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Abstract—In this paper, we propose a suite of group key
management protocols that allows a group of users to agree on
a shared group key, which can be used to protect a shared file
system stored remotely in the cloud. Our protocols support the
refreshment of the group key at each group membership modi-
fication. Compared to other similar solutions, the key novelty of
our protocols is that they require asynchronous communication
channels, and only constant number of exponentiations on
average, worst case logarithmic number of exponentiations even
if membership modifications are controlled by arbitrary user.
Moreover, our scheme is fully decentralized, and its design is led
by a practical, invitation-oriented approach.

Index Terms—group-key agreement, dynamic groups, self-
balancing key-tree

I. INTRODUCTION

An increasing number of enterprises and private individuals

choose cloud based data storage solutions instead of building

their own storage systems. Outsourcing storage has several

doubtless advantages, including flexibility and cost efficiency.

In addition, cloud based data storage systems provide in-

creased dependability and easy access to the data from any-

where and at any time.

Yet, cloud based data storage systems also have disadvan-

tages. Most importantly, data owners lose the control over

their data: the cloud operator can delete the data, or on the

contrary, deny the execution of a requested delete operation.

Furthermore, there are also serious security issues, stemming

from the fact that the cloud operators have access to the data of

millions of people and thousands of companies: attackers may

break into the cloud system to obtain access to the data stored

there, or the cloud operator itself may be tempted to misuse

its privileged position. Exploitation of a single vulnerability

may lead to the compromise of a large amount of information

(e.g. Dropbox no password login [1]).

In today’s cloud based data storage systems, access control

to the stored data is based on the traditional access control

list approach, where a trusted reference monitor enforces the

access control policy represented by the access control lists.

However, in cloud based data storage systems, the reference

monitor is under the control of the cloud operator, and

hence, it cannot be fully trusted. A better approach would be

to use cryptographic protection mechanisms, and store only

encrypted data in the cloud ([2] [3]). This, in turn, requires

appropriate key management schemes in order to support

abstractions such as groups and shared resources.

In this paper, we follow the second approach. More specifi-

cally, we propose a suite of group key management protocols

that allows a group of users to agree on a shared group key,

which can be used to protect a shared file system stored

remotely in the cloud. Our protocols support the refreshment

of the group key at each group membership modifications.

Compared to other similar solutions, the key novelty of our

protocols is that they require asynchronous communication

channels, and only constant number of exponentiations on

average, worst case logarithmic number of exponentiations

even if membership modifications are controlled by arbitrary

user. For this efficiency we are using a novel self-balancing

key-tree. Moreover, our scheme is fully decentralized, and

its design is led by a practical, invitation-oriented approach,

similar to Dropbox, where data is shared with new users with

just one click. Our group key management protocols are being

implemented as part of a full-fledged encrypted storage system

called Tresorium, which is described in a companion paper [4].

The paper is organized as follows: in Section II, we present

our system and attacker models and introduce some terminol-

ogy. In Section III, we give a quick overview of the Tree-based

Group Diffie-Hellman (TGDH) [5] protocol, which inspired

our design. In Section IV, we present our invitation-oriented

group key agreement protocol, which is based on TGDH, but

achieves a significantly greater flexibility. Finally, in Section

V, we report on some related works, and in Section VI we

conclude the paper.

II. SYSTEM MODEL

A. Entities and terminology

Entities of our system model are defined as follows: users
are humans using some client system (hardware and software

together), shortly client to connect to the cloud. There are an

asynchronous multicast and unicast channels between clients.

More details on the communication model are discussed in
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Section II-C. The cloud is maintained by cloud operator, or
shortly operator.

Users can form multiple groups, where each group has a

shared group key. The group key is used to protect shared

resources of the group. In this paper, we model the shared

resources of a group as an online file-system, which we call

the tresor of the group. The content of tresor should be only

accessible by the members of the group.

Let us consider the following example: Alice, Bob and Carol

are colleagues, and they form a group. This group has a tresor,

which can be accessed only by Alice, Bob and Carol. In this

tresor they share company related documents, spreadsheets,

presentations, etc. Physically this tresor is stored on a cloud

storage run by Amazon, as the cloud operator.

B. Procedures

In our model, group membership changes from time-to-

time: user(s) leave the group and other user(s) can join the

group. These operations require that the permissions to the

shared tresor must be changed, such that only the members of

changed group can have access to it. A join or leave operation

is coordinated by a sponsor, who can be an arbitrary member

of the group.

Any group member can calculate the actual shared group

key using the group’s public information and the member’s

own private key. Any group member can refresh its public

key in the group, replacing its old key with a new one.

Continuing our example, one day Carol is fired from the

company, therefore she has to be removed from the group.

The remove operation (leave) is done by the sponsor, say

Alice. Since Carol’s seat cannot be left empty, the management

decides to employ Daniel. As Daniel has to access all the

business files that were accessible by Carol, Daniel must join

the group. For this reason an arbitrary member of the group,

say Bob, invites Daniel. This means Bob will act as the

sponsor in that join operation.

ui ith user, member of a group
U set of users

gi group of users, gi ⊂ 2U
gki group key of gi

sp(gi) sponsor of group gi
join(ui, uj , gk) ui joins to gk group, uj is a sponsor

leave(ui, uj , gk) ui leaves gk group, uj is a sponsor
calc(ui, gk) calculation of gkk using private information of

ui and public information of gk
refresh(ui, gk) user ui refresh its public key in the group gk

Table I
NOTATION OF ENTITIES AND PROCEDURES

C. Communication model

We assume asynchronous multicast and unicast communi-

cation channels between the clients.

The rationale behind assuming asynchronous channels is

that in practice clients may not be on-line at the same time,

therefore synchronous connection may not be possible. An

example for asynchronous unicast channel is e-mail, whereas

an asynchronous multicast channel can be implemented as a

shared file stored in the cloud.

D. Attacker model

The attacker model is defined by the attacker’s goal and
attacker’s capabilities. The goal of the attacker is to gain

access to content of a tresor.

According to its capabilities attackers can be categorized in

the following types:

1) Operator: has access to encrypted tresors and channels

between clients. We assume that operator is honest, but

curious, which means that it does not mount denial-of-

service type attacks (e.g. deleting a tresor, preventing

communications,etc.), but it would like to access the

content of the tresors.

2) Previous group member: a group member, who was

removed from the group, and it had access to a series

of previous group keys and to the previous states of the

tresor.

3) Outsider: does not have direct access to the tresor, but

has access to communication channels, in particular has

access to the channels used for upload or download files

to/from the cloud.

III. ORIGINAL TGDH

A. Static definitions of TGDH

TGDH is a distributed – so it does not require any trusted

third party –, group key-agreement protocol based on the

Decisional Diffie-Hellman problem. This protocol assumes

an authenticated channel. The scheme is based on a binary

key-tree (see Figure 1. as an example), where the root node

represents the established group key.

We will use the notation summarized in Table II., in

accordance with [5]. Every member is represented as a leaf

of the key-tree – in the example on Figure 1., members are

(m1,m2,m3).

n number of group members

< l, v > the vth tree node on lth level
ls, ld level of shallowest and level of deepest node

mi ith group member
k<i,j> private key of node < i, j >

bk<i,j> public (blinded) key of node < i, j >
p, q (big) prime integers

g group generator of Zp, where g ∈ Zp

Table II
NOTATION OF TGDH

As in the original Diffie-Hellman protocol, the public keys

are computed as follows:

∀i, j bk<i,j> = gk<i,j>

The private keys of the internal nodes are defined as the

combination of the private keys of the two child nodes:

k<l,v> = gk<l+1,2v>k<l+1,2v+1>

= bk<l+1,2v>
k<l+1,2v+1>
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<0,0>

<1,1><1,0>

<2,2> <2,3>

m3m2

m1

k<2,3>
bk<2,3>=gk<2,3>

bk<2,2>

bk<1,0>

k<1,1>=(bk<2,2>)k<2,3>

k<0,0>=(bk<1,0>)k<1,1>

l = 0

l = 1

l = 2

Figure 1. TGDH key-tree and definitions of internal nodes’ private keys

= bk<l+1,2v+1>
k<l+1,2v>

This means that starting from a leaf, and using that leaf’s

private key, a group member can always calculate the private

key of the root node – which is used as the group key (Figure

1). The complexity of calculating the group is O(h), where h
is the height of the tree.

B. Protocols of TGDH

There are 5 protocols in TGDH: join, leave, merge, partition
and key-refresh. After each group change, the public keys in

the tree are changed so the group key is also changed. Here,

we show briefly the join and the leave protocols.

TGDH Join: Let us assume the currect members are

m1,m2, . . . ,mn, and the joining member is mn+1. The join
protocol is run as follows (Figure 2):

1) joining member mn+1 broadcasts its public key bkn+1 to
all the current members.

2) Each member determines the insertion node, where the

new node – representing the joining member – will be

connected. If the tree is balanced, then the insertion node

is the root, else the shallowest, rightmost node.

3) The sponsor will be the rightmost leaf of the subtree

rooted at insertion node, and each member determines

by itself if it the sponsor or not.

4) Sponsor broadcasts the refreshed public keys of the tree.

5) Each member calculates the new group key with a re-

cursive algorithm similar to the one illustrated in Figure

1.

TGDH Leave: The leave protocol is defined as follows:

1) The sponsor is determined as the rightmost leaf of the

subtree rooted at the sibling node of leaving node.

2) The sponsor broadcasts the refreshed tree to each mem-

ber.

3) Each member calculates the new group key with a re-

cursive algorithm similar to the one illustrated in Figure

1.

<0,0>

<1,1><1,0>

<2,0> <2,1>
Sponsor

m3

m2m1

<0,0>

<1,1><1,0>

<2,0> <2,1>

m2m1

Tree T Tree T*

<2,2> <2,3>

m4m3
Sponsor

New intermediate
node

New member

Nodes to be
refreshed

Figure 2. An example for TGDH join [5]

Notice that the cooperation of the leaving node is not

needed, hence forced leave (remove) is possible.

<0,0>

<1,1><1,0>

<2,0> <2,1>
m2m1

Tree T

<2,2>

m4

m3

Sponsor

Leaving
member

<2,3>

<3,6> <3,7>

<0,0>

<1,1><1,0>

<2,0> <2,1>
m2m1

Tree T*

<2,2> <2,3>
m5m4

Sponsor
m5

Nodes to be
refreshed

Figure 3. An example for TGDH leave [5]

C. Properties of TGDH

Among distributed group key agreement, TGDH was found

efficient [6]. Choosing the actual insertion node influences

only the computational performance of the protocol, and not

its security [7].

IV. MODIFIED TGDH

A. Problems with TGDH

In the original TGDH article on-line members and syn-

chronous channels were assumed. Joining member has to send

a ’request-for-join’ message to the sponsor, and the actual

sponsor is determined by rigid rules for efficiency. However,

in practice it is desirable that arbitrary user can invite and

act as sponsor for new members. For example, in Dropbox

anyone can re-share a shared folder with its friends. If we used

TGDH to generate a key for Dropbox, we could not support

the original flexibility of Dropbox. The invitee would need to

wait for specific user – sponsor – to come online, even if the

inviter is online.

In TGDH, the authorization is also a problem: despite the

fact that the channel is authenticated, the sponsor cannot

decide if a new user is authorized to join the group or not.

This is illustrated in the following example: Alice and Bob

form a group, and share a group key using TGDH. Bob would

like to share the protected resources with Cecil. Cecil sends

a ’request-for-join’ to Alice, who is the actual sponsor. Alice
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can authenticate her, but cannot decide if Cecil is authorized

or not, because Alice was not the one who would like to share

resources with Cecil. If the inviter (Bob) was the sponsor, this

problem would not exist: Bob invited Cecil, so Bob already

decided that Cecil is authorized to access shared resources.

Although the original TGDH exactly specifies one sponsor

every time, it could be extended such that any group member

can be the sponsor, however for that flexibility we pay with

O(n) complexity, instead of the original O(log n) worst case
[7].

In this article, we propose an efficient, invitation-oriented
modification of TGDH, with O(log n) calculation complexity

as a solution for the above problem. Our protocol ensures

that a single interaction between the inviter and the new user

is enough for conducting a join, without a need for another

member as a sponsor.

B. Design requirements

1) Usability: An arbitrary member of the group can act as

a sponsor irrespectively of its position in the tree, and a join or
leave operation just need an interaction between the sponsor

and the joining or leaving user. After a group change, every

member of the group should be able to calculate the actual

group key.

2) Computational performance: The scheme should need

O(log n) exponentiations and other operations.

3) Communication performance: The scheme should need

O(1) asynchronous messages, and multiple join or leave
operations can be started simultaneously.

4) Security: The scheme should preserve the cryptographic

and security properties of TGDH. These design requirements

are defined as follows.

Assume that group key changed n times, and the series of

keys are {k1, k2, . . . , kn}. Requirements is similar to [5]:

1) Group key secrecy: for all i, the discovery of ki is

computationaly infeasible for an adversary

2) Backward secrecy: an adversary cannot calculate kj , even
if it knows {k1, k2, . . . , ki} for i < j.

3) Forward secrecy: an adversary cannot calculate kj , even
if it knows {ki, ki+1, . . . , kl} for j < i < l.

4) Key independence: even if an adversary knows a subset

of keys K∗ ⊂ {k1, k2, . . . , kn}, it cannot discover any kj
key, where kj ∈ {k1, k2, . . . , kn}\K∗.

5) Perfect forward secrecy: compromising any ki in the

future does not effect the secrecy of any kj , j �= i.

C. Proposed scheme

We propose the usage of shadow nodes, as special leaves

helping group change operations: the private key of a shadow

node is a temporal key generated by a sponsor, and after the

join or leave operation the private key is discarded. Shadow

nodes are only leaves, and the keys of them are distinguished

from a normal member’s key, because they do not represent

an actual user.

We propose red-white-black key-trees, which guarantee that

after any group change, coordinated by arbitrary member in

the group as a sponsor, the key-tree remains ,,quasi-balanced”.

The goal of such trees is to keep the computation complexity

of group key O(log n).

1) Using shadow nodes: The sponsor must update the

public keys of tree after a group change on the way up to the

root from the changed node. Because of that sponsor has to

know the private key of sibling node of the joining or leaving

node, otherwise it cannot calculate the public keys. That is why

in TGDH join protocol the sponsor was chosen to become the

sibling of the joining user after creating a new intermediate

node (see Figure 2.), and in TGDH leave protocol the sponsor

was chosen as member of the subtree rooted in the sibling of

the leaving node (see Figure 3.).

Using a shadow node, arbitrary member can calculate k〈2,3〉,
so arbitrary member can continue the steps of the key refresh

(Figure 4.). Continuing the example, the node associated with

the joining member m4 is 〈3, 6〉, and its sibling 〈3, 7〉 is a

shadow node. k〈3,7〉 is freshly generated by the sponsor, so the

sponsor can calculate k〈2,3〉 = (bk〈3,6〉)k〈3,7〉 . Using this key,

the actual sponsor can update the public keys of 〈2, 3〉 , 〈1, 1〉
(for calculation steps, see Figure 1.). This means, that by using

shadow nodes, any user of the group can be the sponsor.

<0,0>

<1,1><1,0>

<2,0> <2,1>

Sponsor

m3

m2m1

<0,0>

<1,1><1,0>

<2,0> <2,1>
m2m1

Tree T Tree T*

<2,2>

<3,6>
m4

m3
Sponsor

New intermediate
nodes

New member

<2,3>

<3,7>

Shadow node

Insertion
node

Insertion
node

ls

Nodes to be
refreshed

Figure 4. An example for TGDH join using a shadow nodes when joining
point is a normal node

D. Invitation oriented join

Inviter uI sends an invitation message to new user uN
through an authenticated, asynchronous channel containing the

basic parameters of the group. Inviter uI is an arbitrary user

of the group, and uI can send multiple invitations at the same

time simultaneously, in any order. Even more, inviters can send

invitations independently from each other. Invited new users

can reply in arbitrary order.

New user uN replies with a request message for join to uI
through an authenticated, asynchronous channel, containing its

public key, bkN . As soon as uI receives the request, it will act
as the sponsor of the group. Briefly, uI performs the following

steps to insert the public key of uN :

1) It determines the optimal insertion point. Intuitively, we

could see that replacing the shallowest shadow node helps

to keep the optimality (Figure 5).

2) If node associated with is not one of the shallowest nodes,

then uI uses shadow nodes to insert uN (Figure 4).
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3) uI updates the public keys of the internal nodes from the

insertion point on the way up to the root.

4) uI sends the updated tree to every member.

<0,0>

<1,1><1,0>

<2,0>

Sponsor

<0,0>

<1,1><1,0>

<2,1>
m3

m2

Tree T Tree T*

<3,2>
m4

New intermediate
node

New
member

<3,3>

New shadow
node

<2,1>
m3

Shadow
insertion nodem1

<3,1><3,0>

<2,0>

Sponsor
m1

<3,1><3,0>
m2

ls

Nodes to be
refreshed

Figure 5. An example for TGDH join using a shadow nodes when joining
point is a shadow node

Algoritm 1 describes the join operation in more detail.

E. Forced leave
Let us assume that an authorized user uS decides to remove

uL from the group, where uS and uL can be arbitrary leaves

of the tree.
Our first idea could be replacing uL with a shadow node.

The problem with this approach is that after several execution

of leave protocol the tree could lose its ,,quasi-balanced”

property, which means that the calculation of the group key

would need linear, or even super liner exponentiations, instead

of the logarithmic complexity (Figure 6).
For keeping the ,,quasi-balanced” property of the tree, we

propose the usage of red-white-black key-trees which has the

nice property that the key-tree remains ,,quasi-balanced” all

the time.

m1

...

Figure 6. If simple, greedy algorithm is used this situation can easily happen

A red-white-black key-tree is a colored key-tree, where

shadow node is colored black, the parent of the shadow node is

red, and remaining nodes are colored white. Red-white-black

key-tree has the following properties (Figure 7), which we call

P:

• Black property: black node does not have any child, and

does not have black sibling.

• Red property: red node does not have a red child.

• Max differential property: the difference between shal-

lowest and deepest nodes is ld − ls ≤ 2.
It can be proven that the previously presented join protocol

keep the P properties.

Algorithm 1 Detailed description of join using shadow nodes:

join(uL, uS , gi)

1: function optimal join(T, uS)
2: look for shallowest nodes in T .

3: if sponsor’s node on level ls then
4: return sponsor’s node

5: else if there is a shadow node on ls then
6: return rightmost shadow node on ls
7: else if sponsor’s node is on ls + 1 then
8: return sponsor’s node

9: else if there is a shadow node on ls + 1 then
10: return rightmost shadow node on ls + 1
11: else
12: return rightmost normal node on ls
13: end if
14: end function
15: function refresh nodes(〈l, v〉)
16: k〈l−1,	 v

2 
〉 ← (bksibling(〈l,v〉))k〈l,v〉

17: if 〈l, v〉 = 〈0, 0〉 then
18: return
19: else
20: call refresh nodes(

〈
l − 1, ⌊ v2

⌋〉
)

21: end if
22: end function
23: Lock T tree

24: 〈l, v〉 = optimal join(T, uS)
25: if 〈l, v〉 = sponsor’s node then
26: if sibling of 〈l, v〉 is not a shadow node then
27: continue with normal TGDH join (Fig 2.)

28: else
29: replace the shadow node with uN
30: continue with normal TGDH join (Fig 2.)

31: end if
32: else
33: generate a new random shadow key, ksh
34: if 〈l, v〉 is shadow node then
35: 〈l, v〉 is replaced with 〈l, v〉∗ (Fig 5.)

36: bk〈l+1,2v〉 = bN , representing uN
37: k〈l+1,2v+1〉 = ksh, which is a shadow node.

38: k〈l,v〉∗ ← (bk〈l+1,2v〉)ksh .
39: else
40: 〈l, v〉 is replaced with 〈l, v〉∗ (Fig 4.)

41: bkT∗〈l+1,2v〉 ← bkT 〈l,v〉
42: bk〈l+2,2(2v+1)〉 ← bkuN
43: k〈l+1,2v+1〉 ← (bkuN )

ksh

44: k〈l,v〉∗ ← (bkT∗〈l+1,2v〉)k〈l+1,2v+1〉

45: end if
46: refresh nodes(〈l, v〉∗)
47: end if
48: Multicast public keys of T ∗ to members.

49: Unlock the tree.

50: Discard ksh.
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2<

(a) Black prop. (b) Red prop. (c) Max diff. prop.

Figure 7. Red-white-black key-tree properties and recovery of them

Sponsor uS tries to run the normal TGDH leave protocol, if

possible. Otherwise uS does the steps described in Algorithm

2, and recovers red and black properties. It can be proven, that

in this case the Maximum differential property will also be

recovered. Briefly, uS performs the following steps to remove

uL from the group (detailed description Algorithm 2.):

1) If uS is member of the subtree rooted at the sibling

of uL, then uS continues with the normal TGDH leave

protocol(Fig 3.).

2) If uL is on ls then it is replaced with the deepest normal

node if (ld > ls) (Figure 8), or with a shadow node if

ls = ld.

� 2
Leaving
node

m2
m1

m3 � 2m1 m2

m1 m2

Figure 8. Forced leave if uL is on ls, and the result of red and black property
recovery

3) If uL is not on ls, uL is replaced with a shadow node

(Fig 9.).

� 2

Leaving
node

m2m1 m3

m4

m2m1
m4
New shadow node

� 2
m2m1

m4

Figure 9. Forced leave if uL is not on ls, and the result of red and black
property recovery

4) uS recovers P properties, following the steps demon-

strated in Figure 7./(a),(b).

5) uS refreshes the keys of the internal nodes of the tree

from the changed nodes on way up to the root.

6) uS sends the updated tree to every member.

F. Refresh

Arbitrary user can call refresh(·, ·) in order to replace its

old key with a new one. The simple refresh consists of the

following steps:

1) uR generates a new private key, kR.
2) uR replaces the old public key of its node with bkR =

gkR

3) uR calls the refresh nodes(uR) function described in

Algorithm 1,

4) uR sends new T ∗ to every member.

G. Calculate

Arbitrary member – by using its private key – is able to

calculate the actual group key by following the recursive

algorithm described in Algorithm 3. This is similar to the

calculation steps described in TGDH.

H. Analysis

1) Usability: As we showed, the join protocol needs only

interaction between the sponsor and the new user, and the

sponsor can be arbitrary user in the tree.

The leave protocol does not need any interaction between

members, because the sponsor can prepare the modified tree

alone.

Since the tree is the special case of TGDH trees, any

member is able to calculate the actual group key using the

original algorithm illustrated in Figure 1.

2) Computational performance: It can be proven that the

sponsor uS will recover the red-white-black key-tree properties

in the leave protocol after a constant number (< 4) of steps.
The recovery steps do not require any exponentations, which is

the most expensive operation in terms of computations. It is

easier to see, that after the P properties are recovered, the

sponsor can always refresh the public keys of the internal

nodes, using its own shadow nodes, with its own temporal

private keys. Note that only the nodes on the way up to the

root need to be refreshed.

The red-white-black tree properties guarantee that the key-

tree always remains quasi-balanced. The maximum differential

property guarantees that actual tree has at most two more levels

compared to the optimal tree. Shadow nodes give one more

extra level, therefore the calculation of the group-key needs

maximum logN +3 = O(logN) exponentiations. During the

join protocol, the sponsor has to refresh the tree once, with

maximum logN + 3 exponentiations, and during the leave

protocol, the sponsor has to refresh the tree maximum two

times with maximum 2(logN + 3) steps.
Furthermore, the average complexity of the protocols is

much better than the worst-case complexity. In order to see

this, let us consider Figure 4 and let us denote by S the random
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Algorithm 2 Detailed description of forced leave using

shadow nodes: leave(uL, uS , gi)

1: function refresh nodes(〈l, v〉)
2: k〈l−1,	 v

2 
〉 ← (bksibling(〈l,v〉))k〈l,v〉

3: if 〈l, v〉 = 〈0, 0〉 then
4: return
5: else
6: call refresh nodes(

〈
l − 1, ⌊ v2

⌋〉
)

7: end if
8: end function
9: function recover P(〈l, v〉)
10: if is shadow(〈l, v〉) then
11: if is shadow(sibling(〈l, v〉)) then
12: replace

〈
l − 1, ⌊ v2

⌋〉
with 〈l, v〉 (Fig 7/(a))

13: call recover P(〈l − 1, ⌊v2
⌋〉
)

14: else if is shadow(sibling(
〈
l − 1, ⌊ v2

⌋〉
)) then

15: replace sibling(
〈
l − 1, ⌊ v2

⌋〉
) with 〈l, v〉

16: replace
〈
l − 1, ⌊ v2

⌋〉
with sibling(〈l, v〉) (Fig

7/(b))

17: call recover P(sibling(
〈
l − 1, ⌊ v2

⌋〉
))

18: end if
19: end if
20: end function
21: Lock T tree

22: if uS member of subtree rooted in sibling(uL) then
23: continue with TGDH leave (Fig 3.).

24: end if
25: if uL on lS then
26: if ld > ls && is shadow(sibling(uL)) then
27: replace uL with a new node 〈l, v〉
28: move rightmost normal node on ld to 〈l + 1, 2v〉

(Fig 8.).

29: complement removed node with new shadow node

s1.
30: 〈l + 1, 2v + 1〉 is a new shadow node s2.
31: call recover P(s1)
32: call recover P(s2)
33: call refresh nodes(s1)
34: call refresh nodes(s2)
35: else
36: replace uL with a new shadow node s1 .

37: call refresh nodes(s1)
38: end if
39: else if uL is not on ls then
40: replace uL with a new shadow node s1 (Fig 9.).

41: call recover P(s1)
42: call refresh nodes(s1)
43: end if
44: Send T ∗ to every remaining member, and release lock.

Algorithm 3 Detailed description of calculation of group key,

illustrated in Fig 1

1: function calc(uC , T )

2: kparent(uC) = (bksibling(uC))
kuC

3: if parent(uC) = 〈0, 0〉 then
4: return k〈l−1,	 v

2 
〉
5: else
6: return call calc(parent(uC), T )
7: end if
8: end function

variable representing the required number of exponentiations.

A group change might happen in the subtree of 〈1, 0〉 with

probability 1
2 , because half of the members are in that subtree

and the tree is quasi-balanced. This means that a member of

subtree rooted in 〈1, 1〉 might need to do only one exponen-

tiation for calculating the group key (note gk = k〈0,0〉). This
is symmetrical, so we can state that Pr{S = 1} = 1

2 with

a relatively small error. This is also true for the subtrees at

deeper leaves, and hence we get that

Pr{S = 2} ∼= 1

4
,Pr{S = 3} ∼= 1

8
, . . .Pr{S = n} ∼= 1

2n

E(S) = 1∗Pr{S = 1}+2∗Pr{S = 2}+· · ·+n∗Pr{S = n} ∼=

∼=
n∑

i=1

i ∗ 1
2i

≤ 2

3) Communication performance: The join protocol needs

2 multicast, asynchronous messages (lock notification, update

and lock release). These steps do not give extra latency,

because the sponsor does not need to wait for reply. The join

protocol also needs 2 unicast messages, the sponsor’s invite
message, and as a reply for that, a request message from the

new user. Note that the tree must be locked only if the request

messaged is received, and can be unlocked as soon as the

sponsor refreshed the tree.

The leave protocol does not need any interaction, just 2

multicast asynchronous messages (the lock message, and the

update and lock release in a single message).

Apart from the short critical sections – while the tree is

locked, which is in practice is relatively a short time –, multiple

join and leave protocols can run simultaneously.

4) Security: The invitation oriented join is a special case of
the normal TGDH merge operation: we could define invitation

oriented join as merging a two-level tree, constructed from

the public key of uN and the private key of a shadow node

(example: Fig 4., node 〈2, 3〉 is the root of the merged subtree).

This reduction to the original TGDH merge guarantees the

stated security design requirements.

The forced leave can be reduced to several TGDH join and

leave operations:

1) The replacement of the leaving node illustrated in Figure

8 can be reduced to the invitation oriented join,
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2) The recovery steps of the red and black properties (il-

lustrated in Figure 7) are the special cases of the TGDH

leave protocol.

V. RELATED WORKS

In order to exchange a key between two parties several

protocols were proposed, like Diffie-Hellman [8] which is

a key-agreement, and like Kerberos [9], or Centralized Key

Distribution (CKD) [10], which are key-transport protocols.

Among group-key exchange protocols the problem of dy-

namism arises, however there are several protocols which do

not solve this problem at all (e.g. [11], [12], [13]). Group-

key exchange protocols for dynamic groups, like Groud Diffie

Hellman (GDH) [14], Burmester-Desmedt (BD) [15], Skinny

Tree (STR) [16] usually need O(n) messages, and O(n)
exponentiations. TGDH [5] with its O(log(n)) computational,

and O(1) communicational complexity was found quite ef-

ficient among group-key exchange protocols [6], only if the

sponsor cannot be arbitrary user. Several group-key agreement

protocols were proposed based on key-trees, like [17] or [18],

to improve computational efficiency. Cryptree was proposed

for file-system specific problem of sharing a group key [19].

The group-key exchange protocols mentioned above assume

authenticated channels. Several authenticated protocols were

proposed, like S-TGDH [20], which is an extension of TGDH,

nPAKE+ [21], an interesting password-based Diffie-Hellman

exchange, or [22] and [23].

The properties of our proposed red-black-white key-tree was

motivated by the red-black search tree [24] [25], because red-

black tree has a self-balancing property.

VI. CONCLUSION

In this paper, we proposed a suite of group key manage-

ment protocols that allows a group of users to agree on a

shared group key, which can be used to protect a shared file

system stored remotely in the cloud. Our protocols support

the refreshment of the group key at each group membership

modifications, and they work in an asynchornous communi-

cation model, which makes them suitable for practical cloud

based storage systems, where users may not be on-line simul-

taneously all the time. In addition, compared to other similar

solutions, where the required number of exponentiations and

messages is a function of the group size, our protocols

are more efficient, as they require only constant number of

exponentiations on average, worst case logarithmic number of

exponentiations and only a constant number of messages even

if membership modifications are controlled by arbitrary user.
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