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Abstract. In this paper, we design and implement Membrane, a mem-
ory forensics tool to detect code loading behavior by stealthy malware.
Instead of trying to detect the code loading itself, we focus on the changes
it causes on the memory paging of the Windows operating system. As
our method focuses on the anomalies caused by code loading, we are
able to detect a wide range of code loading techniques. Our results in-
dicate that we can detect code loading malware behavior with 86-98%
success in most cases, including advanced targeted attacks. Our method
is generic enough and hence could significantly raise the bar for attackers
to remain stealthy and persist for an extended period of time.

Keywords: Code loading, memory paging, Windows, memory forensics

1 Introduction

Recent years’ targeted attack have shown that even the most advanced systems
can be compromised. Some of these targeted attacks used sophisticated intrusion
techniques [3] and others were quite simple [1]. These malware attacks typically
employed a sequence of steps to compromise a target system. A majority of these
malware codes have information gathering and information stealing capabilities.
Once they have access to their target, these malware codes typically perform a
number of operations to cover their traces and remain undetected. Intuitively,
the more the malware can persist in the target system, the more information
it can collect. Often, the attacks persist for years in the target systems and
the attackers get access to a substantial amount of confidential information (as
reported for example in [11]). It is reasonable to assume that these long-term
operations leave a noticeable trace, yet many examples show that the complexity
and rich features of contemporary operating systems leaves ample space for the
attackers to hide their operation.

Code loading is one of the key techniques that malware employs to achieve
persistence. Code loading happens when the malware adds to or replaces the
functionality of existing code to execute its own components. It is typically
possible as, for example, the Windows operating systems provides various meth-
ods (e.g., legitimate API functions, registry entries) to support this. Thus, code
loading usually exploits the conditions given by a legitimate process. That is



why code loading is used to achieve evasion of detection or bypass restrictions
enforced on a process level.

There has been efforts to develop various memory and disk forensics tech-
niques to pinpoint system anomalies caused by such malware infections [5]. One
of the biggest problem with current memory forensics techniques is that they only
utilize memory locations that were actively used by the OS at the moment of
acquisition. That is, important information about code loading can be lost if the
malware or part of it was inactive when the memory was grabbed. Furthermore,
the rich feature set of Windows allows miscreants to build unique code loading
techniques (e.g., Flame’s code loading mechanism) that evades signature-based
protections.

In this paper, we explore the realm of Windows memory management, sys-
tematically identify key paging states and build upon the details of these paging
states to detect malicious behavior after a successful system compromise. We
design and implement Membrane, an anomaly-based memory forensics tool to
detect code loading attacks by malicious software. Membrane is based on the
popular memory forensics framework Volatility [18]. Membrane performs detec-
tion by analyzing the number of memory paging states. Our approach is differ-
ent from approaches in related work because we focus on detecting anomalies
(symptoms) concerning paging states of malware code loading behavior instead
of the code loading actions themselves. While code loading actions can only be
pinpointed by live analysis, our approach focuses on the consequences of these
actions that may persist in the system for an extended period of time.

Our cardinality-based analysis is advantageous for several reasons: (i) it is
generic, (ii) this technique is less researched and can provide new insights into
malware detection, (iii) it can be used in combination with other detection tech-
niques to maximize the confidence of detection, and (iv) arguably, evasion against
this method is difficult (see Sect. 6). These characteristics allow us to provide a
solution that can detect a wide variety of code loading attacks. This could signif-
icantly raise the bar for miscreants to implement memory-resident and stealthy
malware attacks.

This paper is organized as follows. In Sect. 2, we give an overview of code load-
ing techniques employed by malware and mitigation techniques designed against
code loading attacks. Sect. 3 gives a short motivation and a high-level overview
about our memory paging based approach to detect the traces of malware code
loading after infection. In Sect. 4, we present Membrane and give details of our
methodology including the implementation of Membrane. Section 5 shows the
efficiency of Membrane to detect a posteriori code loading attacks. We discuss
evasion techniques and other concerns in Sect. 6. Finally, Sect. 7 summarizes our
work.



2 Background and Related Work

2.1 Code Loading Techniques and Types

Malware can use a wide range of means to take control over a system and hide
its presence. Due to its versatility, code loading is commonly used by contempo-
rary malware in spite of the effort that has been spent on developing defenses.
Recent advanced targeted attacks, most prominently infostealers, still used this
technique to surpass defenses and ensure an extended operation. To achieve this
goal, the malware employs more complex code loading techniques that go beyond
the simple use of operating system functions (e.g., the Flame malware described
in 3.1).

First and quite surprisingly, Windows provides a wide range of user mode
(e.g., VirtualAllocEx, WriteProcessMemory) and kernel mode functions (e.g.,
KeAttachProcess, ZwAllocateVirtualMemory) that can be used to inject code
into processes. DLL loading can be achieved by using, for example VirtualAllocEx
and WriteProcessMemory to allocate private memory in a target process and
to store the name of the DLL to load. Then, CreateRemoteThread is called to
start a new thread in the virtual address space of the target process which loads
the corresponding DLL.

The detours library was implemented by Microsoft back in 1999 which pro-
vides a rich feature set to load DLL into running processes or program binaries.
Miscreants can also insert various DLL paths into the AppInit DLLs registry
value, which forces newly created processes to load those DLLs. DLL preload-
ing is another notorious technique, which enforces legitimate binaries to load
illegitimate DLLs when the program starts. Another technique is called process
replacement where the malware launches a legitimate process, but replaces its
memory content when the image file is mapped into memory. For completeness,
we mention pure kernel rootkits which load a new kernel driver or hijack an
existing one. They operate without using any user-space component. Writing
reliable kernel rootkits is challenging, however, as it is difficult to control simple
functionalities from the kernel space such as network communication. Another
challenge for malware writers is that the kernel is quite volatile and this requires
that the kernel space malware is well-written. Additionally, recent Windows op-
erating systems enforce code signing for kernel drivers, whose evasion requires
an extra effort from attackers (e.g., Flame, Duqu [2]).

In this work, we focus on detecting code loading techniques in the user space.
As discussed above, malware manipulating only the kernel functionality requires
more substantial effort from attackers. We note, however, that our method does
detect kernel-space malware with user-space components.

2.2 Mitigating Code Loading Attacks

Windows implements various protection mechanisms, for example, a private vir-
tual address space for processes to mitigate code loading attacks. But, it also
allows to use simple API functions to circumvent such protections. For instance



WriteProcessMemory can write into a target process when called with appropri-
ate privileges. As WriteProcessMemory invokes kernel mode code in the context
of the target process no address space restriction is violated. In this section, we
present various techniques preventing and detecting code loading attacks and
discuss their merits and limitations.

Prevention. Various preventive methods have been designed in recent years to
thwart the loading of illegitimate codes. These techniques include the use of
whitelisting, checksums or enforcing signed code loading. Unfortunately all of
these techniques can be circumvented by determined attackers. An example for
this is Flame, which created fake, but valid certificates for its component to
deceit Windows.

Recent targeted attacks have demonstrated that preventive approaches might
not be able to block attackers. Thus, we assume that attackers succeed in com-
promising the target system and focus on detecting their activity.

Detection. There are various approaches suggested over the years to detect the
integrity violations of operating system structures [7,17] using either virtualiza-
tion or a new architecture design [13]. In memory forensics, integrity protection
of user-space code using cryptographic hashes has been proposed by White et
al. [19] to detect in-memory code placed by malware. The proposed hashing al-
gorithm matches the in-memory code with its binary counterpart. The problem
with integrity checking is that dynamically allocated memory locations (e.g.,
heap) cannot be verified in this way due to its alternating nature. Srivastava
and Giffin [17] design and develop a hypervisor-based system using virtual ma-
chine introspection, Pyrenée. This aggregates and correlates information from
sensors at the network level, the network-to-host boundary, and the host level to
identify the true origin of malicious behavior. While Pyrenée’s host-based sensor
checks code loading mechanisms from the perspective of processes, Membrane is
a system-centric approach which makes our detection mechanism more generic.
For this reason, Membrane includes the detection of widely-used code loading
techniques such as AppInit DLLs or DLL preloading previously overlooked by
related work.

The Volatility memory forensics tool [18] offers the malfind plugin to find
malicious or hidden code segments from memory dumps. Malfind crawls process
VADs (see Sect. 3.2 and looks for entries with suspicious protection bits (i.e.,
RWX) and type. However, these permission bits can be manipulated by the
malware at a later point of time, which may turn such solutions ineffective. In
contrast to malfind which checks only VAD entries, Membrane tracks per pro-
cess memory paging modifications from the perspective of the OS. Various free
anti-rootkit tools are also available to hunt for hidden threads and processes.
Unfortunately, none of the tested 33 anti-rootkit tools could detect hidden pro-
cesses or threads in case of Flame [2]. Thus, we need another approach which
tackles the problem of code loading from another aspect. We believe, that Mem-
brane can be successfully used in combination with previous solutions to build
more effective detectors.



3 Approach

3.1 Motivation: the Case Study of Flame

For motivation, we quickly show a case study about the Flame [2] targeted
attack. Flame employs an entirely unique, but sophisticated thread injection
method to hide its malicious activity via a chain of system processes. This unique
technique allows Flame to completely mimic the behavior of a normal Windows
update process by the runtime patching of services.exe, explorer.exe and
iexplore.exe. As Flame uses iexplore.exe for network connection [3], it can
evade many malware scanners by default.

Fig. 1: Cardinality of different paging states in services.exe,winlogon.exe and
explorer.exe on a clean and a Flame-infected 32-bit Windows 7 system.

For demonstration purposes, we infected a 32-bit Windows 7 machine with
Flame malware to see what kind of page type modifications it causes. Surpris-
ingly, the fine-grained process injection method it used to stay silent, entirely
distorts the normal memory usage of system processes. Figure 1 shows that the
number of certain page types (see Sect. 4.2 for more details) increases signifi-
cantly when Flame is present.

This observation started us on a quest to use memory usage anomalies to
detect code loading attacks.

3.2 Windows Memory Management

In order to understand, how different code loading attacks modify the state of
memory, we introduce some important details about Windows’ internal memory
management. This will lead us to create our code loading detection technique in
Sect. 4.



The virtual memory management unit of an operating system offers a trans-
parent access method to physical addresses located in the host physical mem-
ory or the hard disk (e.g., in a pagefile). For Windows operating systems [16],
this functionality is maintained by the hardware Memory Management Unit
(i.e., hardware MMU ) and a proprietary memory management kernel compo-
nent which is called memory manager in [16]. In this work, we refer Windows’
internal memory manager as the software Memory Management Unit (i.e., soft-
ware MMU ). The hardware MMU uses multi-level translation tables (i.e., page
tables) to resolve virtual memory addresses pointing to pages which are loaded
into the physical memory (i.e., valid pages). The software MMU, however, is
used for invalid pages (e.g., memory is allocated, but never used), thus extra
operation needs to be performed by the OS to, for example, bring them into the
physical memory. In other words, Windows defers to build hardware page tables,
until a page is first accessed by a thread. This approach of the OS is also called
demand paging.

Hardware Supported Memory Management. When a virtual address points to
a valid page, the hardware MMU uses multi-level translation tables, where the
number of levels is influenced by the architecture. For the clarity of presentation,
in this section we only discuss the 32-bit non-PAE case where each process owns a
single page directory and multiple page tables. When a context switch occurs, the
OS consults a kernel structure (i.e., KPROCESS) to retrieve the physical address of
the process page directory. This address is loaded into a privileged CPU register
called CR3, which allows the hardware MMU and software MMU to start the
translation for process private virtual addresses. Page directory entries (PDEs)
store the state and location of all the page tables belonging to a process. Due to
Windows’ lazy memory management, page-tables are built on demand, so only
a small set of page tables are created in reality for processes. Similarly to page
directories, page tables are built up from page table entries (PTEs) containing
the location (i.e., page frame number) of the referenced page and certain flags
which indicate the state and protection of the corresponding page [16]. We refer
to the state of PTEs and PDEs as paging entry types.

Software Supported Memory Management. When the hardware MMU intends
to access an invalid page, indicated by a status flag in the corresponding PTE,
a page fault occurs which has to be handled by the OS. More precisely, when a
hardware PTE is invalid it is referred as a software PTE, because the software
MMU takes care of it by checking other PTE status flags to determine how to
evaluate this software PTE. This evaluation process will be discussed later in
Sect. 4.2. As Windows defers to build hardware PTEs until, for example, an
allocated memory is first accessed, it has to record the allocation information
internally. To achieve this, the software MMU maintains a self-balanced tree
called Virtual Address Descriptors (VAD) tree [4] for each user-space process
and stores the root of it (i.e., VadRoot) to help its traversal. Thus, whenever a
memory is allocated, for example, by the NtVirtualAllocate native function,
Windows adds a new VAD entry to the VAD tree of the allocator process. Each



VAD entry describes a virtually contiguous non-free virtual address range in-
cluding protection information and the type of this range (e.g., copy-on-write,
readable, writable). Windows makes a difference between (i) dynamically allo-
cated memory and (ii) memory which contains data from files. The former is
called private memory and reflects allocations on the heap or stack, the the lat-
ter one is called file-backed or mapped memory as it is associated with files, such
as data files, executables, or page files, which can be mapped into the address
space [20].

3.3 Root Cause Analysis

In order to understand why memory paging analysis can be a prominent method
to detect malicious code loading, we explored the details of Windows internals
by using various resources [16,20,14] as well as the static and dynamic analysis
of the Windows 7 kernel. For dynamic analysis, we used WinDbg. In this way,
we could understand how certain WinAPI, and thus, kernel functions influence
per process paging entry types. Please see Table 1 for more details on the paging
entry types.

A typical code loading attack first calls VirtualAllocEx to allocate a pri-
vate memory in the target process to store the name of the DLL we intend to
load into that process. It creates and initializes a single VAD entry with RW
protection bits set, zeroes out the PTE (i.e., zero type software PTE is created)
of the allocated memory range and sets up the page fault handler (#PF). The
NtProtectVirtualMemory kernel function is also called after this, which sets
software PTE protection bits, thus the software PTE is changed to be Demand
Zero (Dz). When WriteProcessMemory tries to access the page, the page fault
handler is invoked. At this point, the page fault is caught, hardware PTE is
created and initialized (i.e., Valid and Write hardware PTE bits are set) using
the previously created VAD entry as a template. This lazy memory allocation
mechanism allows Windows to build page tables for only accessed pages. When
#PF finished, the execution is handed to the NtWriteVirtualMemory kernel
function, which writes the name of the malicious DLL to be loaded by the target
process. As the allocated pages were accessed and modified, the hardware MMU
now sets the accessed (A) and dirty (D) bits on the PTE, respectively. In the
next step, CreateRemoteThread is called by setting the newly created thread’s
start address to the LoadLibrary WinAPI function.

At this point, LoadLibrary is invoked by the newly created thread with
the name of the malicious DLL to be loaded. As LoadLibrary first invokes
NtOpenFile to return a file handle, that is handed to NtCreateSection to cre-
ate a Section object for the the corresponding DLL. Due to the lazy memory
management of Windows no hardware PTE is created at this point, however,
only Prototype PTE kernel structures are initialized. This structure is used by
the OS to handle shared memory between different processes. We emphasize
here, that PPTEs are initialized with EXECUTE_WRITECOPY protection masks to
enable Copy-On-Write operations. To support memory sharing the DLL is now
mapped as view of the section object (i.e., file-backed-image is mapped) by the



NtMapViewOfSection kernel function, which also creates a VAD entry by using
the Prototype PTEs and sets up the page fault handler to build hardware PTEs
when the mapped DLL is first accessed. Finally the opened file handler was
closed by NtClose.

If certain parts of the loaded DLL is not used currently, the OS swaps the
corresponding pages and creates *Prototype PTE entries which point to the
original Prototype PTEs. In this way, the memory manager can quickly load back
the page when it is referenced again, and uses the Prototype PTE as a template
to set the protection masks to build a new hardware PTE. The presented code
loading technique creates Zero software PTEs and hardware PTEs with Valid,
Writable, Accessed, Dirty and Copy-on-Write bits set. This example shows fairly
well, how some simple WinAPI functions influence the management of memory
in Windows OSs. This rich behavior allows us to observe how different code
loaders manipulate per process PTEs.

It is important to emphasize that not only the fact of code loading diverts
memory paging states, but also do those malicious functionalities (e.g., data
exfiltration, keylogging) that the loaded code executes.

3.4 Overview of Membrane

Membrane is a Volatility extension and works on virtual machine memory snap-
shots. Membrane detects all the active processes when the analyzed snapshot
was taken and starts to dissect these processes to determine their memory pag-
ing states. By doing so, Membrane first restores a wide range of memory paging
states as Table 1 shows it. To the best of our knowledge, we are the first, who
restore memory paging states in that detail and use them for a posteriori mal-
ware detection as detailed in Sect. 4.2. Then, Membrane calculates different
paging state cardinalities (e.g., the number of zeroed out pages present in the
address space of a given process) and creates features from them. These feature
candidates are accumulated into a feature set, and out of these candidates the
prominent features are selected by a machine learning algorithm. These feature
are later used for decision making as described in Sect. 4.3.

4 Implementation

First, we select key features of paging states and train a random forest classifier
to detect code loading behavior. These candidate features are later evaluated
and filtered to pick the most relevant ones suitable to detect code loading. In
the testing phase, we repeat the training phase, but samples are classified (i.e.,
detected as malicious or not) only with the chosen features.

4.1 Collecting Samples

To train our system, we first collect samples for our benign and malicious
datasets. Thus, we prepare our malware dataset with prudent practices [15]



to have a ground truth consisting of malicious samples using malicious code
loading. Similarly, we prepare goodware programs to have a balanced dataset
for machine learning, we perform later. Then, we install and start multiple be-
nign applications and a single malicious sample into a VM under analysis. Next,
snapshots are retrieved from this running VM, which are handed to our tool,
Membrane, for analysis. For testing targeted malware, we manually selected 7
malware samples from active targeted campaigns excluding malware whose C&C
servers have been sinkholed or shut down. See Sect. 2.2 in [12] for our detailed
selection process.

4.2 Feature Creation

The observations in Fig. 1 strongly suggest that code loading attacks have a
significant effect on the frequency of different paging states. Thus, we use the
frequency of various paging state to set up detection features. We summarize all
the paging states we handled during our feature creation process in Table 1.

Membrane internals. We carefully investigated Windows-specific page types and
their corresponding translation process to restore our features from paging states.
Albeit, most of these page types are documented with a certain level of granu-
larity [8,20,16], some of them are still not well understood. Our implementation
currently supports both x86 PAE enabled and x64 images. While we tested the
former case on 32-bit Windows XP and 7 OSs, the latter was verified on 64-
bit Windows 7 and 8.1 snapshots. As a result of our translation process we are
capable of restoring 28 different paging states as shown in Table 1.

Our translation process works as follows. We first natively open the memory
snapshot file (i.e., .vmsn) with Volatility. We then locate VadRoot values for
running processes by iterating through the EPROCESS kernel structure. Vad-
Root stores the virtual address of the process VAD tree [4]. At this point, we
traverse the VAD tree by locating VAD entries which describe all the valid vir-
tual addresses belonging to the process virtual address space. From this point
on, we need to resolve all these virtual addresses by slicing them into page-sized
buffers.

As a next step, we modified Volatility’s internal address translation process
as follows. Whenever a new process virtual address is retrieved by Volatility,
it starts to resolve the address by traversing the process page tables. Similarly
to the hardware MMU, it returns the corresponding physical address if all the
page table entries (e.g., PDE, PTE) were valid. If it encountered an invalid entry
(e.g., Software PTE), it raises an exception or returns with zero values. Thus, we
had to implement the software MMU here to retrieve exact paging entry types.
To do that, we resolve invalid entries using the VAD tree as Fig. 2 shows it.
Furthermore, Table 1 details how we resolved different paging entry types and
restored paging entry states from them.



Table 1: Paging entries we restored for feature creation.
Name Description

Restored features for non-PAE 32-bit Windows XP

Valid The PTE points to a page residing in the physical memory

Zero PDE The Page Directory Entry contains all zeroes

Zero PTE The Page Table Entry contains all zeroes

Pagefile The PTE points to a page which is swapped out

Large The PDE maps a 4-MB large page (or 2MB on PAE systems)

Demand Zero The memory manager needs to provide a zeroed out page.

Valid Prototype
The *PPTE points to (directly or via VAD)

a PPTE which points to a valid page

Invalid Prototype The PPTE points to an unresolvable page.

Pagefile Prototype The *PPTE points to a PPTE which points into a pagefile.

Demand Zero Prototype
The *PPTE points to a PPTE which translates to a zeroed

out page

Mapped File
The PTE is Zero, thus we resolve it from VAD which points

to the mapped file

Mapped File Prototype
The *PPTE points to a PPTE where the prototype bit is

set and has Subsection type.

Unknown Prototype
The same as Mapped File Prototype, but PPTE has

no Subsection type.

Writable The PTE points to a writable page

Owner (Kernel mode) The corresponding page can be accessed in user- or kernel mode

Cache Disabled The PTE points to a page where CPU caching is disabled

Writethrough The PTE points to a write-through or write combined page

Accessed The PTE points to an accessed page

Dirty The PTE points to a written page

Transition
A shared page is no longer referenced and moved

to the transition list

Copy-on-write The PTE points to a copy-on-write page

Global PDE The address translation applies to all processes

Unknown The PTE is not empty, but does not belong to any of the cases.

Additional features for PAE-enabled 32-bit Windows 7

Non-executable The PTE points to a non-executable page

VAD Prototype The *PPTE points to a location described by the VAD tree

Modified-no-write
The requested page is in the physical memory and

on the modified-no-write list

Zero PDPTE The Page-directory Pointer Table Entry contains all zeroes

Additional features for 64-bit Windows 7

Zero PML4E The Pagetable Level 4 Entry contains all zeroes
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Fig. 2: Crawling VAD tree by Membrane to resolve invalid paging entries and
restore the corresponding paging states.

4.3 Feature Selection and Classification

After evaluating possible paging states, we defined 28 different features under
Windows 7 and 23 features under Windows XP as shown in Table 1. We selected
these features to train our system. Thus, we had an X matrix with m rows and
28/23 columns, where m is associated with the number of different code loader
malware samples. As our training set is relatively small, we used various methods
for better evaluation. First, we used feature scaling to represent our features on
the same scale (i.e., we used the interval of [0 − 1]). Then, we applied feature
reduction to avoid overfitting by calculating the Gini index of our normalized
features. The Gini index shows the inequality among the values of a frequency
distribution. In our case, per process frequency distributions are defined by the
cardinality of given per process paging states in n consecutive memory snapshots.
The lower this index is, the more equal the values are in a frequency distribution.

For later classification, we selected features that had smaller index than the
mean of all indexes. This resulted in using features Zero PTE, Demand Zero,
Valid Prototype, Mapped File Prototype and Copy-on-write under Windows XP.
The selected features under Windows 7 are Zero PTE, Accessed, Demand Zero,
Writable, Owner, Writethrough, Cache disabled, Pagefile, Valid Prototype, Valid,
Dirty and Mapped file. The process noise under Windows 7 is higher than in
Windows XP, thus we needed more features for classification.



4.4 Detecting Code Loading

After selecting the prominent features we used random forest classification to
detect code loading. Random forest is a bag of randomly split decision trees. We
can collect the trees with this method and the majority voting of the trees will
classify a given sample.

Initially, we followed the hint obtained from the execution of the Flame mal-
ware shown in Fig. 1. We first took single snapshots of malware infected VMs
to see if we detect some of the features we identified in Sect. 4.3.

We then created multiple snapshots periodically from the same infected VM
to understand in detail how code loading attacks modify the number of paging
states and how the OS manipulates them over time. There are various reasons
to perform this measurement. First, single snapshots could miss the activation
of execution-stalling malware which defer their parasitic behavior until a certain
event occurs (e.g., no keyboard press for 5 minutes for Duqu). Second, malware
could retrieve further components and load them into other system processes
as well. This behavior can only be detected if we repeatedly take snapshots.
Third, Windows OSs use various memory optimization methods, for example,
to conserve physical memory. These optimization routines could also affect our
features.

To measure the accuracy (ACC) of our classification process, we calculate the
ratio of all the correctly classified machines per all the machines we tested. More
precisely, ACC = TP+TN

P+N , where TP , TN refer to the number of successfully
identified infected and clean VMs, and P , N indicates the number of infected
and benign machines, respectively.

Furthermore, we calculate true positive rates (TPR) to denote the ratio of
correctly classified infected machines compared to all the infected machines we
tested (i.e., TPR = TP

P ). Finally, the false positive rate (FPR = FP
N ) is used to

denote misclassification of benign machines, where FP means that an infected
machine bypasses detection and is marked as clean.

5 Analysis

We now present our result detecting code loading behavior in contemporary mal-
ware. We then apply our code loading detection method for a dataset composed
of generic malware samples as well as hand-picked samples from recent targeted
attacks.

5.1 Analysis Setup

We built a dynamic execution environment for Membrane to systematically de-
tect code loading by contemporary malware. We instrument virtual machines
(VMs) using VMware’s ESXi to run malware samples with various operating
system and network settings. Designing a containment policy for prudent mal-
ware experiments is essential and we used the guidelines of [9] and [15] to design
our containment policy.



We implemented our execution environment for Membrane on two identical
physical machines with Intel Core i7-4770 CPUs, 32 GB of memory and VMware
ESXi 5.5 OSs. Host machine (ESX1 ) runs our VMs and takes snapshots, and
the other one (ESX2 ) is responsible to retrieve information from these snapshots
and perform analysis by Membrane which enables detection. We used a controller
VM (CTRL) to invoke VMware vSphere API via the psphere python module.
This module is a native binding to control VMware ESXi environments. We
executed our tests on multiple VMs with different OS configurations (WinXP,
Win7 1, Win7 2 ) to test the robustness of our approach against system changes.
While WinXP and Win7 1 are 32-bit Windows XP and 7 installations, Win7 2
is a 64-bit Windows 7 OS. Our exact system configuration is detailed in Table 2.

Table 2: Machine configurations we used in our malware detection and analysis
system. Virtual machines WinXP, Win7 1 and Win7 2 are running on the ESX1
host machine and are used for snapshot based malware detection. Note that
Win7 2 was configured with 1 and 4 GBs of memory for more complete evalua-
tion. Note that the default setup comes with 1 GB of memory, so the other case
is explicitely mentioned when used.

Type Name
Memory

size
OS

Host
ESX1

ESX2

32 GB

32 GB

ESXi 5.5 U1

ESXi 5.5 U1

VM

CTRL

WinXP

Win7 1

Win7 2

4 GB

512 MB

1 GB

1/4 GB

64-bit Ubuntu 14.04

32-bit Win XP SP3

32-bit Windows 7

64-bit Windows 7

We instrumented our experiments with two different network configurations
to study the activation behavior of various malware samples. The two configu-
rations are the following: (i) no Internet connection is enabled, (ii) real Internet
connection is enabled with a carefully crafted containment policy following the
suggestions of Rossow et al. [15]. When Internet connection was enabled, we
used NAT with the following containment policy: a) we enabled known C&C
TCP ports (e.g., HTTP, HTTPS, DNS, IRC) b) we redirected TCP ports with
supposedly harmful traffic (e.g., SMTP, ports not registered by IANA) to our
INetSim network simulator [6] we also configured, and c) we set rate-limitation
on analyzed VMs to mitigate DoS attacks.

5.2 Detecting Malware

First, we created a cross-validation dataset from generic malware samples to test
our tool with the features selected in Sect. 4.3. To make sure that the feature



(a) Copy-on-write (b) DemandZero (c) Zero PTE

Fig. 3: Recorded number of paging states in explorer.exe running in our
WinXP environment. Each dot on horizontal lines shows the number of paging
state in a given snapshot. The vertical straight line corresponds to the median
of clean executions, while the dashed lines depict the standard deviation.

selection is not biased towards our training dataset, we also compiled a test-only
dataset from a mix of generic malware and confirmed targeted attack samples.

Birds-eye-view Analysis. We first created sample runs on our test machine
WinXP VM with only legitimate applications installed (see Sect. 2.2 in [12]) as a
benchmark. We also infected these systems with samples from selected malware
families performing code loading.

We repeated our evaluation process 13 times in case of malware samples and
54 times for goodware. In this way, we estimated certain statistics (i.e., median,
standard deviation) to see whether these features can be used to detect the of
malware. Figure 3 shows how the cardinality of certain paging state changes in
explorer.exe on Win XP for different generic malware executions.

Detailed Analysis. Then, we executed an extensive set of experiments with the
two network containment configurations described in Sect. 5.1. Out of the 194
generic code injector malware, 128 samples targeted explorer.exe which turned
to be the most popular injection target. That is why our classification algorithm
works with these samples. Our evaluation process comprises three parts: (i) code
loaders are evaluated on VMs with preinstalled and started benign applications



with K-fold cross-validation in accordance with our methodology detailed in
Sect. 4, (ii) same as the previous point, but no benign processes are installed
and started, (iii) the best performing random forest classificator is chosen from
the cross-validation process to evaluate our test-only dataset.

In cases (i) and (ii), we infected our prepared Windows XP (i.e., WinXP)
and Windows 7 (i.e., Win7 1) environments in each network containment con-
figuration. After retrieving snapshots with Membrane, we run our classification
algorithm to find malicious infections. Note that we put equal number of benign
and infected snapshots into each cross-validation process. Table 3 summarizes
our results and strengthens some of our key observations. According to our ob-
servations running processes raise the noise of certain system processes. This
observation manifests in lower detection ratio as the (i) and (ii) versions of
Win7 1 show it. Our next observation is that the execution environment also
affects detection accuracy as the TPR of Win7 1 and WinXP setups show it.

While the detection rates are fairly good in case of Windows XP, the results
are worse for Windows 7 snapshots due to the increased baseline memory pag-
ing of explorer.exe in Win7 1. Interested readers can read more about our
measured baseline noises in Table 2.15 in [12]. We can increase the detection
accuracy by stopping legitimate processes and thus offloading explorer.exe.
We see this increase when the TPR in Table 3 increases from 75.92% to 86%.

Considering case (iii), we could detect all the generic samples in our test-
only dataset in both environments by using the best classificator chosen by the
cross-validation process. Note that we also detected all the targeted samples of
our test-only dataset (i.e., Flame, Shale, Snake, Epic and Turlae where the latter
four belongs to the Uroburos campaign revealed by G Data in 2014) on Win7 1,
all injecting into explorer.exe.

Interestingly, however, the state of network connection slightly increased the
detection accuracy on Win7 1 setups, and decreased it on WinXP. One of the
explanations could be that injected payloads on Windows 7 downloaded extra
components, which added extra process noise that was easier to detect.

While explorer.exe is the most popular target of code loading according
to our dataset, there are many other system processes with lower noise (e.g.,
services.exe or winlogon.exe) that are known to be also preferred by mis-
creants.

A combined detection over several processes could further increase accuracy
for malware that injects into multiple processes (eg. Flame). We did not do this
extensive study as it was not our focus.

6 Discussion

Systems Under Heavy Load. Our results showed that our experiments on the
WinXP operating system were fairly accurate with a very low false positive
rate. We noticed, however, that occasionally on Win7 the baseline operation of
the system was dependent on the realistic system load and the target process.
This meant that heavy system use (e.g. watching Youtube videos, installing and



Table 3: Detecting generic and targeted code loading malware on our WinXP
and Win7 1 VMs with different network connections in explorer.exe. We used
a K = 5 cross-validation iteration for the measurements. Note that the targeted
samples of our test-only dataset were executed only under Win7 1.

Cross-validation dataset

Internet VM ACC % TPR % FPR %

no
WinXP

Win7 1

98.67

73.59

98.82

75.92

1.18

28.46

yes
WinXP

Win7 1

92.81

79.45

90.88

82.69

5.45

23.59

Cross-validation dataset with
no additional processes

no Win7 1 77.16 86.00 34.73

Test-only dataset

no
WinXP

Win7 1

100

100

100

100

-

-

starting of various applications or stress-testing the memory) caused a signifi-
cant increase in the number of paging states (for example, the explorer.exe

process produced a high number of Copy-on-Write and Demand Zero paging
states on a Win7 1 ). This somewhat reduced the efficiency of detection in these
cases. As explorer.exe is taking care of the graphic shell, every newly spawned
GUI application can raise process noise. That is a key observation especially for
Windows 7 systems, where our detection ratio was lower.

Clearly this increase in the number of paging states only appeared when the
system was under a heavy load. One can circumvent this anomaly by establishing
baseline cardinality of paging states under normal system load (e.g., in a nightly
operation). Assuming that the system is not under a permanent load, we can
wait until it returns to normal load and perform the detection then.

Countering Evasion. Legitimate software sometimes uses code loading to achieve
more functionalities [17]. For example, the Google toolbar uses DLL loading for
legitimate purposes. Debuggers, such as the Microsoft Visual Studio Debugger
also exhibit this behavior. Our tool detects the fact of code loading, but it cannot
judge if it was for legitimate purposes. To filter out the false positives caused
by legitimate applications, we can mark them and compile a whitelist. This
whitelist can be constructed for example by using cryptographic hashes to user
space memory allowing the identification of known code [19]. These legitimately
injecting applications could then be excluded from analysis.

Unfortunately, this solution would open the door for malware to evade detec-
tion by loading code into the whitelisted applications. We can counter this option
by applying our memory paging analysis on the application process instead of



the system processes. We can first establish a baseline for a clean operating
system running the code injecting legitimate application. Then, we proceed as
follows. First, we run Membrane comparing the baseline behavior without code
loading with the system behavior. If Membrane indicates an alarm, we check
if any of the legitimate code loading mechanisms are running on the system. If
such an application exists, then we run Membrane against the baseline behavior
established earlier for this application. If Membrane still raises an alarm that
is a good indicator that a malware infected the system, otherwise the previous
alarm was a false alarm caused by the legitimate code injecting application.

Performance Issues. As snapshot creation can be a heavy-duty operation, we
further designed and implemented a live monitoring version of Membrane called
Membrane Live by extending a virtual machine introspection-based malware
analysis tool called DRAKVUF [10]. This tool is used solely for evaluation pur-
poses, and to compare the performance of snapshot and live monitoring-based
approaches. More information about Membrane Live can be found in Sect 2.2
in [12].

7 Conclusion

In this paper, we present a memory forensics tool called Membrane to detect
code loading behavior of malware programs. Instead of detecting various code
loading actions, our tool focuses on identifying the cardinality of paging states
caused by code loading. With this more generic technique, we are able to detect
a wide range of malware code loading techniques. Our results show that we are
able to identify 86-98% of code loading malware samples on Windows machines,
depending on the system load and the targeted process. In summary, we show
that Membrane significantly raises the bar for miscreants to employ code loading
attacks.

While for certain conditions (e.g., explorer.exe on Windows 7 under heavy
load) our approach may seem less effective, we do emphasize that this condition
is one of the worst cases according to our measurements. In future work, we
will study how detection can be further improved. We will also investigate if
Membrane can be extended to detect kernel-only code loading attacks. All in all,
we believe that our approach tackles the problem of code loading from another,
interesting aspect which can even be combined with existing methods effectively.
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