Secrecy properties

hold.

1) Forward Secrecy: If GK is Forward Secure, Algorithm

2 guarantees that only those users can read the contents of

mbi who can calculate the group key gk. This means that a

user u will not be able to read any master key-lock-box after

the time of his/her departure from the group. Thanks to the

recursive call in algorithm 3, KV (·) is maintained correctly.

All modified files will have a key version of KV (mb), which

means that the Forward Secrecy constraint will hold and no

former member will be able to decrypt any of the new files.

2) Weak Backward Secrecy: If a user u has been added to a

group M , and if GK is Backward Secure, that user will only

know the master key-lock-boxes since his or her entrance to

the group. This means that user u will only be able to access
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those keys that are in the key-lock-box hierarchy during his

or her stay in the group, satisfying Weak Backward Secrecy.

Note that it may not be important to support Weak Back-

ward Secrecy. In sucha a case, in algorithm 2 KV (mb) does

not have to be increased if a new user is added to the group.

This means that in algorithm 3 keys do not need to be changed

as frequently, saving time and bandwidth.

B. Performance

In this section, we analyze the complexity of algorithms 2,

1, 3. By complexity we mean the amount of files that have to

be uploaded/downloaded. The uploading and downloading of

files is by far the most time consuming operation so it has to

be minimized.

1) Algorithm 2, group change: Algorithm 2 is a pretty

straightforward O(1) time algorithm since only two files have

to be uploaded, namely the group info and the master key-

lock-box. The real advantage of this algorithm is that all files

are marked dirty in O(1) time.

2) Algorithm 1, is dirty: If we can locate the master key-

lock-box of a key-lock-box in constant time using a link then

the decision about the dirtiness of the key-lock-box key can

be done in O(1) time.

3) Algorithm 3, get key: Assuming that the user navigates

through the file system, the key-lock-box of every file in every

step would be refreshed. This would mean that acquiring a

read key get key(·, ·) would have complexity O(1), since

use of key = read.
Claim 4 (the complexity of function get key(·, ·)):

Aquiring a key to modify a file (write key) has complexity

O(get key(·, ·)) ≤ O(|{bl ∈ B|bl � bi}|)

where bi is the initial key-lock-box. After a group change and

all the files are changed then

O(Fget key(·, ·)) ≤ O(Fα(N))

where F is the amount of files and N the amount of key-

lock-boxes. In the case of obtaining a write key the average

complexity of get key(·, ·) is

O(α(N)))

where α(N) is the inverse of the Ackerman φ(·) function.

α(N) can be basically considered constant since α(m) ≤ 4 if

m ≤ 265536.

In the worst case scenario (just after a group change) to

change a new file O(log(N)) key-lock-boxes have to be

uploaded (every ascendant key-lock-box of the file). Later

many key-lock-boxes and files will have the same key version

as the master key-lock-box meaning that only one or maybe

no key-lock-box has to be changed. On average O(α(N)))
re-encryptions are needed.

The proof in section IX-B, can be traced back to the disjoint-

set data structures proof [3], where the find method has an

amortized time of O(α(N)). This can also be seen in the

simulations in Figures 4 and 5.

VI. SIMULATION AND IMPLEMENTATION

A. Implementation

We implemented the above described hierarchical key-lock-

box structure in C++, with additional novel algorithms, includ-

ing the group-key agreement protocol which we describe in the

companion paper [1], and other novel, however unpublished

solutions, like a novel distributed key authentication algorithm.

Our implementation was led by the inspiration of flexibility:

tresors can be stored on different kinds of storages. Now

Google Docs and storages with an SMB (Windows File

Server) interface are supported, and this list of storage types

is continuously growing.

Figure 3. A C# proof-of-concept frontend of the Tresorium C++ Core library

The implementation works as follows: each user can have

multiple tresors. Each tresor can be shared with users’ friends,

as in the example presented in Figure 3. Each tresor is

synchronized with a specific local folder, and in those folders

files are stored in plain text. Encryption is performed on-the-fly

while the user client is uploading or downloading a changed

file. A tresor can be shared with any other user, using the

invitation feature. Invitations are sent in e-mail, like in Drop-

box, but Tresorium invitation contains additional cryptographic

information for group-key agreement. The further steps of key-

agreement are performed through an application server, which

is not needed to be trusted.

According to preliminary results in the same network envi-

ronment, the Tresorium client uploads almost twice as fast as

Google’s GDrive and 1.3 times faster as Dropbox.

B. Efficiency measurement

The simulation environment was the following: The file

system had a maximal directory depth of d with a Tresorium

key-lock-box tree.

The filesystem was generated randomly: Every directory had

a random amount 10 ≤ rf ≤ 60 of files and a random amount

of 2 ≤ rd ≤ 7 directories. For every 1 ≤ d ≤ 9 the result is

the average of 50 tests each with 10000 random file change

operations.

After building the random file system the simulation chose a

file to upload, and if needed conducted the lazy re-encryption.
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For every operation, the amount of re-encryptions needed to

upload the specific file was noted. This has been presented as

a trend line with 33 points, where one point is the average of

300 file uploads.

We investigated two scenarios: in the first in Figure 4, a

group change happens before the upload of the files, meaning

that at the beginning all keys are dirty (more than 10 million

keys when d = 9). In the second scenario, in Figure 5, the

group changes 5 times, thus the peaks on the curve.
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Figure 4. Amount of re-encryptions needed using the Tresorium key-lock-
box tree with a one-time group key change

��

����

��

����

��

����

��

�� ����� ����� ����� �	��� ����� �
��� ����� ����� ���� ������

�����������������������

���
���
���
��	
���
��

���
���
��

Figure 5. Amount of re-encryptions needed using the Tresorium key-lock-
box tree with recurring group key changes

We note that in Figure 4 the average number of re-

encryptions needed is 1 even at a directory depth of 9. We

also note that after d = 7 the number of re-encryptions needed

grows very slowly.

VII. RELATED WORK

Cryprograhic file systems can be categorized as local and

network cryptographic file systems. Local cryptographic file

systems, like CFS [4], CryptFS [5], TCFS [6] or NCryptFS

[7] are designed for protecting stored data from attacker with

physical access to the client hardware.

Network crytographic file systems usually assume untrusted,

network attached storage. The idea of key-lock-boxes was first

used in Cepheus [8]. Cepheus encrypts the files before they

are uploaded to the network storage, and it supports groups.

However the required group database is hard to be maintained

as it requires a centralized server. The cryptographic file-

system of Harrington [9] is similar to the mentioned one,

however does not include any key management and key

distribution.

Plutus [10], SiRiUS [11] and SNAD [12] use public key

cryptography for key distribution. In Plutus, a novel key-

rotation scheme was proposed, which guarantees that only

the owner of the file can generate new keys for writing.

Compared to Tresorium, Plutus requires much more public

key crypography operations. Plutus, SNAD and SAFIUS [13]

assume a trusted third party server. For key revocation in

SiRiUS, a cryptographic key recovation scheme is used [14],

which assumes an active, always on-line owner of the file.

Kong et. al [15] proposed an access control for groups which

”merge” the keys of the members, and that merged key is used

for encryption. This solution is much less efficient than [1],

which is used in Tresorium. CRUST [16] uses a symmetric key

cryptography based protocol, namely Leighton-Micali protocol

[17], which assumes an initial key shared with a trusted third

party. On the market, we found that only two solutions provide

real cryptographic protection: Wuala [18], which uses [19]

and TeamDrive [20] which uses Diffie-Hellman for group key

agreement.

VIII. CONCLUSION

In this paper, we presented Tresorium, a cryptographic file

system designed for cloud based data storage. In Tresorium,

files are encrypted before they are uploaded to the cloud stor-

age providers, therefore, not even the cloud storage providers

can access the users’ data. Tresorium allows the sharing of

files within a group of users by using an underlying group

key agreement protocol. A key feature of Tresorium is that

it handles changes in group membership and modification of

files in an extremely efficient manner, thanks to the usage of

so called key-lock-boxes and a lazy re-encryption approach.

Another important feature of Tresorium is the ability to share

content between groups, a feature which has not yet been

implemented in any of the cryptographic file systems that we

analysed.

Besides presenting the operation of Tresorium, we analysed

its security and performance. In terms of security, Tresorium

achieves Forward Secrecy and Weak Backward Secrecy. Re-

garding performance, we proved the efficiency of Tresorium

by analytical means and simulations.

We are currently implementing Tresorium and plan to

commercialize it in the near future.

IX. APPENDIX

A. Proof of Claim 2

Assume that ∃b ∈ B, ∃f ∈ F , b � f : KV (f) > KV (b).
Suppose a user u was part of the group M while GC(M) ≤
KV (b). From definition 8 it follows that u knows key-lock-

box b. From claim 1 it follows that u can decipher file f which

302



contradicts definition 8 since user u was never part of group

M when GC(M) ≥ KV (f)

B. Average Re-encryption Complexity

Asuming that the group has recently changed, all files are

dirty except the master key-lock-box. We show that the writing

of new files is very similar to the disjoint-set data structure’s

find function (algorithm 4) which has the average complexity

of O(α(N))).

Algorithm 4 Find(x) - Disjoint-set

1: x is a node in tree

2: if x.parent! = x then
3: x.parent! = Find(x.parent)
4: end if
5: return x.parent

When finding a node x, all ancestor nodes including x are

linked to the root node. Similarly, when writing a file f , all

ancestor key-lock-boxes and f become clean, meaning that the

key they are encrypted with has the same key version KV (f)
as the master key-lock-box.

Just like when a node x becomes linked to the root node

and a search can stop after 1 step after reaching x, clean key-

lock-boxes and files need not be cleaned, so algorithm 3 stops

its recursion once it gets to a clean key-lock-box.
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Kovács, Tamás Koczka, György Szilágyi, István Hartung,
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