
Designing robust network topologies for wireless sensor

networks in adversarial environments

Áron Lászkaa, Levente Buttyána, Dávid Szeszlérb

aDepartment of Telecommunications,

Budapest University of Technology and Economics,

www.crysys.hu
bDepartment of Computer Science and Information Theory,

Budapest University of Technology and Economics,

Magyar tudósok körútja 2., 1117 Budapest, Hungary

Abstract

In this paper, we address the problem of deploying sink nodes in a wireless
sensor network such that the resulting network topology be robust. In order to
measure network robustness, we propose a new metric, called persistence, which
better captures the notion of robustness than the widely known connectivity
based metrics. We study two variants of the sink deployment problem: sink
selection and sink placement. We prove that both problems are NP-hard, and
show how the problem of sink placement can be traced back to the problem
of sink selection using an optimal search space reduction technique, which may
be of independent interest. To solve the problem of sink selection, we propose
efficient heuristic algorithms. Finally, we provide experimental results on the
performance of our proposed algorithms.

Keywords: topology robustness, graph metric, wireless sensor network,
denial-of-service attack, node placement

1. Introduction

A usual assumption on wireless sensor networks is that they consist of re-
source constrained and physically unprotected devices that use wireless channels
for communications. These limitations make wireless sensor networks vulnerable
to denial-of-service type attacks, such as physical destruction of nodes, exhaus-
tion of their batteries, and jamming of the wireless channels. Such attacks may
be addressed at different levels in the system architecture; in this work, we focus
on mitigating them by controlled node deployment resulting in robust network
topologies.

Email addresses: laszka@crysys.hu (Áron Lászka), buttyan@crysys.hu (Levente
Buttyán), szeszler@cs.bme.hu (Dávid Szeszlér)

Preprint submitted to Pervasive and Mobile Computing October 15, 2011

More specifically, we assume that the locations of the sensor nodes are pre-
determined by the application requirements, which is indeed the case in most
civilian applications of sensor networks (see, e.g., [1] for some supporting ar-
guments); however, the network operator has some freedom in choosing the
location of the sink nodes (or the gateways to some backbone infrastructure).
We aim at determining the location of the sinks in such a way that the result-
ing network be resistant to node and link removal attacks (abstracting physical
node destruction or exhaustion and jamming, respectively).

In order to be able to compare different sink placements in terms of robust-
ness of the resulting network, we need to measure network robustness quanti-
tatively. Measuring and comparing network topologies was recently listed as
one of the interesting open research questions in networking [2]. Instead of the
usual approach of using connectivity for this purpose, we introduce the notion
of persistence. Roughly, the persistence of a network is defined as the minimum
ratio between the cost of an attack and the gain of the attacker, where the cost
of an attack is related to the difficulty of removing the attacked links or nodes,
and the gain of the attacker is determined by the importance of the nodes that,
as a result of the attack, get disconnected from the sinks. We explain and give
some illustrative examples in Subsection 2.2 and 4.2 why persistence is a better
robustness metric for wireless sensor networks than connectivity.

Using persistence as the robustness metric, we formalize and study two vari-
ants of the sink deployment problem. In the first variant, we restrict the set
of possible sink locations to the set of sensor node locations (in other words,
we allow some of the sensors to be extended with sink functionality); we call
this variant the sink selection problem. In the second variant, we remove this
restriction, and allow sinks to be placed anywhere in the deployment area; we
call this the sink placement problem. In both variants, we aim at achieving a
given level of persistence while minimizing the deployment cost (or equivalently,
maximizing persistence under a given upper bound on the deployment budget).
We prove that both sink selection with required persistence and sink placement
with required persistence are NP-hard. We propose greedy and genetic heuristic
algorithms to solve the sink selection problem efficiently, and we show how the
problem of sink placement with required persistence can be traced back to the
problem of sink selection with required persistence by an efficient search space
reduction technique, which may be of independent interest. We also show how
any sink selection algorithm, including our proposed heuristic algorithms, can
be used to efficiently obtain solutions to the sink placement problem using our
search space reduction technique. Finally, we provide experimental results on
the performance of our heuristic algorithms for sink selection and our search
space reduction algorithm.

This article is a follow-up work of our previous paper [3], compared to which
here we prove that the problem of sink selection with required persistence is NP-
hard, propose a new genetic algorithm for sink selection, formalize the problem
of sink placement with required persistence and prove that it is NP-hard, pro-
pose a new search space reduction technique and show how any sink selection
algorithm can be used to find a solution to the placement problem using the

2

reduced search space, and provide experimental results on our algorithms pro-
posed in this article.

The organization of this paper is the following: In Section 2, we give a
brief overview of placement problems in wireless sensor networks and previously
proposed solutions. We also give an overview of topology robustness metrics
and present a motivating example to show why we believe that vertex and edge
connectivity as robustness metrics are not practical. In Section 3, we introduce
(various versions of) persistence for the purpose of measuring the robustness
of networks. In Section 4, we formalize the sink selection problem for a given
network topology and prove that it is NP-hard. In Section 5, we present an
integer programming model of the sink selection problem, which can be used to
find optimal solutions. We also propose efficient greedy and genetic algorithms
as heuristics to get solutions that are reasonably close to optimal. In Section
6, we formalize the sink placement problem and prove that it is NP-hard. In
Section 7, we propose an algorithm for solving the sink placement problem based
on an efficient search space reduction technique. We show that our search space
reduction technique guarantees optimal solutions and that it can be applied to a
wide range of placement problems. In Section 8, we describe the measurements
that we have conducted to analyze the performance of our proposed heuristic
algorithm for sink selection and to estimate the effectiveness of our search space
reduction technique. Finally, in Section 9, we conclude the paper.

2. Related work

2.1. Sink placement

The optimal placement of sink nodes in wireless sensor networks is an im-
portant problem, which has been extensively studied in the literature. For a
comprehensive survey on sink node placement, see [4]. For a general survey on
node placement in wireless sensor networks, see [5].

In single sink placement problems, the network contains only a single
sink node, which is often referred to as the base station. The goal is to find a
sink location for which a performance metric is maximal. The most commonly
used metrics include the lifetime of the network measured as the time until the
most loaded node [6, 7] or until a given fraction of the nodes run out of battery
[7], the number of sensors that can transmit their data [6], and the maximum
throughput [8].

In multiple sink placement problems, the network can contain more than
one sink nodes. These nodes are often referred to as gateways, because they
forward the collected data to a center on longer range links. If the number of
sinks that can be placed is constrained, the goal is to find a set of locations
for which a performance metric is maximal. The most commonly used metrics
include the worst case delay measured in the maximum number of hops between
any node and the nearest sink [9, 10], the total number of hops between each
node and the nearest sink [11, 10], the network lifetime measured as the time
until the most loaded node runs out of battery [12, 13] or until a given fraction of
nodes become unreachable [14], and the network capacity or data rate [13, 15].

3

If the number of sink nodes is not known in advance, the problem includes
finding the minimum number of sinks that is feasible for a given constraint. The
most commonly used constraints include the lifetime of the network measured
as the time until a fraction of nodes become unreachable [14] or until the most
loaded node dies [12], the maximum number of hops between any node and the
nearest sink [16, 10], and the total number of hops between each node and the
nearest sink [10].

The problem can also be defined such that the number of sinks have to be
minimized and a given performance metric has to be optimized simultaneously.
In this case, the goal can be to find a set of Pareto optimal solutions [17], or to
find the optimal solution for a given trade-off ratio between the number of sinks
and the performance metric [12].

A prevalent approach to solving multiple sink placement problems is sensor
node clustering. In a clustering scheme, the nodes of the network are first
grouped into disjoint clusters, which will be served by distinct sink nodes. Then,
a sink node, which in this case is usually called a cluster-head, can be placed for
each cluster using a single sink placement algorithm. While the assignment of
sensor nodes to sinks after sink placement is sometimes also called clustering,
here we only use the term clustering in the above sense. Naturally, the number
of clusters, and therefore, the number of sinks can either be part of the objective
function or be a pre-specified number. In the former case, the number of clusters
has to be minimized under some constraints. For example, in [18], the size and
radius of each cluster and the maximum amount of traffic each node has to relay
are limited. In the latter case, the nodes have to be assigned to a fixed number of
clusters. Probably the most widespread method used to achieve this is k-means
clustering, which, for example, is used by the GOALE algorithm proposed in
[16]. If multi-level networks are allowed, hierarchical clustering algorithms can
also be used. For example, in [19], cluster-heads aggregate data from cluster
members and forward it to the next level cluster-head. A survey on clustering
algorithms for wireless sensor networks can be found in [20].

One of the challenges of sink placement is the infinite size of the search space;
therefore, the problem is often constrained by restricting the possible positions
of the sinks to a set of candidate locations. If sinks can only be placed at the
locations of the sensor nodes, such as in [18, 19], the problem is reduced to se-
lecting a subset of nodes to be sinks, which we will refer to as a sink selection
problem. The set of candidate locations can also be determined by an algo-
rithm based on the geometry of sensor node positions. A wide variety of such
algorithms have been proposed, for example, finding the intersections of circles
centered at the nodes [6], sampling locations from the intersecting regions of
disks centered at the nodes [9], creating two dimensional grids centered at the
centroids of clusters after the nodes have been clustered [16], or sampling loca-
tions from dominating intersecting regions [10]. The set of candidate locations
can also be pre-specified, i.e., it can be an input parameter of the problem. For
example, this set is an arbitrary set in [12, 17], whereas in [8], a certain number
of pre-specified locations are given from which one has to be selected as the
location of the sink, while the others become the locations of the sensor nodes.

4

Since most sink placement problems are NP-hard, even when they are con-
strained to sink selection, heuristic, metaheuristic and approximation algorithms
are used to solve them in practice. Greedy algorithms [18, 15] and other heuris-
tics employing greedy decisions [12, 10] are probably the most prevalent heuristic
approaches. Among metaheuristics, genetic algorithms are the most often used
[9, 11, 16] as they are likely to produce good solutions, even though they have
no performance guarantees. Besides genetic algorithms, other, more problem
specific metaheuristics can also be used [17]. In [13], a set of procedures is pro-
posed to design approximation algorithms for sink placement problems under
any desired small error bound. Two examples are given, where this framework
can be employed, placement to maximize network lifetime and placement to
maximize network capacity.

What we have discussed so far is static positioning. If the nature of the
application allows the sinks to be relocated and the network to be reconfigured
after it has been deployed, then dynamic placement can be used to improve
network performance; for example, in [21], sinks are periodically relocated to
prolong network lifetime. Node failures can be anticipated by employing re-
active reconfiguration schemes; for example, in [22], an efficient re-clustering
mechanism is proposed to recover sensors from failed clusters.

The main difference between the prior works and our work is that we op-
timize for robustness against adversarial attacks measured in persistence (or
deployment cost under a persistence bound) while none of the prior work did
that. The similarity is that we use greedy heuristics as the problem is hard.

2.2. Robustness metrics

In the literature on wireless sensor networks, vertex- and edge-connectivity
are the most frequently used metrics for measuring the robustness of network
topologies [23, 5, 24, 25, 26, 27]. These metrics take the topology graph as
input and return the minimum number of vertices or edges, respectively, that
have to be removed in order to disconnect the graph. More precisely, a graph
is said to be k-vertex-connected, if it remains connected whenever fewer than
k vertices are removed, and the vertex-connectivity of a graph is the largest k
for which it is k-vertex-connected. The definitions of k-edge-connectedness and
edge-connectivity are similar, with the difference that they are concerned with
the removal of edges, instead of vertices.

Unfortunately, connectivity as a measure of topology robustness has some
weaknesses, which limit its practical usage, especially in adversarial environ-
ments. The basic problem is that the connectivity metrics are only concerned
with whether a graph remains connected or not under an attack of a given max-
imum strength, but in practice, the strength of the attacker, in terms of number
of vertices or edges that he can remove from the network, may be difficult to
estimate. In addition, connectivity metrics are only concerned with the effect of
the smallest effective attack, but they do not shed light on how “scattered” the
graph becomes when it gets disconnected. In real scenarios, it is also important
to characterize how the network fails as the strength (or budget) of the attacker
increases.

5

(a) (b)

Figure 1: Illustration of why connectivity based metrics do not character-
ize topology robustness of wireless sensor networks well enough. The edge-
connectivity of both graphs is 2, and thus, they are equally robust in terms of
edge-connectivity. However, when the two dashed edges are removed, only a
single vertex is separated from the sink in graph (a), while all of the vertices
are separated from the sink in graph (b).

As an example, let us consider Figure 1, where two graphs are shown. Each
graph represents a sensor network, in which the objective is to transfer measure-
ment data from the nodes to the sink, represented by the shaded vertex. Both
of these graphs have an edge-connectivity of 2, and therefore, they are supposed
to be equally robust. Obviously, this is not true, because if the dashed edges are
removed from the graphs, a single vertex is separated from the sink in graph (a),
while all of the vertices are separated from the sink in graph (b).

Another known topology robustness metric, with several theoretical results,
is graph toughness [28]. Toughness measures the minimum ratio of vertices
removed to the number of components in the resulting graph. Unfortunately,
the toughness of a graph is NP-hard to compute, and thus, it is not well-suited
for general practical use, especially when one is concerned with large graphs.

Another similar metric is graph strength, which measures the minimum ratio
of edges removed to the increase in the number of components in a graph [29].
The advantage of graph strength as a robustness metric is that it considers
various attack strengths by default due to the fact that the minimum is taken
over all possible edge removal attacks. In addition, unlike toughness, it can be
computed efficiently.

3. Measuring the robustness of networks

3.1. Our proposed metrics

A common disadvantage of all robustness metrics mentioned above is that
they lack the ability to incorporate the role of sink nodes. The following no-
tion of persistence attempts to fill this hiatus. Its definition is obtained by an
extension of the notion of directed graph strength introduced in [29]. However,
since this notion is substantially different from graph strength defined above, we
renamed it to avoid ambiguity. We also tailored the definition (and the corre-
sponding computation algorithm) to the needs of sensor networks: we can allow
for multiple sinks, attacks against vertices and undirected edges.

6

Consider a directed graph G and suppose that a subset of vertices R ⊆
V (G) is given. Assume that each vertex v needs to communicate with any

arbitrary element of R (that is, an element of R should be reachable from v
through a directed path in G). Furthermore, each arc e is assigned a weight s(e)
that measures the cost of removing (or “attacking”) e. Finally, each node v is
assigned a weight d(v) that measures the loss (or “punishment”) if no element of
R becomes reachable from v. When applied to model sensor networks, elements
of R correspond to sink nodes, the edge weight s(e) represents the difficulty
of jamming the corresponding link e and the node weight d(v) represents the
importance of information collected by v.

For every subset of arcs A ⊆ E(G) let s(A) =
∑

e∈A s(e) and let λ(A)
be the sum of the weights d(v) on those vertices v from which no element of
R becomes reachable after deleting all arcs in A. Obviously, s(A) and λ(A)
can be assumed to be the total attack cost and the total gain of the attacker,

respectively. Accordingly, the smaller the ratio s(A)
λ(A) is, the more efficient the

attack of removing A is. Therefore, it makes sense to define a robustness measure
as the minimum of these ratios.

Definition 1 ((Edge-)persistence). Given a directed graph G, sink nodes
R ⊆ V (G), edge weights s : E(G) → R

+ and node weights d : V (G) → R
+, the

persistence (or edge-persistence) π(G) is defined as

π(G) = min

{

s(A)

λ(A)
: A ⊆ E(G), λ(A) > 0

}

.

For example, consider again the two graphs of Figure 1. Assume in both cases
that the shaded vertex is the (single) sink node, all edge weights s(e) and node
weights d(v) are 1 and all edges are directed both ways. Then for both graphs
the minimum in the above definition is attained at the set of edges entering
the sink node. Therefore π(G) = 1 for graph (a) and π(G) = 2

5 for graph (b).
This coincides with our previous observation that graph (a) is intuitively more
robust than graph (b), and thus, supports our statement that persistence is a
more suitable robustness metric for wireless sensor networks than connectivity.

As mentioned in Section I, attacks against sensor networks are not restricted
to destroying links between the devices (that is, edges of the graph), the devices
themselves (that is, vertices of the graph) can also be the target of an attack.
Therefore, in order to serve the needs of sensor networks, the above definition
should be modified to allow the destruction of both edges and vertices:

Definition 2 (Edge-vertex-persistence). Given a directed graph G, sink
nodes R ⊆ V (G), edge and node destruction costs s : (V (G) ∪ E(G)) → R

+

and node weights d : V (G) → R
+, the edge-vertex-persistence πv(G) should be

defined as

πv(G) = min

{

s(A)

λ(A)
: A ⊆ (V (G) ∪ E(G)), λ(A) > 0

}

,

7

where s(A) =
∑

a∈A s(a) and λ(A) is the sum of weights d(v) on those vertices
v from which no (remaining) element of R is reachable after deleting all edges
and vertices in A. (Naturally, vertices belonging to A also become isolated from
R, so these contribute to the value of λ(A) too.)

Fortunately, computing edge-vertex-persistence can easily be reduced to
computing edge-persistence by vertex splitting, a well-known trick in graph the-
ory: replace each node v by two nodes v1 and v2, add the arc (v1, v2) to G, let
s ((v1, v2)) = s(v), d(v1) = d(v), d(v2) = 0 and let v2 ∈ R if and only if v ∈ R
was originally true; finally, replace each original arc (u, v) by (u2, v1) and set
s((u2, v1)) = s((u, v)). It is fairly easy to see that the edge-persistence of the
obtained graph is the same as the edge-vertex-persistence of the original one.

Furthermore, links in wireless networks can be bidirectional. Therefore, the
definition should be further modified to allow undirected graphs:

Definition 3 (Undirected persistence). Given an undirected graph G, sink
nodes R ⊆ V (G), edge weights s : E(G) → R

+ and node weights d : V (G) →
R

+, the undirected persistence πu(G) is defined as

πu(G) = min

{

s(A)

λ(A)
: A ⊆ E(G), λ(A) > 0

}

,

where λ(A) is the sum of the weights d(v) on those vertices v from which there
is no undirected path to any element of R after deleting all edges in A.

Computing undirected persistence can be reduced to computing persistence
by replacing every edge with two arcs facing opposite directions, having the
attack cost of the original edge. It is easy to see that the persistence of the
obtained graph is the same as the undirected persistence of the original one.

Due to the arguments above, we only consider edge-persistence of directed
graphs in the remainder of the paper.

3.2. Other uses of persistence

3.2.1. Persistence as a measure of robustness against random faults

Persistence can be also used to measure the robustness of a network against
random link faults under some restrictive assumptions. Assume that each link e
malfunctions independently with probability p(e). Assign to each edge e ∈ E(G)
of the representing graph − log p(e) weight. Then, the persistence of the graph
measures

π(G) = min

{

s(A)

λ(A)
: A ⊆ E(G), λ(A) > 0

}

= min

{
∑

e∈A − log p(e)

λ(A)
: A ⊆ E(G), λ(A) > 0

}

= min

{

− log
∏

e∈A p(e)

λ(A)
: A ⊆ E(G), λ(A) > 0

}

= min

{

− log p(A)

λ(A)
: A ⊆ E(G), λ(A) > 0

}

, (1)

8

where p(A) is the probability that all links in A malfunction. Intuitively, this
means that the probability of an event decreases exponentially with its impact.

3.2.2. Persistence as a measure of network lifetime

In [30], the following model is proposed for measuring the lifetime of wireless
sensor networks:

Consider a directed graph G(N,A) where N is the set of all nodes and A is
the set of all directed links (i, j) where i, j ∈ N . Let Si be the set of nodes that
are in the transmission range of node i. Each node has the initial battery energy
of Ei, and the amount of energy consumed in transmitting a packet across link
(i, j) is denoted by eij where j ∈ Si.

The goal is to maximize the time T until which the information generated
can be delivered to one of the set of gateway nodes D ⊂ N . Let Qi(T) be the
number of packets generated at a sensor node i ∈ N \D until T , and let qij(T)
be the total number of packets routed through link (i, j) ∈ A. A time T is
feasible if there exists a set of non-negative integers qij(T) for all links (i, j) ∈ A
satisfying the following constraints. First, the conservation of flow constraint is

∑

j: i∈Sj

qji(T) +Qi(T) =
∑

k∈Si

qik(T), ∀i ∈ N \D. (2)

Second, the total energy constraint is

∑

j∈Si

eijqij(T) ≤ Ei, ∀i ∈ N \D. (3)

For a set of nodes V , assume that each node i ∈ V has the amount of
information generated until T , Qi(T), which needs to be delivered out of V .
For a node i ∈ V , let ei

V be the least energy expenditure for transporting
an information unit out of V . If there is no outgoing link of i through which
information can be forwarded out of V , ei

V = ∞ by convention. The necessary
feasibility condition is

∑

i∈V

Qi(T) ≤
∑

i∈V

Ei

eiV
. (4)

Unfortunately, the necessary condition is not sufficient. However, if the
energy expenditure through all the outgoing links of a sensor are the same,
then the condition is sufficient as well. In this case, maximum lifetime becomes
equivalent with undirected-vertex-persistence.

3.3. Computing persistence

It is shown in [29] that computation of persistence can be performed using
a maximum flow algorithm1. In particular, assume that besides the input data

1In this subsection we build on the basics of network flow theory; the required background
can be found in most introductory graph theory textbooks.

9

used above (that is, G, R ⊆ V (G), s : E(G) → R
+ and d : V (G) → R

+) a
constant π0 is also given: π0 represents a required persistence value and the
task is to decide if π(G) ≥ π0 holds.

For any set X ⊆ V (G), denote by δ(X) the set of edges leaving X and
let δs(X) =

∑

{s(e) : e ∈ δ(X)}. It is easy to see that the minimum in the
definition of π(G) is attained at a set A = δ(X) for a suitable X ⊆ V (G) \ R.
(Indeed, “spare” edges could be deleted from A without increasing the ratio
s(A)/λ(A).) Of course, A = δ(X) implies s(A) = δs(X) and λ(A) = d(X)
(where d(X) =

∑

v∈X d(v)). Therefore π(G) ≥ π0 is equivalent to saying that
δs(X)− π0 · d(X) ≥ 0 holds for all X ⊆ V (G) \R. Adding π0 · d(V (G)) to both
sides we get that π(G) ≥ π0 is equivalent to

δs(X) + π0 · d(X) ≥ π0 · d(V (G)) (5)

for all X ⊆ V (G) \R (where X = V (G) \X).
Consider the following maximum network flow problem. Add two new nodes,

s∗ and t∗ to G; for each v ∈ V (G) add a new arc from s∗ to v and set its capacity
to π0 · d(v); for each v ∈ R add a new arc from v to t∗ and set its capacity
to infinity; finally, set the capacity of each original arc of G to s(e). Denote
the obtained network by G∗. According to the well-known “max-flow-min-cut”
theorem of Ford and Fulkerson, the maximum flow in the obtained network from
s∗ to t∗ is equal to the minimum cut capacity, that is, the minimum of the sum
of capacities on arcs leaving a set X, where minimum is taken over all subsets
X ⊆ V (G∗) for which s∗ ∈ X and t∗ /∈ X. Obviously, the capacity of the cut
X is δs(X) + π0 · d(X) if X ∩ R = ∅ (and infinity otherwise). Comparing this
with Equation 5 above, we get that π(G) ≥ π0 is equivalent to the existence of
a flow of value π0 · d(V (G)) from s∗ to t∗ in the above constructed network; or,
in other words, a flow that satures all arcs leaving s∗.

Consequently, the question of π(G) ≥ π0 can be answered by a maximum
flow algorithm. From this, the actual value of π(G) (that is, the maximum π0

for which the above described flow exists) can be determined by binary search
(which yields a polynomial time algorithm if all input numerical data is assumed
to be integer). In [29] a refinement of this approach is also given: it is shown
that π(G) can be determined by at most |V (G)| maximum flow computations
(even for arbitrary input data); we disregard the details here due to lack of
space.

4. The sink selection problem and its complexity

Based on the above defined robustness metric π(G), in this section, we for-
malize the problem of optimal selection of sink nodes in a network with a given
topology.

4.1. The sink selection problem

We assume that assigning the sink role to a node v has some cost c(v) result-
ing from the establishment of an external connection with the node, regularly

10

visiting the node for data collection, etc. We call this cost the selection cost of
the sink, and we assume that the cost of assigning the sink role to a set of nodes
is simply the sum of selection costs of the nodes in the set. We also assume
that the network topology is given and our task is to select the sink vertices
such that the persistence of the resulting network configuration is above a given
threshold, while the total selection cost of the sink nodes is minimized. This
models the design of a wireless sensor network with strict security requirements,
but a flexible budget.

According to the above, the sink selection problem is formalized as follows:

Definition 4 (Sink selection with required persistence).
INSTANCE: Directed graph G, edge weights s : E(G) → R

+, node weights
d : V (G) → R

+, sink selection costs c : V (G) → R
+, and required persistence

π0 ∈ R
+.

SOLUTION: A subset R ⊆ V (G) such that the persistence π(G) of G is at
least π0 with R as its sink nodes.

MINIMIZE: Selection cost of subset R, i.e.,
∑

v∈R c(v).

Obviously, the variant of the sink selection problem where an upper bound
on the total sink selection cost is given and the persistence of the configuration
is to be maximized is also sensible. We disregard this version of the problem,
we restrict ourselves to mentioning that any algorithm to solve one of the two
versions can also be used to solve the other one by binary search.

4.2. Sink selection example

In this subsection, we present a motivating example of why sinks should be
selected based on maximizing persistence instead of maximizing connectivity.

(a) (b)

Figure 2: An example network, where sink selection based on maximizing per-
sistence and maximizing connectivity lead to very different results. In selection
(a), only one link has to be removed in order to disconnect a node, but the
persistence of the network is 1, whereas in selection (b), two links have to be
removed, but the persistence of the network is only 0.4.

Figure 2 shows two possible sink selections in the same network, one max-
imizing persistence and one maximizing connectivity. The value of every node
and the attack cost of every link is one and the selected sinks are represented

11

by shaded nodes. The sink nodes, in addition to the links in the figure, are con-
nected to a center as well; therefore, the connectivity of the network measures
the number of links that have to be removed in order to disconnect a non-sink
node. In selection (a), only one link has to be removed in order to disconnect
a node, whereas in selection (b), two links have to be removed. However, the
selections have a persistence of 1 and 0.4, respectively. The dashed edges are
optimal attacks against the network. In case of selection (a), only two nodes are
separated if the attack is carried out, whereas in case of selection (b), five nodes
are separated. If the network application tolerates the loss of a few nodes, then
selection (a) is clearly the better choice.

4.3. Complexity of the sink selection problem

In this subsection, we prove that the Sink Selection problem is NP-hard. To
this end, we show that the Minimum Set Cover Problem, one of the well-known
NP-hard problems, can be reduced to it. The (decision version of the) Minimum
Set Cover problem is defined as follows.

Definition 5 (Minimum Set Cover).
INSTANCE: A finite set U = {u1, u2, . . . , un}, a collection of its subsets

A = {A1, A2, . . . , Am} (Ai ⊆ U for all 1 ≤ i ≤ m), and a positive integer r.
TASK: Decide if it is possible to choose at most r subsets from A that cover

U ; that is, if the subsets Ai1 , Ai2 , . . . , Aip can be chosen such that p ≤ r and
⋃p

j=1 Aij = U . (The chosen subsets Aij are said to form a set cover of size p.)

The decision version of the Sink Selection problem is defined in the most
natural way.

Definition 6 (Sink Selection with Required Persistence (decision version)).

INSTANCE: Directed graph G, edge weights s : E(G) → R
+, node weights

d : V (G) → R
+, sink selection costs c : V (G) → R

+, required persistence π0 ∈ R
+

and maximum cost c0 ∈ R
+.

TASK: Decide if a subset R ⊆ V (G) exists such that π(G,R) ≥ π0 and
∑

v∈R c(v) ≤ c0.

In what follows, we will use the basic concepts of algorithmic complexity
theory without further explanation or reference. However, to assist those un-
acquainted with these, we just remark that the basic idea is very simple even
by common sense: roughly speaking, the above mentioned reduction shows that
the Minimum Set Cover problem is a special case of the Sink Selection problem.
Since the former is known to be a hard problem (whatever the precise meaning
of that is), this obviously makes the latter one also hard.

Theorem 1. The Sink Selection problem is NP-complete.

12

Proof. The problem is obviously in NP since if R is given then checking if
π(G,R) ≥ π0 can be done in polynomial time according to [29] (and checking if
∑

v∈R c(v) ≤ c0 is trivial).
As mentioned above, we show NP-hardness by reducing the Minimum Set

Cover problem to the Sink Selection problem. So assume that an instance of the
Minimum Set Cover problem (that is, U = {u1, . . . , un}, A = {A1, . . . , Am} and
r) is given. Obviously, we can assume that

⋃m

j=1 Aj = U (otherwise there exists
no set cover at all) and that r ≤ m (otherwise the problem is trivial). From
this, we construct an instance of the Sink Selection problem in the following
way:

1. Let V (G) = U ∪ A; that is, to each element ui ∈ U and to each given
subset Ai ∈ A corresponds a vertex of G.

2. Let E(G) = {(ui, Aj) : ui ∈ U,Aj ∈ A, ui ∈ Aj}; that is, whenever
ui ∈ Aj holds for an element ui ∈ U and Aj ∈ A, we introduce a directed
edge from ui to Aj in G. (Consequently, G is a directed bipartite graph.)

3. Let d(ui) = 1 and c(ui) = r + 1 for every ui ∈ U , let d(Aj) = 0 and
c(Aj) = 1 for every Aj ∈ A and let s(e) = 1 for every e ∈ E(G).

4. Finally, let π0 = 1 and c0 = r.

We have to show that there exists a set cover A0 ⊆ A of size at most r if
and only if there exists a sink selection R ⊆ V (G) such that π(G,R) ≥ π0 = 1
and

∑

v∈R c(v) ≤ c0 = r.
First assume that a sink selection R with the above properties is given. Since

the costs of the vertices in U are all r+1, R only contains vertices from A. We
claim that A0 = R forms a set cover. Assume that this is not true. Then
there is an element ui ∈ U not covered by R; that is, ui /∈

⋃

{Aj : Aj ∈ R}.
Consequently, no element of R is reachable from ui in G, therefore λ(∅) ≥ 1
holds by d(ui) = 1. Since obviously s(∅) = 0, this implies π(G,R) = 0 (by
s(∅)
λ(∅) = 0), a contradiction. So R is a set cover and its size is obviously at most

r (since c(Aj) = 1 for every Aj ∈ A).
Now assume that a set cover A0 of size p ≤ r is given and let R = A0.

We claim that R is a sink selection in G that fulfils the above requirements.
Obviously,

∑

v∈R c(v) = p ≤ r. To show π(G,R) ≥ 1, let Y ⊆ E(G) be any
subset of edges; we need to prove that s(Y) ≥ λ(Y). Obviously, s(Y) = |Y | and
λ(Y) = |X|, where X ⊆ U is the set of vertices in U from which no element of R
is reachable after removing Y . (Observe that X is not the set of all vertices of
G from which R is not reachable after removing Y : vertices in A \R also have
this property. However, these do not contribute to λ(Y) as they have a weight
of 0.) So |Y | ≥ |X| is to be proved. However, this immediately follows from
the fact that since R is a set cover, for every ui ∈ X there exists an Aj ∈ R
such that ui ∈ Aj , so we can assign a separate edge in Y to each element of X
(namely, the one that goes from ui to Aj).

We remark that the construction of the above proof could be modified in
the following way: instead of setting c(ui) = r + 1 for every ui ∈ U , ui could
be replaced by r + 1 vertices, each with a cost of 1 (and each connected to

13

Aj , whenever ui ∈ Aj). It is easy to verify that the proof goes through with
the modified construction as well, which shows that the Sink Selection problem
remains to be NP-complete even under the restriction that c(v) = 1 for every
v ∈ V (G).

The essence of the above proof is that in the described construction set covers
of size r and proper sink selections of total cost r are basically the same. This
simple fact has an important consequence on the approximability of the Sink
Selection problem.

Theorem 2. Assuming that P 6= NP , there exists a constant c > 0 such that

there is no polynomial time algorithm that finds a sink selection of total cost at

most c log log v ·OPT , where v is the number of vertices in the graph and OPT
denotes the minimum total cost of a sink selection.

We remark for the benefit of those unacquainted with algorithmic complexity
theory that P 6= NP is a widely accepted conjecture; if this were not true,
then there would be a polynomial time algorithm for every NP-hard problem.
An obvious corollary of the above theorem is that there is no constant factor
approximation algorithm for the sink selection problem unless P = NP .

Proof. Assume that there is an algorithm P that finds a sink selection of total
cost at most c log log v · OPT for some constant c. Then if an instance U =
{u1, . . . , un}, A = {A1, . . . , Am} of the (optimization version of the) Minimum
Set Cover problem is given, P can be applied on the construction given in the
above proof. Then, if v denotes the number of vertices in the constructed graph,
v = n+m ≤ n+ 2n ≤ 2n+1 holds. Since, as remarked above, sink selections in
the constructed graph are essentially the same as possible solutions of the given
Minimum Set Cover instance, OPT also denotes the minimum size of a set cover
for this. Therefore P finds a set cover of size at most c log log 2n+1 · OPT =
c log(n + 1) · OPT . However, Raz and Safra [31] proved that if P 6= NP then
there is no polynomial time algorithm that finds a set cover of size at most
c1 log n · OPT , where c1 > 0 is an appropriate constant. This immediately
implies the existence of the required c.

5. Algorithms for solving the sink selection problem

In this section, we show that the optimal selection can be found by solving
an integer program and we also introduce more efficient heuristic algorithms
that approximate the optimal solution reasonably well. Performance evaluation
and quantitative comparison of these algorithms is provided in Subsection 8.1.

5.1. Integer programming model for the sink selection problem

To formulate the sink selection problem as an integer program, we assign a
binary variable r(v) to each node v: the value of r(v) is 1 or 0 if v belongs or
does not belong to R, respectively. The formulation relies on the construction
presented in Subsection 3.3: π(G) ≥ π0 is true if and only if there exists a flow in

14

the network G∗ described there that saturates all edges (s∗, v). Correspondingly,
we assign a variable f(e) to each edge e ∈ E(G∗) to measure the flow on e.
As it is natural in network flow theory, all the constraints ensuring that f
is a flow (that is, capacity constraints and flow preservation constraints) can
straightforwardly be formalized as linear constraints.

The only difference from the construction described in Subsection 3.3 is that
the set of sink nodes R is not known in advance. Therefore we assume that an arc
from v to t∗ exists from each node v ∈ V (G) and we ensure that the capacity
of the arc (v, t∗) is ∞ or 0 for sink nodes and non-sink nodes, respectively.
This is achieved by imposing the inequality f((v, t∗)) ≤ bignum · r(v) on each
edge (v, t∗), where bignum is a sufficiently large constant (e.g., bignum = π0 ·
d(V (G)), the sum of the capacities on all arcs leaving s∗ suffices, as it is an
upper bound on the maximum flow value even if all vertices are assumed to be
sinks).

With respect to the above, the integer program is the following:
Constants:

• bignum: a sufficiently large number

• s((u, v)): weight of edge (u, v)

• d(v): weight of node v

• c(v): selection cost of node v

• π0: required persistence

Variables:

• r(v) ∈ {0, 1} for all v ∈ V (G)

• f(e) ∈ R for all e ∈ E(G∗)

Minimize:
∑

v∈V (G) c(v) · r(v)
Constraints:

1. ∀v ∈ V (G) : f((v, t∗)) ≤ bignum · r(v)

2. ∀e ∈ E(G) : f(e) ≥ 0

3. ∀e ∈ E(G) : f(e) ≤ s(e)

4. ∀v ∈ V (G) :
∑

(u,v)∈E(G)

f((u, v)) =
∑

(v,u)∈E(G)

f((v, u))

5. ∀v ∈ V (G) : f((s∗, v)) ≥ π0 · d(v)

Constraints 2, 3 and 4 ensure that f is a flow: Constraints 3 and 4 correspond
to capacity and flow preservation constraints, respectively. Note that capacity
constraints are not imposed on (s∗, v) type arcs (as opposed to what was said
in Subsection 3.3); obviously, these can be omitted as they would not affect
the optimum solution. On the other hand, Constraint 5 ensures that all edges

15

(s∗, v) are saturated. Finally, the role of Constraint 1 was already explained
above.

Obviously, the above integer program does not yield an efficient algorithm
for solving the sink selection problem. However, it makes it possible to obtain
the optimum solution for relatively small problem instances and thus test the
heuristics presented in the following subsections and compare the search space
reduction technique presented later to other techniques.

5.2. Our proposed greedy algorithm

The exponential time complexity of solving the above integer program lim-
its its practical applicability. For this reason, in this subsection, we propose
an efficient greedy algorithm as a heuristic approach to find sub-optimal, but
reasonably good solution to the sink selection problem.

The algorithm starts with the set of selected sinks R as the empty set. In
each step, a new vertex v is added to R; v is chosen in a simple, but sensible
way: such that the ratio of the gain in persistence by adding v to R to the
selection cost c(v) is maximum. The algorithm stops when the persistence π(G)
of the network with set of sinks R is at least the required persistence π0.

To formally describe the algorithm, denote by π(G,R) the persistence of the
network G with R as its set of sink nodes. Then our greedy algorithm for sink
selection with required persistence is the following:

1. R := ∅

2. let v ∈ V (G) \R be a vertex for which the maximum

max
v∈V (G)\R

π(G,R ∪ {v})− π(G,R)

c(v)

is attained and let R := R ∪ {v}

3. If π(G,R) ≥ π0 then return R; otherwise continue from Step 2.

We emphasize that, obviously, the above algorithm runs in polynomial time
since it makes at most |V (G)| iterations and each iteration requires at most
|V (G)| persistence computations.

5.3. Our proposed genetic algorithm

For a higher number of nodes, even the greedy algorithm’s computational
complexity may be too high; therefore, in this subsection, we propose a genetic
algorithm as a more efficient alternative to the greedy algorithm.

In our proposed genetic algorithm, an individual member of the population
represents a solution to the sink selection problem. To make the evolutionary
process more efficient, we have chosen to encode not only the set of nodes which
are selected, but also the preference for each node, including those that are not
selected by the given solution. These preferences can be represented by the order
in which the nodes are picked until the the given persistence value is reached.
If this representation is used, then it is not necessary to record which nodes are

16

V5 V7 V2 V4 V6 V1 V8 V3

(a)

V5 V7 V2 V4

V5 V2

V7 V5 V4

...

...

...

(b)

Figure 3: Illustration of how (a) mutation and (b) crossbreeding are imple-
mented.

selected as the number of necessary nodes can be determined from the order of
preference. Therefore, the solution domain is simply the set of node sequences.

We have chosen the fitness of each solution to be, naturally, the cost of the
given solution. We have implemented two genetic operators (see Figure 3 for
illustrations): mutation and crossover. A mutation is a reordering of the nodes,
which is achieved by selecting a fixed number of random pairs from the sequence
and swapping the elements of each pair. A crossover is the combination of two
node sequences, which is achieved by iteratively picking the most preferred, but
not yet picked node from two sequences in turns.

As the genetic operators are very simple, the key issue of our algorithm is the
efficient evaluation of the fitness function. The following algorithm is proposed
for this:

1. Add a source vertex s∗ and a sink vertex t∗ to the graph. For each v ∈
V (G), add a new arc from s∗ to v and set its capacity to π0 ·dv. Let n = 1.

2. Add a new arc from the nth vertex to t∗ with infinity capacity.

3. Find a maximum flow in this network by augmenting the flow values of
the previous iteration.

4. If the maximum flow is at least
∑

v∈V (G) π0 ·dv, then the cost of the given

solution is
∑n

i=1 ci. Otherwise, let n := n+ 1 and continue from Step 2.

The construction of the graph in Step 1 is the same as in Section 3.3, except
for not adding arcs from sinks to the super sink as the former are not known in
advance in this case. In Step 3, the maximum flow of the previous iteration is
reused, which makes the algorithm very efficient: The complexity of determining
the number of necessary nodes is equal to the complexity of testing whether a
graph has a given persistence, which is very simple compared to computing
persistence. Therefore, we can efficiently create and evaluate a large number of
solutions. The algorithm terminates after a fixed number of generations.

6. The sink placement problem and its complexity

In this section, we relax some of our previous restrictions on the design of
the deployment configuration and allow sinks to be placed anywhere; however,
we still consider the placement of non-sink nodes and the links between them
to be given. Therefore, our goal is to design a robust sink placement for a given

17

network topology. By sink placement, we mean a set of locations where sink
nodes have to be placed.

6.1. The sink placement problem

Before formalizing the sink placement problem, we first have to establish a
sink node model and define the persistence of a placement:

Definition 7 (Persistence of a placement). Let G be a directed geometric
graph, where V (G) is a set of points in the Euclidean plane and E(G) is an
arbitrary subset of V 2(G) (i.e., the edges of the graph do not have to follow
any geometric rule). Let s : E(G) → R

+ be edge weights, let d : V (G) → R
+

be node weights, and let D ∈ R
+ be a fixed sink transmission radius. The

persistence of a placement R, where R is a set of points in the Euclidean plane,
for graph G, denoted by πp(G,R), is the persistence of the graph G′ with R as
its sinks, where

1. V (G′) = V (G) ∪R

2. E(G′) = E(G) ∪ {(v, r) : v ∈ V (G) ∧ r ∈ R ∧ distance(v, r) ≤ D}

3. ∀(v,r) ∈ V (G)×R s(v, r) = 1

4. ∀r∈R d(r) = 0.

The definition establishes our model for sink nodes, in which sinks have
uniform transmission radii (2) and zero value (4) and the links connected to them
have uniform weights (3). This is a realistic model for sensor networks, where
typically a large number of similar nodes are deployed. The direction of the
links connected to the sinks can be surprising at first since our goal is to model
wireless networks, where links are bidirectional. However, we have seen that the
undirected persistence of a graph is equal to the directed persistence with the
undirected edges replaced by two directed edges facing opposite directions. In
addition, edges leaving sinks can be omitted as no traffic has to be carried from
a sink. Therefore, the direction of the sink edges is appropriate for our model.
Formalizing the persistence of a placement this way simplifies our algorithm
presented in Subsection 7.2.

Using the above definition of the persistence of a placement, the robust sink
placement problem can be formalized as follows:

Definition 8 (Sink Placement with Required Persistence).
INSTANCE: Directed graph G, where V (G) is a set of points in the Eu-

clidean plane, edge weights s : E(G) → R
+, node weights d : V (G) → R

+, sink
transmission radius D, and required persistence π0 ∈ R

+.
SOLUTION: A set of points R in the Euclidean plane such that πp(G,R) ≥

π0.
MINIMIZE: Number of sinks required by the placement, i.e., |R|.

18

6.2. Complexity of the sink placement problem

As the sink placement problem is a generalization of the sink selection prob-
lem with uniform selection costs, it is obviously NP-hard.

To prove this, we introduce the decision version of the Sink Placement with
Required Persistence problem:

Definition 9 (Sink Placement with Required Persistence (decision version)).

INSTANCE: Directed graph G, where V (G) is a set of points in the Eu-
clidean plane, edge weights s : E(G) → R

+, node weights d : V (G) → R
+, sink

transmission radius D, required persistence π0 ∈ R
+ and maximum number of

sinks c0 ∈ R
+.

TASK: Decide if it is possible to place at most c0 sinks in the Euclidean
plane such that πp(G,R) ≥ π0.

Theorem 3. The Sink Placement with Required Persistence problem is NP-

hard.

Proof. We show NP-hardness by reducing the problem of Sink Selection with
Required Persistence and Uniform Selection Costs to the problem of Sink Place-
ment with Required Persistence. So assume that an instance of the Sink Selec-
tion problem (that is, G, s : E(G) → R

+, d : V (G) → R
+, c0 and π0) is given.

We can assume that π0 < s(E(G))
minv∈V (G):d(v)>0{d(v)}

. Otherwise, the only feasible

solution to the problem is to select every v ∈ V (G) : d(v) > 0 and checking
whether the cost of this selection is lower than c0 can be done in polynomial
time. From the instance of the Sink Selection problem we construct an instance
of the Sink Placement problem (that is, G′, s′ : E(G′) → R

+, d′ : V (G′) → R
+,

D, c′0 and π′
0) in the following way:

1. Let V (G′) = V (G), E(G′) = E(G), d′ = d and c′0 = c0.

2. Let D = 1 and position the vertices of G′ on the plane such that the
distance between each pair of vertices is greater than 2.

3. Let s′ = βs, where β =
minv∈V (G):d(v)>0{d(v)}

s(E(G))
∑

v∈V (G) d(v)
.

4. Finally, let π′
0 = βπ0.

Let λG(A) and λG′(A) denote the value of λ(A) in G and G′, respectively.
We have to show that there exists a selection R ⊆ V (G) such that π(G,R) ≥ π0

and
∑

r∈R c(r) ≤ c0 if and only if there exists a sink placement R′ such that
πp(G

′, R′) ≥ π′
0 and |R′| ≤ c′0.

First assume that a sink placement R′ with the above properties is given.
Let R be the subset of vertices that have at least one sink in their proximity. We
claim that R is a feasible selection, i.e., π(G,R) ≥ π0. Assume that this is not

true. Then there is an A ⊆ E(G) attack for which s(A)
λG(A) < π0 holds. If a vertex

can not reach any r ∈ R sink in G when A is removed, then the same vertex can
not reach any r′ ∈ R′ sink in G′ either as any path leading to a sink necessarily

19

goes through an r ∈ R. Therefore, λG(A) ≤ λG′(A). Since s′(A) = βs(A), this

implies the contradiction s′(A)
λG′ (A) ≤

s′(A)
λG(A) =

βs(A)
λG(A) < βπ0 = π′

0.

Now we have to show that
∑

r∈R c(r) ≤ c0. Since the distance between each
pair of vertices is greater than 2, at most one vertex is connected to every sink.
Therefore, R has at most |R′| vertices and

∑

r∈R c(r) =
∑

r∈R 1 ≤ |R| ≤ c0
holds.

Now assume that a sink selection in R with the above properties is given. Let
R′ be a sink placement constructed from the positions of the vertices in R. We
claim that R′ is a feasible placement, i.e., πp(G

′, R′) ≥ π′
0. Assume that this is

not true. Then there is an A ⊆ E(G′) attack for which s′(A)
λG′ (A) < π′

0 holds. First,

observe that A does not contain any edges connected to sinks, i.e., A ⊆ E(G).
Otherwise, the s′(A) cost of the attack would be at least 1 and, since λG′(A) ≤
∑

v∈V (G) d(v), the ratio
s′(A)
λG′ (A) ≥

1∑
v∈V (G) d(v)

= β s(E(G))
minv∈V (G):d(v)>0{d(v)}

> βπ0 =

π′
0. If a vertex v can not reach any r′ ∈ R′ sink in G′ when A is removed, then

v can not reach any r ∈ R sink in G either when A is removed. Otherwise,
there would be a path in G from v to an r ∈ R, but then this path could be
supplemented with an edge leading to a sink r′ ∈ R′ and, therefore, v could reach
an r′ ∈ R′ sink even when A is removed. Consequently, λG′(A) ≤ λG(A). Since

s(A) = 1
β
s′(A), this implies the contradiction s(A)

λG(A) ≤ s(A)
λG′ (A) = 1

β

s′(A)
λG′ (A) <

1
β
π′
0 = π0.

Finally, we have to show that |R′| ≤ c0. This is obvious as |R′| = |R| =
∑

r∈R 1 =
∑

r∈R c(r) ≤ c0.

7. Algorithm for solving the sink placement problem

In this section, we introduce a technique, similar to the one in [10], which
reduces the infinite search space of possible placements to a finite set that always
includes an optimal solution. We also present an algorithm which can be used
to find an optimal placement in the reduced search space using an arbitrary
algorithm for finding an optimal selection.

7.1. Our proposed search space reduction technique

To simplify our definitions, we first introduce the concept of single sink
coverable sets:

Definition 10 (Single sink coverable set). A set of points W in the Eu-
clidean plane is single sink coverable for a transmission radius D, if ∃ point r
in the plane, such that ∀ w ∈ W : distance(w, r) ≤ D, i.e., the points can be
covered by a disk of radius D.

We reduce the infinite search space of possible placements by restricting the
positions of the sink nodes to a set of candidate locations. Contrary to most
candidate location sets proposed in the literature, the subsets of our set always
include an optimal solution; therefore, we call it an optimal set of candidate
locations:

20

Definition 11 (Optimal set of candidate locations). Given a geometric graph
G and a sink transmission radius D, an optimal set of candidate locations

Rcandidate is a set of positions which includes exactly one position covering every
inclusion-maximal single sink coverable subset of V (G) for D, i.e., every single
sink coverable set of node positions that is not included in a larger single sink
coverable set.

We will prove that (1) the subsets of an optimal set of candidate locations
always include an optimal placement and that (2) an optimal set of candidate
locations can be found in polynomial time.

Theorem 4. The subsets of an optimal set of candidate locations include an

optimal placement for every persistence requirement.

Proof. Suppose that R′ is an optimal sink placement for a given persistence
requirement. Let the set of nodes which are covered by an r′ ∈ R′ node be
denoted by N(r′). Obviously, N(r′) is a single sink coverable set. If N(r′) is
an inclusion-maximal single sink coverable set, then there is an r ∈ Rcandidate

which covers exactly N(r′); otherwise, there is an r ∈ Rcandidate which covers
all nodes covered by r′ and some others as well. It is easy to see that if we
substitute r′ with r, then the solution still satisfies the persistence requirement.

Therefore, by substituting every r′ 6∈ Rcandidate with an appropriate r ∈
Rcandidate, we can obtain an R ⊆ Rcandidate which satisfies the persistence re-
quirement and for which |R| = |R′|.

Before introducing our polynomial time algorithm for finding an optimal
set of candidate locations, we first prove that the size of the optimal set is
polynomial in the number of nodes:

Theorem 5. There exists an optimal set of candidate locations with cardinality

O
(

|V (G)|2
)

.

Proof. (see Acknowledgements for credit): We prove the statement by as-
signing a pair of its points to each inclusion-maximal single sink coverable set
injectively (that is, each pair of points in V (G) will be assigned to at most one
inclusion-maximal single sink coverable set). This will obviously imply that the

number of inclusion-maximal single sink coverable sets is at most
(

|V (G)|
2

)

and,
therefore, choosing a corresponding center for each will provide the required
optimal set of candidate locations.

So assume that an inclusion maximal single sink coverable set Z and a disc
C of radius D covering Z is given. Now push C upwards (that is, to the positive
direction of the y-axis) without losing any point of Z until (at least) one point
of Z is on the lower semicircle of the boundary of C; denote this point by p.
Now, if p is left from the vertical diameter of C then rotate C around p counter-
clockwise without losing any point of Z until (at least) one further point of Z is
on the semicircle of the boundary of C that is right from the diagonal passing
through p. If, on the other hand, p is right from (or on the) vertical diameter of

21

C then do the rotation clockwise until (at least) one further point of Z is on the
semicircle of the boundary of C that is left from the diagonal passing through
p. Denote the thus found second point of Z on the boundary of C by q.

Now assign the pair {p, q} to Z. The above construction implies that out
of the (at most) two discs of radius D whose boundary contains p and q, Z is
contained in the one whose center is above the midpoint of the line segment p, q.
Therefore p and q uniquely determine Z and thus the theorem is proved.

We remark that a fairly simple construction shows that the above theorem
is best possible, that is, the size of an optimal set of candidate locations can be
as large as constant times |V (G)|2; we omit the details here.

Our algorithm for finding an optimal set of candidate locations is based on
the ideas behind the above proof. Given a set of node positions V (G) and a sink
transmission radius D, the following algorithm finds an optimal set of candidate
locations:

1. Let Rcircumcenters = ∅.

2. For every {p, q} ∈ V (G)2 of distance at most 2D, out of the two intersec-
tion points of the perpendicular bisector of p and q and the circle of radius
D around p, add the one to Rcircumcenters that is above (or not below) the
midpoint of p and q.

3. Let Rcandidate = ∅.

4. For every r ∈ Rcircumcenters,

(a) if ∃r′ ∈ Rcandidate : N(r) ⊆ N(r′) then continue with the next itera-
tion,

(b) otherwise, for every r′′ ∈ Rcandidate, if N(r′′) ⊆ N(r) then remove r′′

from Rcandidate

(c) and add r to Rcandidate.

Obviously, the above algorithm runs in polynomial time. The correctness of
the algorithm follows readily from the proof of Theorem 5.

In practice, the maximal density of the nodes (i.e., the maximal number of
nodes in a given area) is usually limited. It is easy to see that the number of
candidate locations is O (|V (G)|) in this case: For every node, the number of
nodes nearer than 2 ·D is limited; therefore, the number of maximal single sink
coverable sets containing the node is less than a certain constant. Since this
holds for each |V (G)| node, the above claim is obviously true. Our experimen-
tal results in Subsection 8.2 show that, in practice, the number of candidate
locations is indeed linear in the number of nodes.

7.2. Our proposed placement algorithm

Based on our proposed search space reduction technique, in this subsection,
we introduce an algorithm which solves the problem of sink placement with
required persistence using an existing algorithm for solving the problem of sink
selection with required persistence.

Let us assume that each candidate location is used only once, i.e., no two
sink nodes are to be placed at the same location. This is a realistic assumption

22

as more than one sink node is required at a single location only if the sink nodes
themselves are too vulnerable. This would indicate that the required persistence
goal is not met because the devices are not robust enough, not because the
network topology is vulnerable.

Given an algorithm A for sink selection, the following algorithm solves the
sink placement problem:

1. Find an optimal set of candidate locations Rcandidate.

2. Let G′ be a graph defined as the following:

• V (G′) := V (G) ∪Rcandidate

• E(G′) := E(G) ∪ {(v, r) : v ∈ V (G) ∧ r ∈ R ∧ distance(v, r) ≤ D}

• ∀(v,r) ∈ V (G)×R s(v, r) := 1.

• ∀v∈V (G) c(v) := ∞
∀v∈Rcandidate

c(v) := 1 and d(v) = 0

3. Find an optimal sink selection Ropt in G′ with required persistence π0

using A.

4. Output Ropt as the optimal set of points for sink placement.

First, we prove that the set of feasible selections in G′ is equal to the set of
feasible placements restricted to Rcandidate in G.

Theorem 6. Given an R ⊆ Rcandidate, π(G
′, R) ≥ π0 if and only if πp(G,R) ≥

π0.

Proof. The graph G′ constructed in the above algorithm and the graph con-
structed in Definition 7 are identical except for the additional nodes R =
Rcandidate \ R in G′. By showing that the addition of these nodes does not
affect the persistence of a graph, we can prove that the persistence of G′ with
selection R is equal to that of G with placement R. Consider an optimal attack
A in G′. First, A does not contain any edge connected to a node in R since
these edges are all directed towards nodes in R and, therefore, no path leading
to a sink can contain any of these edges. Second, the nodes in R do not affect
the overall weight of nodes separated by any attack as their weights are all set
to zero. Therefore, the set of optimal attacks and the ratios of overall costs to
overall separated weights for these attacks are the same for the two graphs.

Since ∀v∈V (G) c(v) = ∞, any selection in G′ including a v /∈ Rcandidate has
infinite cost. Therefore, if there is a feasible placement for G then A always
selects an R ⊆ Rcandidate.

As A selects a minimum set of nodes, Ropt is an optimal solution to the
problem of placement with required persistence π0 in G constrained such that
nodes can only be placed at Rcandidate.

Corollary 1. The above algorithm finds an optimal solution to the problem of

sink placement with required persistence.

23

The claim of this corollary readily follows from the above and Theorem 4.
The choice of the algorithm A for sink selection is completely arbitrary. If

the goal is to find an approximate solution only, then even polynomial time
algorithms can be used. In this case, as the number of candidate locations and
the time needed to enumerate them are also polynomial, the total running time
of the algorithm is polynomial as well.

7.3. Other applications of our search space reduction technique

Our technique can be also applied to problems other than placement with
required persistence. In fact, it can be used for any problem where sinks with
fixed radii have to be placed so that a measure based only on the topology of
the network is maximized.

In the following, we list a few examples where our technique could be used
as an improvement:

• In [9], a similar reduction technique is proposed, which determines the
set of candidate locations by sampling all possible intersection regions of
the sensor nodes’ transmission ranges. As the performance measure to be
optimized depends only on the topology of the network, it does not matter
which location is selected from a given region and, therefore, the technique
guarantees an optimal solution. However, it also enumerates points from
“inferior regions”, which cover only strict subsets of the nodes covered by
points in some neighboring regions. As our proposed technique does not
enumerate such locations, it produces a smaller candidate set.

• In [11] and [16], the sensor nodes are first clustered using a genetic algo-
rithm and then a sink node is placed for each cluster. For a given cluster,
the area around its centroid is divided into a two dimensional grid. For
each grid cell, the number of sensors whose transmission range covers the
sink is determined and the cell with the maximum count value is selected.
Clearly, there is no guarantee that the grid contains an optimal location.
Therefore, searching instead the set of candidate locations determined us-
ing our technique would be an improvement.

• In [12] and [21], the set of candidate locations is assumed to be given. As
the used performance measures depend only on topology, our proposed
technique could be used to determine the set of candidate locations.

Unfortunately, if the distances between the nodes and the sinks covering
them are also taken into consideration, then it is not guaranteed that the subsets
of the candidate locations contain an optimal solution. Therefore, our technique
can not be used for problems based on minimizing link lengths.

8. Experimental results

In this section, we present some of our experimental results. In our first ex-
periment, we have evaluated the practical performance of our proposed heuristic

24

algorithms for sink selection. In our second experiment, we have measured the
average number of candidate locations determined by our search space reduction
technique in order to demonstrate that it is sufficiently low for our technique to
be applicable in practice. In our third experiment, we have compared our pro-
posed search space reduction technique to others used in the literature, based
on the average cost of the best possible placements in case of each technique.

8.1. Comparison of the proposed sink selection algorithms

We have studied two performance measures: (1) the ratios between the total
selection costs of the sinks in case of the heuristic algorithms and in case of the
optimal solution and (2) the running times of the heuristic algorithms and an
integer programming solver.

In order to obtain reliable values, a large number of networks were generated
in a probabilistic manner. The most prevalent model of a wireless sensor network
is a unit disc graph, which models a wireless network where each node has the
same transmission radius, and two nodes are considered to be neighbors if they
are within each other’s transmission range. In our simulations, we generated
graphs of this type in a probabilistic manner. More precisely, a given number
of nodes were placed uniformly at random on a disk of unit radius, and the
transmission radius of the nodes was calculated from a given expected average
node degree using the approximations given in [32]. Disconnected graphs were
connected using minimum distance extra edges.

Edge attack costs, node values and node selection costs were drawn from
uniform distributions on [0.5, 1.5], while the required persistence and the ex-
pected average node degree were set to 1 and 4, respectively. The cost ratios
were computed for each randomly generated graph, and the arithmetic means
of the ratios were taken as approximate expected values. The experiments have
been run for varying number of nodes, ranging from 16 to 32.

Figure 4 shows the ratio of the selection cost of heuristic algorithms to the
selection cost of the optimal solution as a function of the node count. Different
curves belong to different heuristic algorithms, namely, to our greedy and to
our genetic algorithm. As the optimal solution minimizes the selection cost, the
cost selection ratio shown in the figure cannot be smaller than 1, and the closer
it is to 1, the better the performance of the heuristic solution is.

In case of the greedy algorithm, the excess requirement in selection cost
fluctuates around 20% and the performance seems to be quite stable with respect
to the number of nodes. The performance of the genetic algorithm is almost
optimal if the number of nodes is low, and still better than that of the greedy
algorithm for higher node counts. In case of even higher node counts, i.e., node
counts larger than 32, the performance of the genetic algorithm is only slightly
better than that of the greedy algorithm. As finding optimal solutions is very
hard, we have not plotted the cost ratios in this case.

Figure 5 shows the expected running times, measured on an average desktop
PC, of the greedy algorithm, the genetic algorithm and the integer programming

25

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 16 18 20 22 24 26 28 30 32

S
el

ec
tio

n
co

st
 r

at
io

Node count

Greedy
Genetic

Figure 4: Ratios between the cost of the sink selection in case of a heuristic
algorithm and in case of the optimal solution for different heuristic algorithms
and node counts.

solver as a function of the node count. For solving integer programs, lp solve2,
a free, open source mixed integer linear programming solver was used, which
is based on the Branch-and-Bound method combined with the revised simplex
method.

As expected, the running time of the integer programming solver is expo-
nential and grows faster than those of the heuristic algorithms by several orders
of magnitude. Of the two proposed heuristics, the genetic algorithm is faster
than the greedy algorithm by an order of magnitude. In case of node counts
higher than 32, the difference between the performance results of the heuristic
algorithms is more prominent. For example, for 64 nodes, the running time of
the greedy algorithm is 6834 ms, while that of the genetic algorithm is only 452
ms.

8.2. Performance of our search space reduction technique

Again, the networks on which we have conducted our measurements were
generated in a probabilistic manner. Nodes were randomly placed on a disk of
unit radius according to a uniform distribution. The experiment has been run
for varying number of nodes and sink radii, the former ranging from 100 to 500.

Figure 6 shows the average number of candidate locations. As the exact
value of the sink radius is not very informative, the expected average number of
nodes on a disk of the given radius (i.e., the average number of nodes covered
by a randomly placed sink) is displayed instead. As expected, the number of

2lpsolve.sourceforge.net

26

 10

 100

 1000

 10000

 100000

 16 18 20 22 24 26 28 30 32

D
ur

at
io

n
[m

s]

Node count

Greedy
Genetic

IP

Figure 5: Expected running time of the greedy algorithm, the genetic algorithm
and the integer programming based optimal solution for different node counts.
Please, note the logarithmic scale on the y axis.

candidate locations grows linearly with the number of nodes and the rate of the
growth is determined by the radii of the sinks. Furthermore, the two numbers
are roughly of the same order of magnitude. Therefore, the sink placement
problem is practically only as hard as the sink selection problem. Surprisingly,
the relationship between the sink radii and the number of candidate locations
also seems to be linear.

For every combination of parameters presented above, the running time of
our algorithm for enumerating candidate locations was in the order of minutes
on an average desktop PC. Similarly to the number of candidate locations,
the running time of the enumeration also grows linearly with the size of the
network. Therefore, we can say that the running time needed to enumerate
candidate locations is never going to be a bottleneck, even for large networks.
For this reason, we omit the exact numerical results on these running times.

8.3. Comparison of different search space reduction techniques

The networks on which we have conducted our measurements were generated
in a probabilistic manner similar to the one in Subsection 8.1. Edge attack
costs and node values were drawn from uniform distributions on [0.05, 0.15] and
[0.5, 1.5], respectively. The required persistence was set to 0.1. The transmission
radii of regular nodes and sink nodes were chosen such that the expected average
numbers of nodes on disks of the given radii were 4 and 8, respectively. The
experiment has been run for varying number of nodes, ranging from 16 to 32.

We have compared four different search space reduction techniques:

• Uniform grid: The area where sinks are to be placed is divided into a
regular two dimensional grid and the position of each gridpoint is added

27

 100
 200

 300
 400

 500 4
 8

 12
 16

 20
 24

 28

 0
 200
 400
 600
 800

 1000
 1200

Node count

Node count in sink radius

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100

Figure 6: Average number of candidate locations for different node counts and
sink radii.

to the set of candidate locations. To achieve a fair comparison, the granu-
larity of the grid was chosen such that the number of candidate locations
was roughly equal to that of the other techniques.

• “Selection”: The set of candidate locations consists of the positions of
regular nodes. This technique corresponds to the case when the sink
placement problem degenerates to the sink selection problem, hence the
name.

• Random: Candidate locations are chosen uniformly at random from the
area where sinks are to be placed. To achieve a fair comparison, the
number of candidate locations was roughly equal to that of the other
techniques.

• Optimal: The set of candidate locations is determined using our proposed
technique.

For each network, a set of candidate locations was determined using each
search space reduction technique. Then, a minimum cost sink placement with
the required persistence was found using an optimal algorithm for sink selec-
tion, as it has been described in Subsection 7.2. Finally, for each search space
reduction technique, the average cost of the optimal placements was calculated,
where the average was taken over all generated networks.

Figure 7 shows the average cost of the best possible placement as a function
of the node count. The different curves belong to the different search space
reduction techniques. As expected, our proposed technique clearly outperforms
the other three in terms of the average costs of placements.

9. Conclusions

In this paper, we have addressed the problem of deploying sink nodes in
a wireless sensor network such that the resulting network topology be robust

28

 1

 1.5

 2

 2.5

 3

 3.5

 16 18 20 22 24 26 28 30 32

P
la

ce
m

en
t c

os
t

Node count

"Selection"
Random

Grid
Optimal

Figure 7: The average costs of best possible placements for different search space
reduction techniques and node counts.

against denial-of-service type attacks such as node destruction, battery exhaus-
tion, and jamming. Instead of the usual approach of using connectivity for mea-
suring the robustness of network topologies, we have introduced the notion of
persistence. We explained and gave some illustrative examples why persistence
is a better robustness metric for wireless sensor networks than connectivity. Our
arguments apply to a wider range of networks, including most types of access
networks.

Using persistence as the robustness metric, we have formalized and studied
two variants of the sink deployment problem. In the first variant, we restricted
the set of possible sink locations to the set of sensor node locations; we called
this variant the sink selection problem. In the second variant, we removed
this restriction, and allowed sinks to be placed anywhere in the deployment
area; we called this the sink placement problem. In both variants, we aimed
at achieving a given level of persistence while minimizing the deployment cost,
which is equally hard as maximizing persistence under a given upper bound on
the deployment budget. We have proved that both sink selection with required
persistence and sink placement with required persistence are NP-hard.

We have proposed greedy and genetic heuristic algorithms to solve the sink
selection problem efficiently. We have shown how the infinite search space of
possible placements can be reduced to a set of candidate locations, which is of
polynomial size, such that the resulting set always contains an optimal solution.
The proposed search space reduction technique may be of independent interest.
We have also shown how any sink selection algorithm, including our proposed
heuristic algorithms, can be used to find a solution in the reduced search space.

Finally, we have provided experimental results on the performance of our
heuristic algorithms for sink selection and our proposed search space reduction

29

technique. Our results show that the proposed technique could be used to
efficiently solve other problems or to enhance the performance of previously
proposed algorithms.

Acknowledgements

The work presented in this paper has been carried out in the context of the
WSAN4CIP Project3, which receives funding from the European Community
through the Seventh Framework Programme (grant agreement no. 225186). The
work is also related to the internal project of the authors’ hosting institution
on “Talent care and cultivation in the scientific workshops of BME”, which is
supported by the grant TÁMOP - 4.2.2.B-10/1–2010-0009. Levente Buttyán has
also been supported by the Hungarian Academy of Sciences through the Bolyai
János Research Fellowship. Dávid Szeszlér is supported by grant Nr. OTKA
67651 of the Hungarian National Science Fund. Áron Lászka is supported by
HSNLab, Budapest University of Technology and Economics4. The authors are
thankful to Géza Tóth for the insights he provided on the size of the optimal
set of candidate locations and his proof of Theorem 5.

References

[1] M. Welsh, Sensor networks for the sciences, Communications of the ACM
53 (11).

[2] C. Partridge, Forty data communications research questions, Tech. Rep.
Report-8528, BBN (2011).

[3] A. Laszka, L. Buttyan, D. Szeszler, Optimal selection of sink nodes in
wireless sensor networks in adversarial environments, in: Proc. of IEEE
WoWMoM 2011.

[4] K. Akkaya, M. Younis, W. Youssef, Positioning of base stations in wireless
sensor networks, Communications Magazine, IEEE 45 (4) (2007) 96–102.

[5] M. Younis, K. Akkaya, Strategies and techniques for node placement in
wireless sensor networks: A survey, Ad Hoc Networks 6 (4) (2008) 621–
655.

[6] E. M. Arkin, V. Polishchuk, A. Efrat, S. Ramasubramanian, J. Taheri,
J. S. B. Mitchell, S. Sankararaman, Data transmission and base-station
placement for optimizing network lifetime, in: Proc. of ACM DIALM-
POMC 2010, pp. 23–32.

3www.wsan4cip.eu
4www.hsnlab.hu

30

[7] J. Pan, L. Cai, Y. T. Hou, Y. Shi, S. X. Shen, Optimal base-station loca-
tions in two-tiered wireless sensor networks, IEEE Transactions on Mobile
Computing 4 (2005) 458–473.

[8] S. N. Muthaiah, C. Rosenberg, Single gateway placement in wireless mesh
networks, in: Proc. of IEEE ISCN 2008, 2008.

[9] W. Y. Poe, J. B. Schmitt, Minimizing the maximum delay in wireless sensor
networks by intelligent sink placement, Tech. Rep. 362/07, University of
Kaiserslautern, Germany (July 2007).

[10] J. L. Wong, R. Jafari, M. Potkonjak, Gateway placement for latency and
energy efficient data aggregation, in: Proc. of IEEE LCN 2004, 2004, pp.
490–497.

[11] W. Youssef, M. Younis, Intelligent gateways placement for reduced data
latency in wireless sensor networks, in: Proc. of IEEE ICC 2007, 2007, pp.
3805–3810.

[12] A. Capone, M. Cesana, D. D. Donno, I. Filippini, Deploying multiple in-
terconnected gateways in heterogeneous wireless sensor networks: An op-
timization approach, Comput. Commun. 33 (2010) 1151–1161.

[13] Y. Shi, Y. T. Hou, A. Efrat, Algorithm design for base station placement
problems in sensor networks, in: Proc. of QShine 2006, 2006.

[14] E. I. Oyman, C. Ersoy, Multiple sink network design problem in large scale
wireless sensor networks, in: Proc. of IEEE ICC 2004, Vol. 6, 2004, pp.
3663–3667.

[15] A. Bogdanov, E. Maneva, S. Riesenfeld, Power-aware base station posi-
tioning for sensor networks, in: Proc. of IEEE INFOCOM 2004, Vol. 4,
2004.

[16] W. Youssef, M. Younis, Optimized asset planning for minimizing latency
in wireless sensor networks, Wirel. Netw. 16 (2010) 65–78.

[17] M. M. Czajko, J. M. Wojciechowski, Bi-criteria gateway placement problem
in wireless sensor networks, Intern. Journ. of Electronics and Telecomm.
56 (3) (2010) 215–222.

[18] B. Aoun, R. Boutaba, Clustering in WSN with latency and energy con-
sumption constraints, Journ. of Netw. and Syst. Management 14 (3) (2006)
415–439.

[19] S. Bandyopadhyay, E. J. Coyle, An energy efficient hierarchical clustering
algorithm for wireless sensor networks, in: Proc. of INFOCOM 2003, Vol. 3,
2003, pp. 1713–1723.

[20] A. A. Abbasi, M. Younis, A survey on clustering algorithms for wireless
sensor networks, Comput. Commun. 30 (2007) 2826–2841.

31

[21] S. R. Gandham, M. Dawande, R. Prakash, S. Venkatesan, Energy efficient
schemes for wireless sensor networks with multiple mobile base stations, in:
Proc. of IEEE GLOBECOM 2003, Vol. 1, 2003, pp. 377–381.

[22] G. Gupta, M. Younis, Fault-tolerant clustering of wireless sensor networks,
in: Proc. of IEEE WCNC 2003, Vol. 3, 2003, pp. 1579–1584.

[23] J. Li, L. L. H. Andrew, C. H. Foh, M. Zukerman, H. H. Chen, Connectivity,
coverage and placement in wireless sensor networks, Sensors 9 (10) (2009)
7664–7693.

[24] S. Misra, S. Hong, G. Xue, J. Tang, Constrained relay node placement
in wireless sensor networks to meet connectivity and survivability require-
ments, in: Proc. of IEEE INFOCOM 2008, IEEE, 2008, pp. 281–285.

[25] A. Kashyap, S. Khuller, M. Shayman, Relay placement for higher order
connectivity in wireless sensor networks, in: Proc. of IEEE INFOCOM
2006, 2006.

[26] W. Zhang, G. Xue, S. Misra, Fault-tolerant relay node placement in wireless
sensor networks: Problems and algorithms, in: Proc. of IEEE INFOCOM
2007, 2007, pp. 1649–1657.

[27] X. Han, X. Cao, E. L. Lloyd, C.-C. Shen, Fault-tolerant relay node place-
ment in heterogeneous wireless sensor networks, in: Proc. of IEEE INFO-
COM 2007, 2007, pp. 1667–1675.

[28] D. Bauer, H. J. Broersma, E. Schmeichel, Toughness in graphs - A survey,
Graphs and Combinatorics 22 (1) (2006) 1–35.

[29] W. H. Cunningham, Optimal attack and reinforcement of a network, Jour-
nal of the ACM 32 (3) (1985) 549–561.

[30] J. Chang, L. Tassiulas, Maximum lifetime routing in wireless sensor net-
works, IEEE/ACM Transactions on Networking 12 (4) (2004) 609–619.

[31] R. Raz, S. Safra, A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP, in: Proc. of
ACM STOC 1997, pp. 475–484.

[32] C. Bettstetter, On the connectivity of ad hoc networks, Computer Journal
47 (4) (2004) 432–447.

32

