
Towards the Automated Detection of Unknown
Malware on Live Systems

Gábor Pék
Laboratory of Cryptography and System Security (CrySyS)

Budapest University of Technology and Economics
Budapest, Hungary

Email: pek@crysys.hu

Levente Buttyán
MTA-BME Information Systems Research Group and

Laboratory of Cryptography and System Security (CrySyS)
Budapest University of Technology and Economics

Budapest, Hungary
Email: buttyan@crysys.hu

Abstract—In this paper, we propose a new system monitoring
framework that can serve as an enabler for automated malware
detection on live systems. Our approach takes advantage of
the increased availability of hardware assisted virtualization
capabilities of modern CPUs, and its basic novelty consists in
launching a hypervisor layer on the live system without stopping
and restarting it. This hypervisor runs at a higher privilege
level than the OS itself, thus, it can be used to observe the
behavior of the analyzed system in a transparent manner. For
this purpose, we also propose a novel system call tracing method
that is designed to be configurable in terms of transparency and
granularity.

I. INTRODUCTION

The problem of automated detection of unknown malware
has been studied before, and it is part of the field called
Host Based Intrusion Detection (HIDS). The main idea of
HIDS is that successful attacks usually leave a trace of the
attacker’s activities including modifications to the file system
(e.g., installing a keylogger or a backdoor) and to the data
structures used by the operating system (e.g., registry entries,
interrupt tables, and other kernel objects). In theory, such
modifications could be detected in an automated way, and that
is what HIDS systems try to do.

However, an important limitation of existing host-based
anomaly detection approaches is that they require either to run
the system to be analyzed in an isolated (usually virtualized)
environment, or to install some analysis tools on the analyzed
system itself. In the first case, one needs to create a virtualized
copy of the analyzed system and its original environment (e.g.,
other servers in the same network) in order to run both together
in the isolated analysis environment. Note that if the copy
of the analyzed system runs alone, then the malware may
detect the change in its environment and modify its behavior
in order to escape detection. Creating a faithful copy of the
operating environment of the analyzed system, however, is a
major problem that requires a lot of resources and may cause
interruptions in the operation of the live system. There is also a
high risk that the copy will actually not be sufficiently faithful,
which may jeopardize the entire malware detection process.
In the second case, when some analysis tools are installed on
the analyzed system itself, the problem is that the analysis
will not be transparent, meaning that the installed analysis

tools may be detected by the malware. In addition, in some
environments such as, for instance, in IT systems of critical
infrastructures, neither interruption of operation nor installing
arbitrary software on the system are allowed.

We propose a new system monitoring approach that en-
hances either the transparency or the performance of existing
methods (e.g., Nitro [1] and Ether [2]). In addition, our
approach does not require to create a copy of the system to be
analyzed, neither it requires the installation of analysis tools on
the analyzed system itself. Thus, it is free from all limitations
of prior approaches. Our basic idea is to launch a hypervisor
layer on the live system on-the-fly, without stopping and
restarting it or any of the running applications. This hypervisor
runs at a higher privilege level than the OS itself, thus, it can
be used to observe the behavior of the analyzed system in a
transparent manner, without installing any analysis tools on
the analyzed system itself. At the same time, the live system
stays in its original operational environment, so the malware
may not detect any suspicious change.

In this paper, we describe our design and implementation
of such an on-the-fly virtualization platform, and we also
propose a novel system call tracing method that can be
used to observe the behavior of the analyzed system with
configurable trade-off between transparency and granularity.
Our proof-of-concept implementation leverages AMD64 pro-
cessors with SVM (Secure Virtual Machine) technology and
64-bit Windows Vista/7 operating systems. Our contributions
can be viewed as enablers for an automated detection tool for
unknown malware.

II. RELATED WORK

Typical AV products try to detect known malware by
signature based methods which are clearly not usable for de-
tecting unknown malware. Therefore, many AV companies and
researchers are proposing new approaches to detect unknown
malware. Here, we summarize the approaches that are the most
similar to the approach that we propose in this paper, and
highlight the differences with respect to our approach.

McAfee DeepSAFE [3] technology provides real-time ker-
nel memory and CPU event protection using hardware-assisted
virtualization technology. This is technically similar to our



approach, but DeepSAFE must be installed on the system
permanently, which leads to constant performance degradation.
In contrast to this, our work allows for system monitoring
on an on-demand manner. While this will not allow for
preventing successful attacks, it can still be used for detection.
Another approach, which is being more similar to our work,
is called HyperDbg [4]. It allows for the live installation of
an analysis framework under a running OS using hardware
virtualization. However, the original goal of HyperDbg was
not the monitoring of unknown malware, but it was proposed
as a general-purpose testing and debugging tool.

While previous solutions offered system monitoring capa-
bilities from the host [1], [2], or from another trusted VM [5],
a dedicated environment (e.g., KVM, Xen) had to be installed
for them. On the contrary, our approach enables monitoring
without any interruption in the OS operation, which is suitable
for systems that do not permit downtime. In addition, our
approach makes it possible to configure either the granularity
or the level of transparency of our monitoring framework
which can be very useful for catching unknown malware
armed with virtualization specific anti-debug capabilities [6],
[7].

As mentioned in the introduction, the problem of detecting
unknown malware belongs to the field of Host Based Intrusion
Detection (HIDS). HIDS systems try to detect suspicious
modifications made by hostile codes in user/kernel space data
structures and user/kernel space code, or the unintended use of
existing code base. Our work complements these approaches
by running these monitoring mechanisms within an on-the-
fly installable analysis framework. While it has been shown
in [8] that system calls alone are insufficient for malware
detection, we believe that our approach can be extended with
other building blocks suitable for detecting unknown malware
behavior.

III. ON-THE-FLY VIRTUALIZATION

As mentioned in the introduction, our system monitoring
approach is based on on-the-fly virtualization, which allows
for launching a thin virtualization layer below the running
OS without system downtime. Our solution is based on New
Blue Pill [9], which was originally introduced as an offensive
approach to take over the control of a system, but we modified
it for our purposes. In this section, we first shortly introduce
New Blue Pill, and then we describe the modifications we
made.

A. Introducing New Blue Pill

The original Blue Pill [10] was developed by Joanna
Rutkowska for COSEINC. Later, a completely new version
called New Blue Pill (NBP) [9] was designed and implemented
by Alexander Tereshkin. Here, the author uses the AMD64
Secure Virtual Machine (SVM) extension to virtualize the
running OS on the fly. While NBP requires no modification
in the BIOS, boot sector or system files to operate correctly,
it does not survive OS reboot. For this reason, a kernel mode
driver is installed that enables the SVM mode as a first step.

From this point on, the required SVM instructions are available
for the driver. After that, NBP prepares virtual machine data
structure (Virtual Machine Control Block) to be used by the
running OS to store its state when context change occurs.
Finally, the native OS starts to execute in guest mode when
the VMRUN instruction is executed by NBP.

Fig. 1. Extending New Blue Pill with monitoring capabilities. Using
source [10], [9]

B. Extending New Blue Pill with Tracing Capabilities

In order to have a hypervisor-level on-the-fly installable
system monitoring framework, we modified the New Blue Pill
as Figure 1 depicts it. First of all, we tightened the semantic
gap between the hypervisor and the monitored OS by means
of virtual machine introspection (VMI) [11]. Secondly, we
implemented the proposed system call tracing method for 64-
bit systems. To achieve this, we exploit a hardware support
available only in 64-bit processors, which makes it possible
to enable/disable system calls for a running OS. If system
calls are disabled in a processor and a SYSCALL instruction is
executed an invalid opcode exception #UD is raised. Whenever,
a sensitive or privileged instruction is executed by the guest
mode OS (e.g., SYSCALL in our case) a VMEXIT is generated
which can be handled by the hypervisor. To identify the nature
of VMEXIT, an exitcode is written into the Virtual Machine
Control Block that can be later read by the hypervisor. For
this reason, we registered traps for the related VMEXITs
that are handled whenever the corresponding exceptions are
raised in the guest mode OS. When an #UD is intercepted,
we extract the required features from the guest’s memory and
enable system calls again. In this way, the system call can
be successfully re-executed when the handler returned. By re-
enabling system calls, we also guarantee a more transparent
execution environment than earlier approaches [1], which
disable system calls for the entire analysis process. This seems



to be a subtle difference, but it can be exceptionally useful
against attacks (e.g., [6], [7]) which generate invalid opcodes
to detect virtualization or debuggers. So as to re-enable system
call monitoring, we set a hardware breakpoint on instructions
chosen by the analyst. The place of breakpoint (user-, or kernel
space) influences the type of data structure we can extract as
well as the granularity of our monitoring process. Thus, we
register a trap for hardware breakpoint related VMEXITs to
catch the system calls being executed by the guest mode OS.

This is achieved by the built-in debugging feature of NBP as
it sends messages to a kernel-level debug window list, which
can be read by adequate applications such as DebugView.
Note that this kernel-level debug window list can also be
reached via a kernel debugger such as WinDbg. More de-
tails about our system call tracing method is discussed in
section IV.

C. 64-bit CPU modes

The 64-bit mode of various vendors (AMD, Intel) comes
with slightly different considerations. First of all, AMD ex-
tended the original x86 architecture with 64-bit mode (long
mode) and supports previous architectures (e.g., 32-bit pro-
tected mode) in legacy mode [12]. On the other hand, the
Intel 64 architecture introduces the IA-32e mode which is
a new 64-bit mode supporting two submodes: the 32-bit
compatibility mode and the 64-bit mode. Note that in the rest
of the paper we focus on the AMD long mode, however, the
concepts can be easily adapted to IA-32e 64-bit mode as well.
The most important difference between the two platforms is
that IA-32e still supports the SYSENTER instruction in 64-
bit mode, however, AMD64 does not and raises an invalid
opcode exception #UD if being used. Nevertheless, both of the
platforms support the SYSCALL instruction in 64-bit mode,
which makes our methods general. Furthermore, NBP supports
hardware virtualization extension of Intel processors (Intel-
VT) as well, so our concept could work on that architecture
as well.

IV. PROPOSED SYSTEM CALL TRACING METHOD FOR X64

In contrast to previous out-of-the-guest system call tracing
methods introduced by Ether [2], we designed and imple-
mented a new, and general method that is fully compatible
with 64-bit systems. In 32-bit mode the SYSENTER instruc-
tion is used to prepare fast system calls, which reads the
corresponding kernel address from the SYSENTER_EIP MSR
register and the target code segment from the SYSENTER_CS
MSR. However, the SYSENTER instruction is not supported
by AMD64, so we rely on another fast system call instruction
(SYSCALL) that is compatible with both Intel and AMD
processors. Note that in case of AMD64, the SYSCALL
instruction can be executed in legacy modes (16-bit and 32-
bit) as well, however, on Intel processors, it is supported only
in 64-bit mode.

In the following we introduce the details of our novel system
call tracing method for 64-bit mode. To monitor the system
calls of an unmodified target OS from the hypervisor, we

have to observe context changes induced by VMEXITs. How-
ever, similarly to SYSENTER, SYSCALL does not generate
VMEXIT by default when being executed, thus this problem
have to be solved by a specific method. One way to handle this
issue is advised in [2] for the SYSENTER instruction. By trans-
lating this concept to SYSCALL, we have to modify the target
address of this instruction, which is stored in *STAR registers
(STAR, CSTAR, LSTAR), to an address being paged out.
When the processor accesses this address, a page fault is raised
(#PF) and a VMEXIT context change occurs. By catching
the page fault in the hypervisor, the original jump address of
SYSCALL is reloaded into *STAR and it is re-executed. The
problem with this solution is that the overwhelming number
of page faults generated in an OS during its normal operation
induces a large performance degradation which makes the OS
drastically slower. Moreover, due to swapping, the number of
raised page faults increases significantly on machines with
lower memory capacity. Furthermore, a system with more
processes generates more page faults as well.

For this reason, we have to figure out another approach,
where the number of VMEXITs do not depend on the
hardware and the number of executed applications. Our new
method, similarly to [1], is based on invalid opcode exceptions
instead of page faults to mitigate the performance degradation
problem of previous solutions. As a first step of our implemen-
tation, we unset the SCE (system call enable) bit of the guest’s
EFER register, which makes SYSCALL instructions unknown
for the processor. As a consequence, when being executed,
an invalid opcode exception (#UD) is generated that induces
a corresponding VMEXIT (VMEXIT_EXCEPTION_UD). At
this point, the system call number can be retrieved in the
hypervisor from the EAX register and the guest’s user-space
data structures via the GS selector (see below for more details
on data structure extraction). As the #UD exception does not
increases the instruction pointer (RIP), we do not have to
bother with alignments to re-execute the SYSCALL. In contrast
to [1], we enable here the EFER.SCE bit again for higher
transparency. However, depending on the chosen transparency-
granularity tradeoff, later we disable this bit again. This can
be achieved in one of the following ways:

1) Set up a timer which checks the state of the bit period-
ically and modifies it if necessary

2) Unset the bit when other type of VMEXITs occur
3) Generate another VMEXIT for this reason

Naturally, all of these methods have advantages and dis-
advantages: A constant timer offered by 1) has a constant
performance overhead, and have to be fine-grained enough
to catch all the required syscalls. Case 2) promises better
performance than 1) and 3) as a result of piggybacking,
however, there is no direct control here on VMEXITs to gain a
given system call granularity. For this reason, we chose option
3), which puts extra performance overhead to our solution,
but makes the transparency of our analysis controllable. Note
that in Section V-B, we demonstrate that the suggested method
still offers acceptable performance loss. Thus, when an invalid



opcode exception is handled, and the required features are
extracted by reading the guest memory, a hardware breakpoint
is inserted (by means of debug registers DR0 and DR7) to an
address that has to be reached before the next chosen system
call depending on the chosen transparency-granularity level.
This breakpoint can either be placed on a user-, or kernel-
space code, however, it predestinates if user-, or kernel-level
objects can be extracted when handling it. See Figure 2 to read
the details of the invalid opcode exception handler algorithm.

When the guest’s instruction pointer reaches our hardware
breakpoint, a VMEXIT_EXCEPTION_DB is raised in the
processor that is handled by our registered trap. This handler
disables system calls again by disabling EFER.SCE for the
guest mode OS and deletes the breakpoint. Finally, OS objects
can be extracted here as well. The details of this algorithm is
described in Figure 3.

Fig. 2. Algorithm for handling invalid opcode exceptions.

Fig. 3. Algorithm for handling debug exceptions.

In order to extract the required features for a usable system
call tracer, we revealed OS-level data structures by means
of virtual machine introspection [11]. In contrast to previous
solutions, where mainly Windows XP operating systems were
monitored (e.g., [2], [13]), the current process was extracted
from fragile user-space data structures such as Thread Infor-
mation Block (NT TIB) [5], or via low-level paging infor-
mation [1], we show how the more robust, kernel-level data
structures can be extracted from a 64-bit Windows 7 OS.

The first main difference is that 64-bit operating systems use
flat memory model, so different segment registers (e.g., stack)
are treated with the same base: 0 [12]. Another difference
is that user and kernel-space data structures can be accessed
via the GS register instead of FS as in the x86 Windows NT
family. Furthermore, the well known offset values between
kernel objects also vary in different Windows versions. On
top of this, data structures reside at varying addresses due
to Address Space Layout (Load) Randomization (ASLR) in
Windows Vista and later versions. It means, that only con-
secutive memory reads allow us to get sufficient information.
For example, in Figure 4, we show how the current process
name (EPROCESS.ImageFileName) can be extracted via

the GS segment register at kernel mode in case of a 64-bit
Windows 7. Furthermore, many other kernel structures (e.g.,
KPCR (Processor Control Region)) can be extracted relatively
easily via the kernel mode GS. In order to extract user-level
data structures, the processor has to be in user mode. Thus,
when a SYSCALL is invoked, the processors checks if system
calls are enabled, and if they are not, an #UD exception is
generated before a context change could have occurred to
CPL=0. That is, our #UD handler is an ideal place to extract
user-level data structures as the guest mode OS is still in user
mode.

Fig. 4. 64-bit Windows 7 data structures.

V. EVALUATION

In this section, we evaluate our system on an AMD Athlon
64 X2 Dual Core 6000+ processor with 6 GB of RAM and
64-bit Windows 7 operating system. We use relatively large
RAM capacity so as to demonstrate that the OS raises too
many page faults even in this case, which is unacceptable on
mission critical systems.

A. Tracing Malware

To evaluate our system we downloaded all the in-
the-wild 64-bit samples from Offensive Computing [14],
which were available at the time we did the evalua-
tion. We searched this database for both the ”win64”
and ”w64” strings, but only some samples were pro-
vided with the following labels: Win64.Rugrat.A, Tro-
jan.Win64.A, Win64.Shruggle.1318, W64/BackdoorW.(C and
D) and w64/Gael.A. Note that AV labels can be confusing as
different vendors can identify the same malware differently.
The small number of 64-bit malware samples indicates that
we are at the very beginning of a new era in the field of
malware research and defense.

In order to successfully install our system, we had to disable
the driver signing feature in Windows 7, however, this is
an unnecessary step if we signed our driver with a trusted
CA. Note that driver signing was built into the Windows
operating system from Vista, in order to eliminate drivers with
unknown origin. On the other hand, driver signing turns to
come with problems due to the appearance of malware signed
by legitime private keys (see e.g., Stuxnet and Duqu [15]).



After downloading these samples, we started them in our
isolated test environment on a sanitized physical machine.
Then, we installed our tool and verified the execution of
samples by observing known system call traces.

B. Performance

1) #UD versus #PF: Another important contribution of this
paper is to demonstrate that our system call tracing method
guarantees better performance than the well-accepted method
[2], [5] applied on x86 systems. First of all, we registered traps
for #UD and #PF in the hypervisor to measure the number
of invalid opcode exceptions and page faults that occur in a
system by default. To demonstrate the performance differences
between the two methods, we first counted the number of page
faults and invalid opcode exceptions generated by the same
system under various conditions. To achieve this, we registered
a trap handler for #UD in NBP, and we used TraceView,
available as a part of the Windows Driver Kit [16], to count
the number of page faults at the same time. Note that we
could not measure the number of #PF with NBP due to the
low response time of the monitored system. Our measurements
demonstrate that the number of page faults highly depends on
the configuration of the machine such as the processes being
launched.

TABLE I
COUNTING THE NUMBER OF PAGE FAULTS AND INVALID OPCODE

EXCEPTIONS BEING RAISED UNDER NATIVE OPERATION ON TWO CPU
CORES. THE EXAMINED TIME INTERVAL IS 2.5 MINUTES, AND THE

STATISTICS ARE CALCULATED FROM SAMPLES WITH 12 ELEMENTS.

#UD #PF
Configuration Mean Std Mean Std
1. No extra process 0 0 16935 15839
2. Extra processes 0 0 43547 24155

To verify that extra processes increase the number of page
faults, we measured the number of exceptions right after the
reboot of the target system and after starting the following
applications: Wireshark, Foxit Reader, Internet Explorer 8,
Process Explorer, CPUID CPU-Z, CPUID Hardware Monitor
and MobaSSH Server. We summarized our results in Table 1.
The most interesting part of our measurement is that we did not
observe any invalid opcode exceptions (even with lengthened
time window of 30 minutes) under the normal operation of
the OS. On the other hand, as we can see the number of page
faults highly depend on the active processes.

2) Benchmarking Syscall Tracing: We also measured the
performance loss of our system call tracing method by means
of the Passmark Performance Test [17]. We executed the
tests 12 times in each configuration, and calculated the cor-
responding statistical metrics (mean and standard deviation)
for them. We evaluated the performance of the CPU in native
operation, when it is Blue-Pilled and when it is monitored by
our extension.

As Table 2 and Figure 5 demonstrate, NBP itself does not
cause performance overhead to the system, so it offers ideal
preconditions for our monitoring extension. When monitoring

Fig. 5. Statistics of CPU performance test for the unmonitored and monitored
system. The bars show the mean value for the corresponding CPU operations
in collaboration with their standard deviation.

Fig. 6. Statistics of Memory performance test for the Unmonitored, Blue-
pilled and Monitored system. The bars show the mean value for the corre-
sponding CPU operations in collaboration with their standard deviation.

the system, the observed performance loss ranges between
30.7% (Floating Point) and 35.4% (Compression), which is
still acceptable in practice as the OS actually remains usable.
Note that we configured our system-call tracer to perform
maximally, thus we re-enabled system call monitoring right
after the previously evaluated SYSCALL instruction. However,
the performance degradation of the monitored system was still
influenced by the executed debug print operations to verify the
result of traces. Furthermore, we benchmarked the memory
overhead of the system as well under the same conditions.
As Table 3 and Figure 6 show, our monitoring extension
induces negligible memory overhead in the range of 0.1%
(Read Cached) and 8.5% (Allocate Small Blocks).

VI. CONCLUSION

In this paper, we proposed an on-the-fly installable system
monitoring framework by extending the New Blue Pill HVM
rootkit to meet the requirements of live systems that do
not tolerate downtime. We also designed and implemented
a novel system call tracing method that promises long-term
compatibility with current 64-bit systems as well as allows for
configurable granularity and transparency for catching system
calls. In contrast to previous methods that mainly used page
faults, our approach is based on system call invalidation which
offers more acceptable performance. Moreover, we demon-
strated how user-, and kernel level data structures could be



TABLE II
RESULTS OF PASSMARK CPU PERFORMANCE TEST FOR THE UNMONITORED, BLUE-PILLED AND MONITORED SYSTEM. THE FIRST COLUMN LISTS THE

OPERATIONS EXECUTED BY THE TEST, WHILE THE NUMBERS SHOW THE MEAN AND STANDARD DEVIATION OF EXECUTION TIMES.

Native Blue-Pilled Monitored
Operations Mean Std Mean Std Mean Std
1. Integer Math (MOps/Sec) 344.5 2.40 346.0 1.13 228.0 82.35
2. Floating Point Math (MOps/Sec) 1072.3 8.30 1072.4 5.63 742.3 226.88
3. Find Primes (Thousand Primes/Sec) 322.9 3.22 323.7 1.14 220.1 74.44
4. SSE (Mill. Matrices/Sec) 9.4 0.06 9.4 0.10 6.3 2.17
5. Compression (KBytes/Sec) 2063.1 42.84 2072.6 6.99 1333.1 430.76
6. Encryption (MBytes/Sec) 9.7 0.03 9.7 0.03 6.1 2.08
7. Pyhsics (Frames/Sec) 95.9 1.98 95.6 1.99 63.7 17.57
8. String Sorting (Thousand Strings/Sec) 1243.6 27.86 1254.0 11.46 843.1 235.83

TABLE III
RESULTS OF PASSMARK MEMORY PERFORMANCE TEST FOR THE UNMONITORED, BLUE-PILLED AND MONITORED SYSTEM. THE FIRST COLUMN LISTS

THE OPERATIONS EXECUTED BY THE TEST, WHILE THE NUMBERS SHOW THE MEAN AND STANDARD DEVIATION OF EXECUTION TIMES.

Native Blue-Pilled Monitored
Operations Mean Std Mean Std Mean Std
1. Allocate Small Block (MBytes/Sec) 3348.4 33.0 3322.8 26.21 3067.1 217.8874
2. Read Cached (Mbytes/Sec) 1351.5 2.44 1351.7 2.22 1350.6 2.9738
3. Read Uncached (Mbytes/Sec) 1290.5 3.03 1286.7 2.92 1283.9 21.3572
4. Write (MBytes/Sec) 1256.8 8.67 1240.4 21.55 1243.9 43.5518
5. Large RAM (Operations/Sec) 2212.7 11.71 2193.4 27.83 2242.9 52.1760

extracted from a 64-bit Windows 7 system, which is essential
to tighten the gap between the hypervisor and the guest OS.
Our results can be used as building blocks for automated
malware detection on live systems, for example, by extending
the retrieved information via VMI to be suitable for tools such
as AccessMiner [8].

As for future work, we are about to extend the capabilities
of our tool to monitor full-kernel malware by dissecting native
API calls. Another interesting research direction could be the
automatic detection of nefarious malware behavior with host-
only sensors. That would allow to identify code injection,
data structure modification, and ROP based malware on live
systems without monitoring the network behavior.

ACKNOWLEDGEMENTS

The research was carried out as part of the EITKIC 12-
1-2012-0001 project, which is supported by the Hungarian
Government, managed by the National Development Agency,
financed by the Research and Technology Innovation Fund,
and performed in cooperation with the EIT ICT Labs Budapest
Associate Partner Group (www.ictlabs.elte.hu).

REFERENCES

[1] J. Pfoh, C. Schneider, and C. Eckert, “Nitro: Hardware-based system call
tracing for virtual machines,” in Advances in Information and Computer
Security, ser. Lecture Notes in Computer Science. Springer, Nov. 2011,
vol. 7038, pp. 96–112.

[2] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security, ser. CCS ’08.
New York, NY, USA: ACM, 2008, pp. 51–62.

[3] McAfee, “Mcafee deepsafe.” [Online]. Available: Availableat\url{http:
//www.mcafee.com/us/solutions/mcafee-deepsafe.aspx}

[4] A. Fattori, R. Paleari, L. Martignoni, and M. Monga, “Dynamic and
transparent analysis of commodity production systems,” in Proceedings
of the 25th International Conference on Automated Software Engineer-
ing (ASE), September 2010, pp. 417–426.

[5] A. Srivastava and J. T. Giffin, “Automatic discovery of parasitic mal-
ware,” in RAID, 2010, pp. 97–117.

[6] G. Pék, B. Bencsáth, and L. Buttyán, “nether: In-guest detection of out-
of-the-guest malware analyzers,” in Proceedings of the Fourth European
Workshop on System Security, ser. EUROSEC ’11. New York, NY,
USA: ACM, 2011, pp. 3:1–3:6.

[7] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi, “A fistful of red-
pills: How to automatically generate procedures to detect cpu emulators,”
in Proceedings of the 3rd USENIX Conference on Offensive Technolo-
gies, ser. WOOT’09. Berkeley, CA, USA: USENIX Association, 2009,
pp. 2–2.

[8] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“AccessMiner: Using system-centric models for malware protection,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, ser. CCS ’10. New York, NY, USA: ACM, 2010.

[9] J. Rutkowska and A. Tereshkin, “IsGameOver(), Anyone?” 2007.
[10] J. Rutkowska, “Subvertin Vista Kernel for Fun and Profit,” Aug 2006.
[11] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based

architecture for intrusion detection,” in NDSS, 2003.
[12] AMD, “AMD64 Architecture Programmer’s Manual,” December 2011.
[13] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture

for secure active monitoring using virtualization,” in Proceedings of
the 2008 IEEE Symposium on Security and Privacy, ser. SP ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 233–247.

[14] Offensive Computing, http://www.offensivecomputing.net/, Last ac-
cessed, March 26, 2012.

[15] B. Bencsáth, G. Pék, L. Buttyán, and M. Felegyhazi, “The cousins
of stuxnet: Duqu, flame, and gauss,” Future Internet 2012, 4(4),
doi:10.3390/fi4040971, pp. 971–1003, 2012.

[16] Microsoft, “Windwos Driver Kit,” http://msdn.microsoft.com/en-us/
windows/\\hardware/gg487428, Last accessed, April 02, 2012.

[17] Passmark Software, “Passmark Performance Test,” http:
//www.passmark.com/\\download/pt\ download.htm, Last accessed,
March 26, 2012.


