
nEther: In-guest Detection of Out-of-the-guest Malware
Analyzers

Gábor Pék
Laboratory of Cryptography

and System Security (CrySyS)
Budapest University of

Technology and Economics
pek@crysys.hu

Boldizsár Bencsáth
Laboratory of Cryptography

and System Security (CrySyS)
Budapest University of

Technology and Economics
bencsath@crysys.hu

Levente Buttyán
Laboratory of Cryptography

and System Security (CrySyS)
Budapest University of

Technology and Economics
buttyan@crysys.hu

ABSTRACT
Malware analysis can be an efficient way to combat mali-
cious code, however, miscreants are constructing heavily ar-
moured samples in order to stymie the observation of their
artefacts. Security practitioners make heavy use of various
virtualization techniques to create sandboxing environments
that provide a certain level of isolation between the host and
the code being analysed. However, most of these are easy
to be detected and evaded. The introduction of hardware
assisted virtualization (Intel VT and AMD-V) made the cre-
ation of novel, out-of-the-guest malware analysis platforms
possible. These allow for a high level of transparency by re-
siding completely outside the guest operating system being
examined, thus conventional in-memory detection scans are
ineffective. Furthermore, such analyzers resolve the short-
comings that stem from inaccurate system emulation, in-
guest timings, privileged operations and so on.

In this paper, we introduce novel approaches that make
the detection of hardware assisted virtualization platforms
and out-of-the-guest malware analysis frameworks possible.
To demonstrate our concepts, we implemented an applica-
tion framework called nEther that is capable of detecting
the out-of-the-guest malware analysis framework Ether [6].

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEM]: Security and Protection

General Terms
Security

Keywords
Malware Analysis, Virtualization

1. INTRODUCTION
Due to the ever-growing intelligence of malicious programs

security experts are in trouble with the exact understanding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EUROSEC ’11, 10-APR-2011, Salzburg, Austria
Copyright 2011 ACM 978-1-4503-0613-3/11/04 ...$10.00.

of their operation. That is the reason why many steps have
been taken over the years to analyse and combat them. How-
ever, miscreants are in for constructing heavily armoured
pieces of malware in order to stymie the observation of their
creations. Most of the in-the-wild instances use a wide range
of anti-debugging and anti-unpacking techniques that are
capable of detecting or evading the majority of current an-
alyzers.

This fact stimulated the research community to come up
with sandboxing tools which aim at emulating real runtime
environments. The bulk of these approaches build upon pure
software virtualization solutions, thus mimicking the low
level instruction set of CPUs. However, numerous opcodes
have different side-effects in emulated and in real platforms,
thus malicious artefacts can realize that and deny execution.
More refined solutions are based on hardware virtualization
extensions which apply complete and accurate system emu-
lation, so detection becomes much harder.

Such analyzers are executed in a higher privilege level soft-
ware component called Virtual Machine Monitor (VMM) or
hypervisor which resides completely outside the environment
being analysed. This provides a high level of transparency
that could be guaranteed by the rich feature set of hardware
assisted virtualization. The first implementation of this ap-
proach is the Ether [6] malware analysis framework that is
deployed over Xen and Intel VT. Later, a similar analyzer
called Azure [12] was implemented over KVM.

In this paper we introduce new detection attacks against
the out-of-the-guest malware analysis framework Ether.
More specifically, we present an in-guest timing attack which
was supposed to be prevented by Ether, but for various rea-
sons, it actually does not prevent it, and an attack based
on the detection of some specific settings that Ether makes
in the system configuration. We also propose a technique
to detect hardware virtualization platforms based on the
verification of the presence of CPU specific design defects;
this approach does not detect Ether itself, but identifies the
hardware assisted virtual environment, which can be an in-
dicator of the presence of a malware analysis platform such
as Ether. In order to demonstrate our concepts, we imple-
mented a scalable and flexible application framework over
Windows XP called nEther which can practically disclose
the presence of both Ether and Intel VT by executing mul-
tiple feature tests.

The organization of the paper is the following: Section 2
introduces the related technologies and platforms: Xen, In-
tel VT and Ether. In Section 3, a few possible feature tests

are defined that could be eligible for detecting Ether. The
weaknesses of Ether and out-of-the-guest malware analyz-
ers are discussed in Section 4 as well as the implementation
of the application framework that holds the aforementioned
feature tests. Related works are summarized in Section 5,
while a short conclusion is given in Section 6.

2. PREREQUISITES

2.1 Introducing Xen
In Xen terminology, each virtual machine is called as Do-

main (Dom), where there is one driver domain (Dom0) and
can be multiple user domains (domUs) for guest OSes. The
VMM is called as hypervisor that runs at the highest privi-
lege level. Dom0 has privileged and direct access to all I/O
devices (e.g., disks, network devices, PCI devices, etc.). It
has two key roles: it administers other domains (creating,
destroying, saving and so on), and makes an abstraction
layer atop the hardware devices to the hypervisor and hence
to virtual machines. This is feasible as the Dom0 kernel
has conventional device drivers that communicate with the
hardware directly.

2.2 Introducing Intel VT-x
With the introduction of Virtual Machine Extensions

(VMX), Intel VT-x has extended the capabilities of IA-32
CPUs with two new forms of operations: VMX root mode
and VMX non-root mode. The former refers to the operation
form of VMM and higher privileges (ring -1), while the lat-
ter belongs to guests (ring 0) and indicates lower privileges,
however, each of them supports all the conventional pro-
tection rings (0-3). There have been two transitions (VMX
transitions) defined between root mode and non-root mode:
VMExits refer to transitions from non-root mode to root
mode, while transitions from root-mode to non-root mode
are called as VMEntries.

The operation of the processor in VMX root mode is very
similar to its normal operation, however, a set of new in-
structions (VMX instructions) are available and the modi-
fications of control registers are limited. In VMX non-root
mode the effects of certain sensitive instructions and events
are limited, since they cause VMExits and handled by the
VMM discretionally. By doing so, the VMM can retain con-
trol of the processor resources, furthermore, the guest does
not know if its logical processor is running in VMX non-root
mode.

2.3 Introducing Ether
Ether [6] is a malware analysis platform that utilizes Intel

VT’s hardware virtualization extensions, and theoretically
it has no presence in the guest operating system. It uses na-
tive CPU instructions, thus does not suffer from incomplete
or inaccurate system emulation such as hardware emulators
do. Ether also comes with a rich feature set, thus it can
monitor all the memory write attempts of the guest, trace
the instructions and system calls of in-guest processes, and
unpack a wide range of protected binaries. The transparency
of Ether is guaranteed by the following facts [6].

• Higher Privilege. The malware analyzer must be at a
higher privilege level than the maximal privilege level
a malcode can escalate. As a consequence, all the ex-
ception handler and virtual memory mapping routines

reside at a higher privilege level. In this way, isolation
can be guaranteed, thus no information is leaked from
the analyzer to lower privilege levels.

• No non-privileged side effects. All the side-effects that
the analyzer causes should be accessed only through
exception handler routines residing at a higher privi-
lege level than the hostile code. Thus, any alteration
of memory, CPU registers, timing, etc. should induce
exceptions that can be caught only by privileged han-
dlers.

• Identical Instruction Execution Semantics. Every sin-
gle instruction being executed should have the same
effects both in an environment where the analyzer is
present (call it analysed environment) and another
where it is not (call it non-analysed environment).

• Transparent Exception Handling. First of all, if there
is no exception handler for the faulting instruction
in a non-analysed environment, the privileged excep-
tion handler must guarantee the same execution se-
mantics. Secondly, the exception handler should cause
only privileged side-effects in the state of the memory
and the CPU. Finally, if there is an appropriate ex-
ception handler for the faulting instruction in a non-
analysed environment, then the privileged exception
handler that replaces it in an analysed environment
should make identical changes to the state of the mem-
ory and CPU.

• Identical Measurement of Time. All the timing infor-
mation retrieved by a non-analysed environment should
be identical to the one returned by its analysed coun-
terpart. The analyzer should provide a falsified time
to the hostile code that can be guaranteed by a privi-
leged logical clock and adjusted whenever an exception
(including timing request) has occurred.

Therefore, transparency is achieved in a novel way that
tightens the range of possible detection attacks. Practically,
Ether mitigates the risk of the following detection vectors:

• Single-step trap. Ether can hide its presence by inter-
cepting the requests that directly or indirectly read the
value of TF in the EFLAGS register.

• Memory Modifications. Every intended memory write
of the observed code that generates a page fault is
intercepted by Ether. Moreover, Ether modifies only
shadow page tables (actual page tables used for address
translation), which are invisible to the analysis target,
so it cannot be detected in this way.

• In-memory presence. Ether cannot be detected through
normal in-guest detection methods, since none of its
components resides in the guest’s memory.

• CPU Registers. All the CPU register alterations made
by Ether are concealed from the guest, thus it remains
indistinguishable from native (hardware assisted) en-
vironments.

• Privileged Instruction Execution. Ether captures cer-
tain privileged instructions and exceptions invoked by
the analysis target as they induce VMExit. After han-
dling them, these are forwarded to the guest with the
same effects as in an environment without Ether.

• Instruction Emulation. As Ether is based on hardware
assisted virtualization, all of its instructions are exe-
cuted on the native CPU, thus it does not suffer from
the weaknesses of hardware emulators such as QEMU.

• Timing Attacks. Ether mitigates timing attacks by
controlling the in-guest view of internal timers, e.g.,
RDTSC instruction. It makes use of the TSC_OFFSET

field provided by the Intel VT architecture which is
added automatically to any timing request. Ether the-
oretically sets the TSC_OFFSET appropriately, thus the
TSC difference between two RDTSC instructions should
not deviate from the one measured in non-analyzed
environments. That is, Ether theoretically mitigates
in-guest timing attacks, however, the use of external
timing sources may make Ether visible.

3. PROPOSED FEATURE TESTS

3.1 Timing Information
The use of timers is a well-known technique to detect the

presence of traditional debuggers. The simplest way to get
information about timing is the use of internal timers and
periodic interrupt sources such as the Time-Stamp Counter
(TSC), Periodic Interrupt Timer (PIT), Advanced Configu-
ration and Power Interface Timer (ACPI timer) and the
local Advanced Programmable Interrupt Controller Timer
(APIC timer). Due to the fact that out-of-the-guest mal-
ware analyzers aim at providing transparency they falsify
internal timers in order to fool a timing test. However, the
correct manipulation of timing cannot be guaranteed in all
the circumstances. A conventional detector application mea-
sures the clock cycles taken by a given operation, e.g., mea-
sures the Time-Stamp Counter difference by means of RDTSC
(Read Time-Stamp Counter) instructions, and if this value
is higher than a preset threshold the presence of an analyzer
is presumable.

The operation of Ether is different from the aforemen-
tioned behaviour so as to avoid traditional detectors, how-
ever, we designed a in-guest timing feature test that dis-
closed this specific solution. The feature test builds upon
a contradiction raised by clock cycle manipulation where
the analyzer returns an adjusted cycle difference to hide its
presence. In case of Ether, every RDTSC forces the guest OS,
where the detector resides, to exit (VMExit) and transfer
its control to the VMM to adjust the time. However, the
current implementation of Ether uses a very simple logical
timer that can be exploited by our feature test. More details
about our implementation of this approach is presented in
Section 4.3.1.

3.2 CPUID Information
The CPUID instruction returns processor identification and

feature information depending on the content of general reg-
isters EAX and ECX. These could serve as good candidates for
analyzer detectors as various modifications of the system can
be retrieved. Ether states that it has neither in-memory nor
in-register presence, thus it stays transparent for the guest
OS. However, it does alter a few bits of information that
could be returned by the correct configuration of CPUID. The
specific implementation of this feature test is presented in
section 4.3.2.

3.3 CPU Errata
CPU errata refer to the collection of design defects or er-

rors that may induce the CPU to behave differently from
the published specifications. An application containing an
instruction sequence that gives rise to a CPU erratum may
modify certain registers (typically MSRs), causes unexpected
exceptions, generates/not generates interrupts, etc. These
errata are CPU type specific, and in a lot of cases even
not planed to be fixed. Since these design deficiencies are
not implemented by emulators and virtualization extensions
(neither software nor hardware), efficient tools are given for
anyone who are about to detect the presence of a non-native
runtime environment. While we cannot detect the presence
of Ether itself with this approach, it can be used to reveal the
hardware assisted virtualized environment. See section 4.3.2
for implementation.

4. IMPLEMENTATION

4.1 Application Framework
First of all, an application framework is implemented in

C++ that provides all the preconditions that are required by
the feature tests. Since detectors require several privileged
instructions to be executed, the framework builds upon a
Windows kernel driver as Figure 1 depicts it.

Domain0
(Xenlinux) ...

Paravirtualized
Domain

HW assisted Domain HW assisted Domain

Platform with Hardware Assisted Virtualization (Intel VT)

DomainU DomainU
(Windows Guest)

Ether
Usermode

Component

Ether Hypervisor Component Xen

VM Exit / Entry

(Windows Guest)

AppApp

nEther Kernelmode
Component

nEther Usermode
 Component

Figure 1: System Overview

Basically there are two types of feature tests: those that
do not use the kernel driver, and those that do. The opera-
tion of the former is straightforward, thus only the latter is
detailed in the following. Once the kernel driver had been
loaded, the messaging with it can be initiated. Therefore,
whenever a detection test requires a privileged instruction, it
uses the DeviceIOControl WinAPI function which is capa-
ble of notifying the corresponding kernel driver about a com-
munication attempt. The implemented device driver called
DetectorDriver.sys plays an important role in the detection
mechanism as the access and manipulation of privileged data
structures, registers, memory locations are feasible only from
kernel mode.

4.2 Execution and Verification
The implemented feature tests had to be executed on sev-

eral reliable environments to make our measurements ac-

ceptable. Since Ether is implemented for an Intel VT CPU
with 64-bit support, we also had to choose such a platform.
Intel VT has to be enabled explicitly in BIOS in order to
operate. The latest compilation of Ether runs on Debian
Lenny, and is tested only with Windows XP SP2 guest op-
erating system. That is the reason why we set up the same
host environment (Domain 0) with Debian Lenny (Linux
kernel 2.6.26) and Xen support. After patching Xen with
Ether only the guest operating system had to be installed.
Thus, feature tests are executed on 3 different guest oper-
ating systems: Windows XP over Ether, Windows XP over
only Xen and native Windows XP.

4.3 Implementation of Feature Tests

4.3.1 In-guest Timing
We propose an in-guest timing feature test that can de-

tect Ether by exploiting a practical weakness. To under-
stand how our feature test works we introduce the opera-
tion of RDTSC instruction in VMX non-root mode. Its value
depends on the ”RDTSC exiting”, ”use TSC offsetting” VM-
execution control fields and the TSC_OFFSET value. VM-
execution control fields allow the VMM to control the oper-
ation of certain instructions like the aforementioned RDTSC,
while TSC_OFFSET is a special field of the Intel VT architec-
ture that is added to the value of the returned Time-Stamp
Counter in defined cases. The RDTSC instruction in VMX
non-root mode works in one of the following three options.
The first option is that if both the ”RDTSC exiting” and
”use TSC offsetting”control fields are zero, an in-guest RDTSC
can operate normally, thus it returns the 64-bit Time-Stamp
Counter value. If the ”RDTSC offsetting” field is zero and
the ”use TSC offsetting” is 1, then it responds with the sum
of the IA32_TIME_STAMP_COUNTER MSR and the value of the
TSC_OFFSET field. The last option is that if the ”RDTSC
exiting” control field is 1, then it causes a VMExit, which
can be intercepted by the VMM to adjust the Time-Stamp
Counter value. This is the technique that Ether applies,
however, the 64-bit TSC value returned to the guest is ad-
justed in a deterministic manner as the code snippet (pasted
from ether lenny.patch source file) below demonstrates it.

+/* maintain a monotonic fake TSC counter */
+u64 ether_get_faketime(struct vcpu *v)
+{
+ return ++v->domain->arch.hvm_domain.

.ether_controls.faketime;
+}

As the above mentioned code snippet is only responsible
for increasing the timer monotonically, the authors of Ether
proposed to exactly adjust the logical timer by the use of the
TSC_OFFSET field of the Intel VT architecture. Significant to
emphasize that this routine is called only at the time when
the guest exited with an RDTSC, thus nowhere else the TSC
is being incremented. In theory, the task of TSC_OFFSET

would be to adjust the returned Time-Stamp Counter value
conforming to a native system. Contrary to the original
paper [6], the TSC_OFFSET field is not updated by the Ether
implementation and does not contain the difference value
between the execution time of Ether’s exception handler and
that of the native handler routine. The ”TSC offsetting”
VM-execution control field is being disabled while ”RDTSC
exiting” is being enabled in the minimum configuration, as

the following source code taken from the Ether-patched Xen
source file vmcs.c shows.

void vmx_init_vmcs_config(void)
{
...
min = (CPU_BASED_HLT_EXITING |

CPU_BASED_INVDPG_EXITING |
CPU_BASED_MWAIT_EXITING |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_ACTIVATE_IO_BITMAP |
//CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_RDTSC_EXITING);

_vmx_cpu_based_exec_control =
adjust_vmx_controls(min, opt,
MSR_IA32_VMX_PROCBASED_CTLS_MSR);

...
}

Due to the fact that TSC_OFFSET is neglected and the TSC
is increased by one for one in-guest RDTSC call, the TSC dif-
ference between two RDTSC instructions is 1. More precisely,
this is the case when the code being executed in Ether is not
analysed. According to our observations whenever a code is
under analysis (e.g., instruction traced) there are CPU time
slots for other guest processes to invoke additional RDTSCs.
Due to that fact there is a varying TSC difference (∼9-171)
value between any two RDTSCs of the analysed code we in-
troduce below. This difference is still so tiny that a general
timing attack found in various malware samples (measur-
ing the TSC difference before and after the execution of an
instruction) will not be successful. However, this approach
still does not enable Ether to stay completely transparent as
this kind of operation deviates much from the normal oper-
ation of RDTSC.

In the following, we give a practical feature test against
Ether which a bit different from a conventional in-guest tim-
ing attack as it builds upon the fact that each instruction of
an instruction sequence increments the TSC with a prede-
fined value depending on the CPU family. For example, in
case of Core 2 Duo processors the TSC is incremented at a
constant rate by either the maximum core-clock to bus-clock
ratio of the processor or by the maximum resolved boot-time
frequency [4]. Supposing that each value is bigger than 1, a
program that estimates the extent of increment can be used
as a feature test. The code sample below initializes a NOP

loop that increments the TSC at a constant rate in each it-
eration, thus the resulting difference between the initial and
the final execution of RDTSC should be at least equal to the
length of the loop (2000).

mov ecx, 2000
cpuid
rdtsc
xchg ebx, eax

lb: nop
loop lb
cpuid
rdtsc
sub eax, ebx
cmp eax, 2000
jbe det

As RDTSC is a non-serializing instruction, it may be exe-
cuted after the subsequent or before the previous instruc-
tions if their execution takes a while. That is, a serializing
instruction, e.g., CPUID, is put before reading the counter.

Furthermore, the loop must contain a non-privileged in-
struction which does not cause a VMExit so as to prevent
its execution from being manipulated in the VMM. Note
that in the code sample we examine only the lower 32 bits
of RDTSC as the faked TSC has never exceeded this inter-
val for our tests. Since RDTSC has been discussed above
the behaviour of it can be used in other two modes. If it
works normally, the presence of a debugger can be detected
with conventional timing methods. If it returns the sum of
the IA32_TIME_STAMP_COUNTER MSR and the value of the
TSC_OFFSET field the case is the same as with normal op-
eration since the VMM cannot manipulate the TSC value
conforming to the length of the loop. Thus, these two other
options could not help to adjust the in-guest timer. How-
ever, in our opinion the implementation of correct faked tim-
ing could have been solved with some efforts, thus it is not
a theoretical problem.

4.3.2 CPUID Bits
This feature test checks a few bits returned by a CPUID

that are specific to Ether. The Time-Stamp Counter bit
(TSC) returned by the CPUID instruction on the first leaf
(EAX=1) shows whether RDTSC is supported, including the
CR4.TSD bit which restricts the execution of the RDTSC in-
struction. By default the TSC bit is set on both native and
virtualized operating systems. However, Ether explicitly
disables it, thus breaching a preset condition that no modifi-
cations are made on the state of the guest. The code sample
below first executes a CPUID and checks whether the VMX
bit is set by Xen, thus the environment is hardware assisted
virtualized. Finally, the state of the TSC bit is evaluated and
the result is returned (res=0 initially) accordingly.

mov eax, 1
cpuid
bt ecx, 5 // Checking the VMX bit
jc exit

// Xen is detected
bt edx, 4 // Checking TSC bit if set
jc exit
mov res, 1

exit:

The current implementation of Ether disables Physical
Address Extensions (PAE) and Page Size Extensions (PSE)
in order to make memory writes easier as it has been explic-
itly stated by the authors. At the same time, these changes
give rise to another bit of information that can be useful in
the detection.

4.3.3 CPU Errata
These type of feature tests could not reveal the presence

of Ether, but could reveal the hardware-assisted-virtualized
runtime environment. Note that the detection of system
monitors through CPU errata has already been discussed for
CPU identification in [11], however, here only the QEMU
hardware emulator was tested with this technique. Most
of the errata require kernel mode instructions, thus must
have been implemented in a Windows driver component. On
the other hand, these CPU deficiencies or bugs are strongly
bound to CPU models, thus the feature tests can be effec-
tive only on certain CPU families (e.g., Intel Core 2 Solo).
Since our test environment is built atop a machine with In-
tel Core 2 Duo E6600 CPU the following erratum exploits a
vulnerability of the Core 2 Duo family [5].

AH4 Erratum.
The AH4 Erratum states that ”VERW/VERR/LSL/LAR

Instructions May Unexpectedly Update the Last Exception
Record (LER) MSR ” and there is no planned fix for it. The
problem is that the LER MSR is updated in certain cases for
unknown reasons, if the resultant value of the Zero Flag

(ZF flag of EFLAGS register) equals zero after the execu-
tion of the instructions above. The Last Exception Record
MSR comprises two registers called MSR_LER_FROM_LIP and
MSR_LER_TO_LIP situating at register addresses 0x1dd and
0x1de, respectively. The former is the abbreviation of Last
Exception Record From Linear Instruction Pointer which
points to the last branch instruction (conditional/ uncondi-
tional jumps, call, etc.) that had been taken by the proces-
sor before the last exception occurred or the last interrupt
was handled. The latter refers to Last Exception Record To
Linear Instruction Pointer which stores the address of the
target of the last branch instruction that had been executed
by the processor before the last exception occurred or the
last interrupt was handled.

The ”Verify a Segment for Reading or Writing” instruc-
tions verify if a code or data segment is readable/writeable
from the current privilege level (CPL) according to [4]. This
erratum requires kernel mode operation as it reads privileged
resources (LER MSR), thus it is implemented as a part of
our device driver. By providing the cleared AX and CX reg-
isters for VERR and VERW instructions the resultant ZF flag is
zero for sure as invalid segment pointers (NULL) are given
to the source operands. Last, but not least the value of the
Last Exception Record To Liner IP MSR is read with the
privileged __readmsr(MSR address) Visual C++ command
at register address 0x1de.

__asm{
xor eax, eax
xor ecx, ecx
verr cx
verw ax

}
ret = __readmsr(0x1de);

The concept behind this erratum is that an out-of-the-
guest analyzer might unintendedly modify the Last Excep-
tion Record MSR as it contains information about the last
generated exception. Due to the fact that under Ether any
memory write attempt of the analysis target induces a page
fault which updates the LER value (since the last branch
instruction varies as well), this erratum might influence the
number of changes. However, the access of LER MSR can be
restricted by the MSR bitmap of the CPU [4], thus the ex-
ecution of the erratum does not affect the LER MSR of the
host. A processor erratum is a design fault so its existence
is unintended. Consequently, hardware assisted virtualiza-
tion solutions (e.g., Xen) will not implement them in the
exposed virtual CPUs of guests because it would take too
much effort and make no sense to mimic unexpected system
behaviours, however, a higher level of transparency could
be provided. According to the figures, a guest environment
supported by Intel VT-x and Xen does not suffer from this
weakness. Table 1 demonstrates the execution of this fea-
ture test. First of all, the CPU erratum was executed 100,
1000, 10000 and 100000 times under the corresponding en-
vironments. As the results show, the erratum has occurred
only in native environment, thus it is an evident detector for
hardware assisted virtualization.

Number of updates
N Native Xen Xen with Ether

100 59 0 0
1000 650 0 0
10000 4232 0 0
100000 20870 0 0

Table 1: The number of updates

5. RELATED WORK
The fingerprinting of virtualized environments is discussed

in previous work [3] where a remote network-based finger-
printing method was introduced. In order to hide the fin-
gerprints of system emulators more stealthy debuggers were
built [11]. There are several various malware analysis plat-
forms that make use of virtualization extensions, however,
the detection of them is not challenging as being in-guest
approaches (e.g., VAMPiRE [14]) or running at the same
privilege level (e.g., Cobra [14]) as the hostile code. Fur-
thermore, there are also out-of-the-guest systems (e.g., TT-
Analyze [1]) that build upon QEMU [2] for which there are
thousands of detectors, red-pills [10]. Sandboxing environ-
ments such as Norman Sandbox [9] or CWSandbox [8] use
either Windows API hooking or Windows API virtualiza-
tion that are detectable as operating at the same privilege
level as the observed code [7] does. The work of Monirul
Sharif et al. is an in-guest VM monitoring tool called SIM
[13] which allegedly guarantees the same security level as
an out-of-the-guest approach. Beside Ether, there are other
supposedly transparent out-of-the-guest dynamic malware
analysis platforms such as the so-called Azure [12]. Note
that centerpiece of this work is Ether, however, it involves
general considerations as well that might be applicable for
other out-of-the-guest analyzers.

6. CONCLUSIONS
In this paper we introduced novel in-guest methods for

virtualized environments which are capable of detecting the
presence of the out-of-the-guest malware analysis platform
Ether. Moreover, a feature test could explicitly detect the
Intel VT-x hardware virtualized environment. In order to
demonstrate our approaches we implemented an application
framework. Ether formalized transparency with high accu-
racy, however, we highlighted a few weaknesses practically.

In the future, we aim at updating the theoretical model
and practical implementation of Ether so as to successfully
evade current and some possible future attacks. As a conse-
quence we are about to examine various aspects that high-
light the theoretical weaknesses of out-of-the-guest ap-
proaches. One such a problem relates to timing, where we
identified three different classes: Firstly, the user interface
interaction is extremely slow under the guest if a code is
being analysed by Ether, e.g., the move of the mouse arrow
is intermittent in that case. Secondly, there can be other
relative timing sources found which could be used as refer-
ence points. One such an idea is the fluctuation of CPU fan
RPM (Rotation Per Minute) as according to our observa-
tions, this RPM value is changing periodically under a na-
tive environment. Finally, hardware related timing sources
including DMA data transfer, reading speed of PCI bus can
also be potential candidates. However, even more detection
methods can be figured out, thus in our opinion the provi-

sion of perfect transparency cannot be guaranteed neither
theoretically nor practically.

7. ACKNOWLEDGEMENTS
This work was carried out within the scientific program

called ”Development of quality-oriented and cooperative
R+D+I strategy and functional model at BME”, which is
part of the New Hungary Development Plan (Project ID:

TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

8. REFERENCES
[1] U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool

for analyzing malware, 2006.

[2] F. Bellard. QEMU, a Fast and Portable Dynamic
Translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[3] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and
J. Nazario. Towards an understanding of
anti-virtualization and anti-debugging behavior in
modern malware. In Proceedings of the 38th Annual
IEEE International Conference on Dependable
Systems and Networks (DSN ’08), pages 177–186,
Anchorage, Alaska, USA, June 2008.

[4] I. Corporation. Intel R©64 and IA-32 Architectures
Software Developer’s Manual, June 2009.

[5] I. Corporation. Intel R©CoreTM2 Duo Processor for
Intel R©Centrino R©Duo Processor Technology
Specification Update. http://download.intel.com/
design/mobile/SPECUPDT/31407918.pdf, September
2010.

[6] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization
extensions. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security,
pages 51–62, New York, NY, USA, 2008. ACM.

[7] P. Ferrie. Attacks on virtual machine emulators.
Symantec Advanced Threat Research, 2006.

[8] Malware Analysis System, CWSandbox ::
Behaviour-based Malware Analysis.
http://mwanalysis.org/.

[9] Norman Sandbox Whitepaper.
http://download.norman.no/whitepapers/

whitepaper_Norman_SandBox.pdf, 2003.

[10] R. Paleari, L. Martignoni, G. Fresi, and R. D. Bruschi.
A fistful of red-pills: How to automatically generate
procedures to detect cpu emulators. In In Proceedings
of the USENIX Workshop on Offensive Technologies
(WOOT, 2009.

[11] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting
system emulators. In Information Security Conference
(ISC 2007), Oct 2007.

[12] P. Royal. Alternative Medicine: The Malware
Analyst’s Blue Pill. In Black Hat USA, Aug 2008.

[13] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure
in-vm monitoring using hardware virtualization. In
CCS ’09: Proceedings of the 16th ACM conference on
Computer and communications security, pages
477–487, New York, NY, USA, 2009. ACM.

[14] A. Vasudevan and R. Yerraballi. Stealth breakpoints.
In 21st Annual Computer Security Applications
Conference, 2005, pages 381–392, 2005.

