
Query Auditing for Protecting Max/Min Values
of Sensitive Attributes in Statistical Databases

Ta Vinh Thong and Levente Buttyán

Laboratory of Cryptography and System Security (CrySyS)
Budapest University of Technology and Economics, Hungary

{thong, buttyan}@crysys.hu
http://www.crysys.hu

Abstract. In this paper, we define a novel setting for query auditing,
where instead of detecting or preventing the disclosure of individual sen-
sitive values, we want to detect or prevent the disclosure of aggregate
values in the database. More specifically, we study the problem of de-
tecting or preventing the disclosure of the maximum (minimum) value in
the database, when the querier is allowed to issue average queries to the
database. We propose efficient off-line and on-line query auditors for this
problem in the full disclosure model, and an efficient simulatable on-line
query auditor in the partial disclosure model.

Keywords: Privacy, query auditing, online auditor, offline auditor, sim-
ulatable auditor, probabilistic auditor, statistical database.

1 Introduction

Query Auditing is a problem that has been studied intensively in the context of
disclosure control in statistical databases [1]. The goal of a query auditing algo-
rithm is to detect (off-line query auditing) or to prevent (on-line query auditing)
the disclosure of sensitive private information from a database that accepts and
responds to aggregate queries (e.g., average value of an attribute over a subset of
records defined by the query). To the best of our knowledge, in all existing works
on query auditing, the private information whose disclosure we want to detect or
prevent consists of the sensitive fields of individual records in the database (e.g.,
the salery of a given employee). The reason may be that statistical databases
are mainly used for computing statistics over certain attributes of human users
(e.g., the average salary of women employees), and in such applications, each
database record corresponds to an individual person. In this paper, we define a
novel setting for query auditing, where we want to detect or prevent the disclo-
sure of aggregate values in the database (e.g., the maximum salary that occurs
in the database).

The motivation behind our work comes from a project1, called CHIRON,
where we use body mounted wireless sensor networks to collect medical data

1 www.chiron-project.eu

2 Ta Vinh Thong and Levente Buttyán

(e.g., ECG signals, blood pressure measurements, temperature samples, etc.)
from a patient, and we use a personal device (e.g., a smart phone) to collect those
data and provide controlled access to them for external parties (e.g., hospital
personnel, personal coach services, and health insurance companies). In this
context, the records stored in the database on the personal device all belong
to the same patient, and individual values (i.e., sensor readings) may not be
sensitive, whereas aggregates computed over those values (e.g., the maximum of
the blood pressure in a given time interval) should be protected from unintended
disclosure. The reason is that some of those aggregates (extreme values) can be
used to infer the health status of the patient, and some of the accessing parties
(e.g., health insurance companies) should be prevented to learn that information.

More specifically, in this paper, we study the problem of detecting or pre-
venting the disclosure of the maximum value in the database, when the querier
is allowed to issue average queries to the database. We propose efficient off-line
and on-line query auditors for this problem in the full disclosure model, and an
efficient simulatable on-line query auditor in the partial disclosure model. As for
the organization of the paper, we start with an overview of the query auditing
problem domain, introduce some terminology, review the state-of-the-art, and
then present our model and algorithms together with their detailed analysis.
Finally, we note that due to space limitations, we only sketch the proofs, and we
focus on the main results of our work. More illustrating examples, explanations
and more detailed proofs can be found in our technical report [13].

2 Query Auditing Problems

Query auditing problems can be classified according to the characteristics of the
auditor and the attacker model that they resist [1]. In case of offline auditing,
the auditor is given a set of t queries q1, . . . , qt and the corresponding answers
a1, . . . , at, and its task is to determine offline if a breach of privacy has occurred.
In contrast, an online auditor prevents a privacy breach by denying to respond
to a new query if doing so would lead to the disclosure of private information.
More specifically, given a sequence of t−1 queries q1, . . . , qt−1 that have already
been posed and their corresponding answers a1, . . . , at−1, when a new query
qt is received, the online auditor denies the answer if it detects that private
information would be disclosed by q1, q2,. . . , qt, and a1, a2, . . . , at, otherwise it
gives the true answer at.

Let n denote the total number of records in the database.X = {x1, x2, . . . , xn}
is the set of the private attribute values in the records. q = (Q, f) is an aggre-
gate query, where Q specifies a subset of records, called the query set of q. f is
an aggregation function such as MAX, MIN, SUM, AVG, MEDIAN. Finally, let
a = f(Q) be the result of applying f to Q, called the answer. In the following,
we give an overview of the disclosure models, as well as the notion and concept
of simulatable auditor.

In the full disclosure model, the privacy of some data x breaches when x has
been uniquely determined.

Query Auditing 3

Definition 1 Given a set of private values X = {x1, x2, . . . , xn}, a set of queries
Q = {q1, q2, . . . , qt}, and corresponding answers A = {a1, a2, . . . , at}, an element
xi is fully disclosed by (Q,A) if it can be uniquely determined, that is, xi is the
same in all possible data sets X consistent with the answers A to the queries Q.

One may think that the full disclosure model defines a weak notion of privacy
since a private value can be deduced to lie in a tiny interval or even a large
interval where the distribution is heavily skewed towards a particular value, yet
it is not considered a privacy breach. To deal with this problem, a definition
of privacy has been proposed that gives bounds on the ratio of the posteriori
probability that an individual value xi lies in an interval I given the queries and
answers to the apriori probability that xi ∈ I. This is also known as probabilistic
(partial) disclosure model [10], which we will introduce next.

Consider an arbitrary data set X = {x1, . . . , xn}, in which each xi is chosen
independently according to the same distribution H on (−∞,∞). Let D = Hn
denote the joint distribution. Next we introduce the notion of λ-safe and AllSafe.
We say that a sequence of queries and answers is λ-safe for an entry xi and an
interval I if the attacker’s confidence that xi ∈ I does not change significantly
upon seeing the queries and answers.

Definition 2 The sequence of queries and answers, q1, . . . , qt, a1, . . . , at (denoted
by ∧t1(qj , aj)) is said to be λ-safe with respect to an xi and an interval I ⊆
(−∞,∞) if the next Boolean predicate evaluates to 1:

Safeλ,i,I(∧t1(qj , aj)) =

{
1 if 1/(1 + λ) ≤ PrD(xi∈I|∧t

j=1(fj(Qj)=aj))

PrD(xi∈I) ≤ (1 + λ)

0 otherwise

Definition 3 Predicate AllSafe evaluates to 1 if and only if q1, . . . , qt, a1, . . . , at
is λ-safe for all xi’s and all ω-significant intervals.

AllSafeλ,ω(∧t1(qj , aj)) =

{
1 if Safeλ,i,J(∧t1(qj , aj)) = 1, ∀ J , ∀ i ∈ [n]
0 otherwise

We say that an interval J is ω-significant if for every i ∈ [n], PrD(xi ∈ J) is
at least 1/ω, and we will only consider the change of probabilities with respect
to these intervals. The definition of a randomized auditor for the case of partial
disclosure model is as follows.

Definition 4 A randomized auditor is a randomized function of queries q1, . . . , qt,
the data set X, and the probability distribution D that either gives an exact an-
swer to the query qt or denies the answer.

Below we introduce the notion of the (λ, ω, T)-privacy game and the (λ, δ,
ω, T)-private auditor. The (λ, ω, T)-privacy game is a game between an attacker
and an auditor, where each round t (for up to T rounds) is defined as follows:

1. In each round t (t ≤ T), the attacker poses a query qt = (Qt, ft).

4 Ta Vinh Thong and Levente Buttyán

2. The auditor decides whether to respond to qt or not. The auditor replies
with at = ft(Qt) if qt is allowed, and denies the response otherwise.

3. The attacker wins if AllSafeλ,ω(∧t1(qj , aj)) = 0.

Definition 5 An auditor is (λ, δ, ω, T)-private if for any attacker A,

Pr{A wins the (λ, ω, T)-privacy game} ≤ δ.

The probability is taken over the randomness in the distribution D and the coin
tosses of the auditor and the attacker.

Unfortunately, in general an offline auditor cannot directly solve the online
auditing problem because even denials can leak information if in choosing to
deny, the auditor uses information that is unavailable to the attacker (i.e., the
answer to the current query). We refer the reader to the extended report of this
paper [13] for an illustrating example. In order to overcome this problem, the
concept of simulatable auditor has been proposed. Taking into account the cru-
cial observation above, the main idea of simulatable auditing is that the attacker
is able to simulate or mimic the auditor’s decisions to answer or deny a query.
As the attacker can equivalently determine for himself when his queries will be
denied, she obtains no additional information from denials. For these reasons
denials provably leak no information. The definition of simulatable auditor in
the full disclosure model is given in Definition 6.

Definition 6 An online auditor B is simulatable, if there exists another auditor
B′ that is a function of only Q∪{qt} = {q1, q2, . . . , qt} and A = {a1, a2, . . . , at−1},
and whose answer to qt is always equal to that of B.

When constructing a simulatable auditor for the probabilistic disclosure model,
the auditor should ignore the real answer at and instead make guesses about the
value of at, say a′t, computed on randomly sampled data sets according to the
distribution D conditioned on the first t− 1 queries and answers. The definition
of simulatable auditor in the probabilistic case is given in Definition 7.

Definition 7 Let Qt = {q1, . . . , qt}, At−1 = {a1, . . . , at−1}. A randomized au-
ditor B is simulatable if there exists another auditor B′ that is a probabilistic
function of 〈Qt,At−1,D〉, and the outcome of B on 〈Qt,At−1 ∪ {at},D〉 and X
is computationally indistinguishable from that of B’ on 〈Qt,At−1,D〉.

A general approach for constructing simulatable auditors works as follows:
The input of the auditor is the past t− 1 queries along with their corresponding
answers, and the current query qt. As mentioned before, the auditor should not
consider the true answer at when making a decision. Instead, to make it simulat-
able for the attacker, the auditor repeatedly selects a data set X ′ consistent with
the past t− 1 queries and answers, and computes the answer a′t based on qt and
X ′. Then, the auditor checks if answering with a′t leads to a privacy breach. If a
privacy breach occurs for any consistent data set (full disclosure model) or for a

Query Auditing 5

large fraction of consistent data sets (partial disclosure model), the response to
qt is denied. Otherwise, it is allowed and the true answer at is returned.

While ensuring no information leakage, a simulatable auditor has the main
drawback that it can be too strict, and deny too many queries resulting in bad
utility.

3 Related Works

We note that the related works discussed below are concerned with protecting the
privacy of individual values, and not aggregated values that we are addressing
in this paper. In case of the full disclosure model, efficient simulatable online
auditors have been proposed for SUM [3], MAX, MIN and the combination of
MAX and MIN queries [6], [10]. In all these cases the values of private attributes
are assumed to be unbounded real numbers. For effectiveness, the MAX and
MIN auditors assume that there is no duplication among x1,. . . , xn values.

In the full disclosure model, effective offline auditors have been proposed
for SUM, MAX, MIN, and the combination of MAX and MIN queries over
unbounded real values and under the same conditions as in the online case above
[3], [4]. Additionally, SUM auditors have also been proposed for boolean values
[7], but the authors proved that the online sum auditing problem over boolean
values is coNP-hard. It has been shown that the problem of offline auditing the
combination of MAX and SUM (MIN and SUM, MIN and MAX and SUM)
queries in the full disclosure model is NP-hard [3].

In [14] an offline SUM auditor has been proposed in which sensitive informa-
tion about individuals is said to be compromised if an accurate enough interval
is obtained into which the value of the sensitive information must fall. In [2] the
authors consider the problem of auditing queries where the result is a distance
metric between the query input and some secret data.

Similarly, simulatable SUM, MAX, MIN and the combination of MAX and
MIN auditors have been proposed for the probabilistic disclosure model [3], [4].
In all cases the private attributes are assumed to take their values randomly ac-
corinding to uniform and log-concave distributions, from an unbounded domain.
In [8] the notion of simulatable binding has been proposed that provides better
utility than simulatable auditor, but requires more computations.

Targeting the problem of mutable databases, which allow for deleting, mod-
ifying, and inserting records, auditors have been proposed in the full disclosure
model for MIN, MAX, MIN and MAX, and SUM queries [11].

Next we review a bit more in details the offline SUM auditor proposed in [3]
because it is referred to during discussing our method. The main concept of the
method is that each query is expressed as a row in a matrix with a 1 wherever
there is an index in the query and a 0 otherwise. If the matrix can be reduced
to a form where there is a row with one 1 and the rest 0s then some value has
been compromised. To make it simulatable, the transformations of the original
matrix are performed via elementary row and column operations by ignoring the
answers to the queries.

6 Ta Vinh Thong and Levente Buttyán

4 Our contributions

We address a new auditing problem by considering an aggregation value of a data
set to be sensitive and concentrating on protecting the privacy of aggregation
values. In contrast to the previous works, we assume that the domain of sensitive
values is bounded, which leads to some new problems. We note that in each case
below, without loss of generality and for simplicity, we transform each equation∑k

1 xi

k = a induced by each AVG query and its answer to the form
∑k

1 xi = ak.
In the rest of the paper, we denote the auditor that receives average queries

and protects the privacy of the max (min) value as Auditormaxavg (Auditorminavg), and
we denote max{x1, . . . , xn} by MAX. We note that in the paper we mainly focus
on the privacy of the maximum values, however, auditors can be constructed for
minimum values in an equivalent way.

4.1 Offline and Online Auditormax
avg in the full disclosure model

I. The proposed offline auditor : Let us consider t queries q1, . . . , qt over the
stored data set X = {x1, . . . , xn} and their corresponding answers a1, . . . , at.
Each query qi is of form (Qi,AVG), where i ⊆ [n], and the value of each xi is
assumed to be a real number that lies in a finite interval [α, β], where β > α.
The task of the offline auditor is to detect if the value of MAX is fully disclosed.

Let us refer to the algorithm proposed in [3] as Asum. Using Asum is not
sufficient in our case because it does not consider the bounds of each xi, as well as
the values of the answers. For the purpose of illustration, let us take the following
example: let X = {x1, x2, x3} and ∀xi ∈ [20, 90], let q1 = ({x1, x2},AVG),
q2 = ({x1, x2, x3},AVG) and the corresponding answers a1 = 45, a2 = 60.
Finally, let the stored values be x1 = 40, x2 = 50, x3 = 90. According to Asum
the value of MAX is not fully disclosed, because the answers and the bounds
of xi’s are not considered. We only know that x3 can be uniquely determined,
but nothing about its value. However, in fact MAX is fully disclosed because by
involving the answers we additionally know that the value of x3 is 90, which at
the same time is the value of MAX since 90 is the upperbound of any xi.

Hence, we have to consider a method that also takes into account the bounds
of xi’s and the answers. For this purpose, we propose the application of the well-
known linear optimization problem as follows: The t queries are represented by a
matrix Ā of t rows and n columns. Each row ri = (ai,1, . . . , ai,n) of Ā represents
the query set Qi of the query qi. The value of ai,j , 1 ≤ i, j ≤ n, is 1 wherever
xj is in the query set Qi, and is a 0 otherwise. The correponding answers are
represented as a column vector b̄ = (b1, . . . , bt)

T in which bi is the answer for qi.
Since each attribute xi takes a real value from a bounded interval [α, β] we

obtain the following special linear equation system, also known as feasible set,
which includes equations and inequalities:

L =

{
Āx̄ = b̄,where x̄ is the vector (x1, . . . , xn)T .
α ≤ xi ≤ β,∀xi : xi ∈ {x1, . . . , xn}

Query Auditing 7

Then, by appending each objective function maximize(xi) to L, we get n linear
programming problems Pi, for i ∈ {1, . . . , n}. Let xmaxi = maximize(xi), then the
maximum value of x1,. . . , xn is the maximum of the n maximized values, xopt =
max{xmax1 , . . . , xmaxn }. Let us denote the whole linear programming problem
above for determining the maximum value xopt as P. Note that xopt returned by
P is the exact maximum value if (i) L has a unique solution or (ii) L does not
have a unique solution but there exist some xi that can be derived to be equal
to xopt. To see the meaning of point (ii), let us consider the specific case of L in

which n = 4, α = 0, β = 5, and Ā =

(
1 1 0 0
0 0 1 1

)
, b̄ =

(
6
10

)
. In this example,

L does not have a unique solution but the exact maximum still can be derived
such that x3 = x4 = 5.

Otherwise, xopt is the best estimation of the exact maximum. We note that
in our case L always has a solution, because one possible solution is actually the
values stored in the database.

Based on this linear programming problem, our offline auditor will follow
the next steps. Given t queries q1, . . . , qt over X = {x1, . . . , xn} and their
corresponding answers a1, . . . , at, the value of MAX is fully disclosed in any of
the following two cases:

– (F1) In case L has a unique solution, the value of MAX is equal to xopt.

– (F2) In case L does not have a unique solution: If by following the solving
procedure of L (e.g., basic row and column operations), there exist some xi
that can be uniquely determined such that xi = xopt, then the value of MAX
is xi. This is because xopt is always at least as large as the value of MAX.

Otherwise, the attacker cannot uniquely deduce the value of MAX. The com-
plexity of the auditor is based on the complexity of P. It is well-known that there
are polynomial time methods to solve P, for instance, the path-following algo-
rithm [12], which is one of the most effective method with complexity O(n3L).
Here n is the number of variables while L is the size of the input in bits, and the
number of rows is assumed to be O(n). Therefore, our offline auditing method
has a polynomial time complexity in the worst case.

II. The proposed online auditor : Let us consider the first t − 1 queries and
answers over the data set similarly defined as in the offline case above. When a
new qt is posed, the task of the online auditor is to make a decision in real-time
whether to answer or deny the query. More specifically, our goal is to propose
an auditor that detects if answering with true at causes full disclosure of MAX.

First of all, we discuss the construction of a simulatable auditor for this
problem, and we will show the limitation of simulatable auditors in this case.
Thereafter, we introduce another method that gets around this limitation. Based
on the concept shown in Section 2 and the linear programming problem, the
simulatable auditor for this problem is shown in Algorithm 1.

8 Ta Vinh Thong and Levente Buttyán

Algorithm 1: Simulatable online auditor Auditormaxavg

Inputs: q1, . . . , qt, a1, . . . , at−1, α, β;
for each consistent data set X’ do compute the AVG a′t based on Qt and X ′;

Let Lt be the feasible set formed by the t queries/answers;
if Lt yields an exact maximum then output DENY; endif

endfor
output at;

Algorithm 2: Online auditor Auditormaxavg

Inputs: q1, . . . , qt, a1, . . . , at, dtr, α, β;
Let L∗t be the feasible set formed by the t queries/answers

Let xoptt be the returned maximum by solving P with L∗t
if |xoptt −MAX| > dtr AND (MAX−maxt) > dtr then output at; endif

else if |xoptt −MAX| ≤ dtr OR (MAX−maxt) ≤ dtr then output DENY; endif

Note that in Algorithm 1, based on the concept of simulatable auditor in
Section 2, by ignoring the true answer at we examine every data setX ′, consistent
with the past queries and answers, and check if it causes the full disclosure
of MAX. This means that the answer a′t computed based on X ′ and Qt, is
included in the analysis. The auditor is simulatable because it never looks at
the true answer when making a decision. The main drawback, however, of using
simulatable auditor in our problem is the bad utility. In order to see this, consider
any AVG query q that specifies a subset {xi1, xi2, ..., xik} of X as the query set.
There always exist a data set X ′ for which this query is not safe to respond,
namely, the data set where xi1 = xi2 = . . . = xik = β, as in this case, the true
response would be β, and the querier can figure out that all values in the query
set must be equal to β. This essentially means that all queries should be denied
by a simulatable auditor.

To achieve better utility, hence, we propose a method (Algorithm 2) that is
not simulatable but we show that it still ensures, in the full disclosure model,
the privacy of the maximum value. Let us denote |xopt −MAX| as the absolute
distance between xopt and MAX. Letmaxt be the maximum of the first t answers.
Let L∗ be the feasible set that is similar to L but the constraint α ≤ xi ≤ β is
involved only for such xi’s that occurs in the first t queries, and not for all the
n variables. Namely, in L∗ the second line of L is changed to α ≤ xi ≤ β, for all
i such that xi occurs in in the first t queries. Note that we use L∗ instead of L
in our online auditor because by doing this the auditor leaks less information to
the attacker either when answering or denying.

The online auditor works as follows: Recall that L∗ is defined over t queries
and answers. Whenever a new query qt is posed, the auditor computes the true
answer at, and then it solves the problem P with L∗, obtaining xopt. If for a given
treshold value dtr, |xopt −MAX| > dtr and (MAX−maxt) > dtr then the true
answer at is provided. Otherwise, if |xopt−MAX| ≤ dtr or (MAX−maxt) ≤ dtr
the auditor denies.

Lemma 1 The online auditor implemented by the Algorithm 2 provides the pri-
vacy of MAX in the full disclosure model.

Query Auditing 9

Proof. (Sketch) Let fatt(dtr,q1,. . . ,qt,a1,. . . ,at−1,α,β) represent the attacker’s
based on the input parameters, and returning as output a deny or an answer.
We prove that our online auditor does not leak information about MAX, in the
full disclosure model by showing that the number of the data sets and the pa-
rameter sets for which fatt returns deny or answer is always larger than 1. In
other words, in every possible scenario, for the attacker the number of possible
maximum values will always be greater than 1, hence, the value of MAX cannot
be uniquely determined. We apply mathematical induction in each case. ut

The utility of the auditor can be measured based on the number of denies.
This is controlled by the treshold value dtr. Broadly speaking, if dtr is large then
the expected number of denies is greater, while when dtr is small the degree of
privacy provided decreases, because the estimated maximum can be very close
to the real maximum (MAX). The more specific choice of dtr to achieve a good
trade-off between utility and privacy level for the specific application scenarios
is an interesting question, for which we will find the answer in our future work.

The worst-case complexity of the online auditor depends on the worst-case
complexity of P and the number of posed queries. We can assume that the
number of queries is O(n), where n is the size of the data set. In this case, by
applying one of the polynomial time linear program solver methods, the whole
complexity remains polynomial.

4.2 Simulatable auditormax
avg in the partial disclosure model

We propose a simulatable auditor that prevents the probabilistic disclosure of
MAX. By transforming the AVG queries to SUM queries we can adapt one part
of the auditor given in [6],[5], but our problem is different from those in [6],[5],
because we consider bounded intervals and MAX. Hence, the methods proposed
for SUM auditors cannot be used entirely in our case, and although using similar
terminology, the proofs are not the same (see [13]).

We assume that each element xi is independently drawn according to a dis-
tribution G that belongs to the familiy of log-concave distributions over the set
R of real numbers between [α, β]. Note that we consider the class of log-concave
distribution because it covers many important distributions including the guas-
sian distribution. In addition, our online simulatable auditor is based on random
sampling, and we want to apply directly the method of Lovasz [9] on effective
sampling from log-concave distributions. The main advantage of the sampling
method in [9] is that it is polynomial-time and produces only small error.

A distribution over a domain D is said to be log-concave if it has a density
function f such that the logarithm of f is concave. Due to the lack of space we
only sketch the proofs in this section, but the full proofs can be found in [13].

Lemma 2 Next we give some relevant points that will make the method in [9]
applicable in the construction of our auditor.

1. The truncated version of log-concave distribution is also log-concave.

10 Ta Vinh Thong and Levente Buttyán

2. If G is a log-concave distribution then the joint distribution Gn is also log-
concave.

3. Let the joint distribution Gn conditioned on ∧tj=1(avg(Qj) = aj), be Gnt . If
G is a log-concave distribution then Gnt is also log-concave.

Proof. (Sketch)

1. Let the density and the cumulative distribution function of a variable Y be
f(y) and F (y), respectively. The truncated version of f(y), f(y|Y ∈ I), is

equal to f(y)∫
I
f(y)dy

. By assumption, f(y) is log-concave and the denominator is

a constant, it follows that f(y|Y ∈ I) is log-concave. Hence, returning to our
problem, each xi is taken according to a truncated log-concave distribution,
which is log-concave.

2. Because the logarithm of the product of log-concave functions is a concave
function we get that the product of log-concave distributions is also log-
concave. From this the second point of the Lemma follows.

3. Similar to the truncated distribution density function, the density of Gnt is

as follows: fGn
t

(∗) = fGn (∗)IP(∗)
Pr(x∈P) , where fGn(∗) is the density of the joint

distribution, IP(∗) is an indicator function that returns 1 if x are in the
convex constraint P induced by the t queries and answers, and 0 otherwise.
The denominator contains the probability that x being within P, which is
a constant value for a given P. According to second point and based on
the similar argument as the case in the first point, it follows that fGn

t
(∗) is

log-concave.
ut

In our case, the predicate λ-Safe and AllSafe is a bit different from the tradi-
tional definitions discussed in Section 2, because we are considering the maximum
of n values instead of single values. Specifically, in Safeλ,I(∧t1(qj , aj)) we require
PGt

post
(MAX∈I|∧t

j=1(avg(Qj)=aj))

PrGmax (MAX∈I) to be within the bound
[

1
1+λ , 1 + λ

]
, where Gtpost

is the distribution of the posteriori probability, and Gmax is the distribution
of MAX. The definition of AllSafe, AllSafeλ,ω(∧t1(qj , aj)) is then given over all
ω-significant intervals J of [α, β]. Here the notion of ω-significant interval is
defined over the maximum value instead of individual values: An interval J is
ω-significant if PGmax(MAX ∈ J) ≥ 1

ω . The definitions of (λ, ω, T)-privacy game
and (λ, δ, ω, T)-privacy auditor remains unchanged.

In [9] the authors proposed the algorithm Sample(D, ε) for sampling from
an arbitrary log-concave distribution D (defined in Rn) with the best running
time of O∗(n5), such that the sampled output follows a distribution D′ where
the total variation distance between D and D′ is at most ε. The notation O∗() is
taken from [9], and indicates that the polynomial dependence on log n, and the
error parameter ε are not shown. We make use of this algorithm for constructing
our auditor.

The next question is that what kind of, and how many intervals I we need to
consider when examining the AllSafe predicate. Of course, in practise, we cannot

Query Auditing 11

examine infinitely many sub-intervals in [α, β]. Following the approach in [6], we
show that it is enough to check only finite number of intervals.

Let us consider the quantiles or quantile function in statistics. Informally, a
p-quantile has the value x if the fraction of data smaller than x is p. A quantile
function is the inverse of a distribution function. We use the methods for finding
quantiles in case of Gmax and divide the domain into γ sub-intervals, I1,. . . , Iγ
such that PGmax(MAX ∈ Ii) = 1

γ , for 1 ≤ i ≤ γ (this is related to the inverse

distribution function in order statistics). In Lemma 3 we show that if AllSafe

evaluates to 1 in case of the γ intervals for a smaller privacy parameter λ̃ (i.e.,
stricter privacy) then it evaluates to 1 in case of ω-significant intervals as well.

Lemma 3 Suppose Safeλ̃,I = 1 for each interval I of the γ intervals, and λ̃ =
λ(c−1)−2

c+1 , where c is any integer greater than 1 + 2/λ. Then, Safeλ,J = 1 for
every ω-significant interval J .

Proof. (Sketch)
Based on the intuition we use during our proof (see the three cases discussed

below) and to achieve that λ̃ is smaller than λ, we set λ̃ such that c+1
c−1 (1 + λ̃)

= (1 + λ). Further, to make λ̃ be positive, based on the setting of λ̃ above we
choose the parameter c to be larger than 1+2/λ. In addition, γ is set to be larger
than ω, namely, to dcωe, where the brackets represent ceiling. Finally, let J be a
ω-significant interval and denote P (MAX ∈ J) as PmaxJ , and let d = dγPmaxJ e.
Note that with these settings of γ and d we have d ≥ c and d+1

d−1 ≤
c+1
c−1 .

Our goal is to prove that the sequence ∧t1(qi, ai) is λ-Safe for each ω-significant
interval, and to do this, we prove a stronger privacy notion. Specifically, we
show that if the sequence ∧t1(qi, ai) is Safeλ̃,I = 1 for each interval I, then it is

(d+1
d−1 (1+ λ̃)−1)-Safe for every interval J . This is a stronger privacy requirement

because d+1
d−1 (1 + λ̃) − 1 ≤ c+1

c−1 (1 + λ̃) − 1 = λ. To prove this we examine three
possible cases, and we show that this holds in all these cases: (Case 1) J is con-
tained in the union of d+1 consecutive intervals, say I1, I2, . . . , Id+1, of which J
contains the intervals I2, I3,. . . , Id; (Case 2) J is contained in the union of d+ 2
consecutive intervals, say I1, I2, . . . , Id+2, of which J contains the intervals I2,
I3, . . . , Id+1; (Case 3) J is contained in the union of d+ 1 consecutive intervals,
say I1, I2, . . . , Id+1, of which J contains the d intervals I1, I1, . . . , Id.

ut
Now we turn to the construction of the simulatable auditor. According to

Definitions 2 and 3, first, we provide the method (Algorithm 3) for checking if
the predicate AllSafe is 1 or 0, and then we construct the simulatable auditor
(Algorithm 4) based on the concept shown in Section 2 and the definition of (λ,
δ, ω, T)-privacy game.

We give the algorithm AllSafe, which is an estimation of the predicate AllSafeλ,ω.
This is because the algorithm makes use of the sampling algorithm Sample(Gnt , ε)
for estimating the posteriori probability, and instead of examining all the ω-
significant intervals, we make an estimation by only taking into account γ inter-
vals: AllSafe takes as inputs (1) the sequence of queries and answers q1,. . . , qt,

12 Ta Vinh Thong and Levente Buttyán

a1,. . . , at; (2) the distribution G; (3) a probability η of error for computing ε;

(4) the trade-off parameter c such that γ = dcωe, and λ̃ = λ(c−1)−2
c+1 , where d e

represents ceiling; (5) the parameter ω; and (6) the size n of the data set.
The parameter choice is made such that the Lemma 4 holds. In other words,

if we modify the privacy parameters in Lemma 4 we have to modify the parame-
ters above as well. Moreover, the intuition behind the parameter choice resides in
the proof technique. In our proofs we apply the well-known definitions and theo-
rems related to the Chernoff-bound, Union bound, and some basic statements in
statistics and probability theory. Roughly speaking, these parameters have been
chosen such that the Chernoff-bound and Union-bound can be applicable. We
emphasize that the choice of these specific parameters is only for better illus-
trating purposes. These specific values of the parameters are one possible choice
but not the only one. The general form of parameters is provided in [13].

One drawback of Lemma 3 is that the reverse direction is not necessarily
true. Thus, to make claims on the AllSafe = 0 case, we cannot use directly the
privacy parameter λ̃. Instead, in the algorithm AllSafe we consider an even more
stronger privacy notion with a smaller parameter λ′ = λ̃/3. We note that λ′ can
be any value that is smaller than λ̃ (see the proof in [13]), but then we have to
modify the privacy parameters in Lemma 4 accordingly. In our case, however,
we choose it to be λ̃/3 for easier discussion and illustrating purposes. The error
ε of the algorithm Sample(Gnt , ε) is set to be η

2N . (see [13] for details)

Algorithm 3: AllSafe (q1, . . . , qt, a1, . . . , at, G, η, ω, λ, n, c)

Let AllSafe = TRUE;
for each of the γ intervals I in [α, β] do

Sample N data sets according to Gnt , using Sample(Gnt , ε);
Let Nmax, Nmax ⊆ N , be the number of data sets for which MAX ∈ I;

if
(
γNmax
N

/∈
[

1
1+λ′ , 1 + λ′

])
then Let AllSafe = FALSE; endif

endfor
return AllSafe;

Algorithm 4: Simulatable probabilistic auditor

Inputs: q1, . . . , qt−1, a1, . . . , at−1, a new query qt, G, δ, η, λ, γ, n, T , c;
Let ε = δ/10T ;
for 80T

9δ
ln T

δ
times do

Sample a consistent data set X ′ according to Gnt−1 using Sample(Gnt−1, ε);

Let a′t = avgX′(Qt); call AllSafe(q1, . . . , qt, a1, . . . , a
′
t,G, η, ω, λ, n, c);

endfor

if the fraction of data sets X ′ for which AllSafe=FALSE is greater than 9δ
20T

then
return DENY; else return at;

endif ;

In Algorithm 3, N denotes the total number of data sets (x1, . . . , xn) sampled
according to Sample(Gnt , ε), and Nmax, Nmax ⊆ N , denotes the number of the
data sets satisfying MAX ∈ I. Hence, the posteriori probability is estimated
by the ratio Nmax

N . In addition, the apriori probability is 1
γ , and according to

Definition 2 the probability ratio γNmax

N is required to be close to 1.

Query Auditing 13

Intuitively, the steps in Algorithm 3 are as follows: By Lemma 3 instead of
checking infinite ω-significant intervals with the privacy parameter λ we check
the Safe predicate for each of the γ intervals and the smaller privacy parameter
λ′. To estimate the posteriori probability that MAX ∈ I, we sample sufficient
number (N) of data sets according to the distribution Gnt , and compute the
fraction (Nmax) of the data sets for which the maximum value falls in the interval
I. Intuitively, by sampling according to Gnt we get the data sets that satisfy
the condition ∧tj=1(avg(Qj) = aj). If the ratio of the posteriori and apriori
probabilities is outside the required bounds then the algorithm returns FALSE,
otherwise TRUE is output.

Next we discuss how good estimation Algorithm 3 provides. In the ideal case,
we would like that if the predicate AllSafeλ,ω returns 0 (1) then the algorithm
AllSafe returns FALSE (TRUE). However, we cannot make these claims for the
next reasons: (i) we do not check all (infinitely many) ω-significant intervals
for privacy and instead check only γ intervals; (ii) we estimate the posteriori
probability using sampling, which has some error. Hence, instead of achieving
the ideal case we provide the following claims:

Lemma 4 1. If AllSafeλ,ω(q1, . . . , qt, a1, . . . , at) = 0 then Algorithm AllSafe
returns FALSE with probability at least 1− η.

2. If AllSafeλ̃/9,γ(q1, . . . , qt, a1, . . . , at) = 1 then Algorithm AllSafe returns TRUE
with probability at least 1− 2γη.

Proof. (Sketch) The proof and the parameter setting for this Lemma is based
on the application of the well-known Chernoff-bound and Union-bound. Let X1,
. . . , Xn be independent Bernoulli trials (or Poisson trials), with P (Xi = 1) = p
(or P (Xi = 1) = pi in case of Poisson trials). Let X be

∑n
1 Xi with µ be E[X],

and θ ∈ (0, 1]. The Chernoff-bound says: P (X ≤ µ(1− θ)) ≤ e−µθ2/2 ≤ e−µθ2/4,

and P (X ≥ µ(1 + θ)) ≤ e−µθ
2/4. The Union-bound says that if we have the

events e1,. . . , en then by applying the Chernoff-bound we can give a bound for
the union of these events, that is, P [e1 ∪· · ·∪ en] ≤

∑n
1 P [ei] ≤

∑n
1 boundi. ut

Intuitively, with probability close to 1, whenever AllSafeλ,ω = 0 the algorithm

AllSafe also returns FALSE, and for a smaller privacy parameter λ̃/9 whenever
AllSafeλ̃/9,γ = 1 then AllSafe returns TRUE. For the region in between, no
guarantees can be made. We note that in the general case, by choosing properly
the input parameters, in the second point of the Lemma, we can choose any
privacy parameter smaller than λ̃. The question is that, with these chosen pa-
rameters, how large should N be? We show that, based on the Chernoff-bound

(see [13]), setting N = 9γ2ln(2/η)

λ̃2
∗ (1 + λ′)2 ∗max((1 + λ̃)2, (3 + λ′)2) is suitable

for fullfiling the claims in the Lemma.

Now that we have an algorithm that evaluates the predicate AllSafeλ,ω, we
turn to discuss the construction of the simulatable auditor itself. During the
auditor construction, besides making use of the algorithm AllSafe we also take
into account the notion of the T-round privacy game discussed in Section 2.

14 Ta Vinh Thong and Levente Buttyán

In Algorithm 4, beyond the parameters used in AllSafe, additional parameters
δ and T are concerning the (λ, ω, T)-privacy game and the (λ, δ, ω, T)-privacy
auditor, and ε is the sampling error. Intuitively, the auditor repeatedly samples,
according to the distribution Gnt−1, a data set X ′ that is consistent with the
previous t − 1 queries and answers. Then the corresponding answer a′t is com-
puted based on X ′ and the query set Qt of the query qt. Thereafter, we call the
algorithm AllSafe with the previous queries and answers, along with qt and a′t. If
the fraction of data sets for which AllSafe returns FALSE is larger than 9δ/20T
then the auditor denies, otherwise it returns the true answer at. The reason of
choosing 9δ/20T is that we want to fullfil the definition of (λ, δ, ω, T)-privacy
auditor. The proof that Algorithm 4 implements a (λ, δ, ω, T)-privacy auditor
is based on the well-known theorems of the Chernoff bound and Union bound
over T rounds of the privacy game.

Theorem 1 Algorithm 4 implements a (λ, δ, ω, T)-private simulatable auditor,
and its running time is Nγ 80T

9δ ln T
δ Tsamp(Dc, ε), where Tsamp(Dc, ε) is the run-

ning time of the algorithm Sample(Dc, ε), and Dc represents either Gnt−1 or Gnt .

Finally, the running time of the simulatable auditor after t queries is tγN 80T
9δ

log Tδ Tsamp(Dcond, ε).

Proof. (Sketch) Again, the proof of the first point is based on the Chernoff-
bound and Union-bound. The running time results from the fact that we check
γ intervals and sample N data sets in each of the 80T

9δ ln T
δ round, using the

algorithm Sample. Finally, this process is executed totally t times after t queries.
ut

Since the running time of the algorithm Sample is polynomial [9], the running
time of the Algorithm 4 is polynomial. We assume that our simulatable auditor
does not include the quantile computation procedure, however, note that there
is a large class of G for which the quantile computation is polynomial-time.

5 Conclusion

We defined a novel setting for query auditing, where instead of detecting or pre-
venting the disclosure of individual sensitive values, we want to detect or prevent
the disclosure of aggregate values in the database. As a specific instance of this
setting, in this paper, we studied the problem of detecting or preventing the
disclosure of the maximum value in the database, when the querier is allowed to
issue average queries to the database. We proposed efficient off-line and on-line
query auditors for this problem in the full disclosure model, and an efficient sim-
ulatable on-line query auditor in the partial disclosure model. Our future work is
concerned with looking at other instances (e.g., other types of aggregates in the
queires) and prototypical implementation of our algorithms for experimentation
in the context of the CHIRON project.

Query Auditing 15

Acknowledgments. The work presented in this paper has been carried out
in the context of the CHIRON Project (www.chiron-project.eu), which receives
funding from the European Community in the context of the ARTEMIS Pro-
gramme (grant agreement no. 225186). The authors are also partially supported
by the grant TAMOP - 4.2.2.B-10/12010-0009 at the Budapest University of
Technology and Economics.

References

1. C. C. Aggarwal and P. S. Yu, editors: Privacy-Preserving Data Mining - Models and
Algorithms, vol. 34 of Advances in Database Systems, Springer, (2008).

2. Y. Chen and D. Evans: Auditing information leakage for distance metrics. In: 3rd
IEEE International Conference on Privacy, Security, Risk and Trust, pp. 1131–1140.
IEEE, 2011.

3. F. Chin: Security problems on inference control for sum, max, and min queries. J.
ACM, 33:451–464, May 1986.

4. F. Chin and G. Ozsoyoglu: Auditing for secure statistical databases. In Proceedings
of the ACM ’81 conference, pp. 53–59, New York, USA, 1981

5. K. Kenthapadi: Models and algorithms for data privacy. Ph.D. Thesis, Computer
Science Department, Stanford University, 2006.

6. K. Kenthapadi, N. Mishra, and K. Nissim: Simulatable auditing. In 25th Symposium
on Principles of Database Systems(PODS), pp. 118–127, 2005.

7. J. Kleinberg, C. Papadimitriou, and P. Raghavan: Auditing boolean attributes. In
Journal of Computer and System Sciences, pages 86–91, 2000.

8. Z. Lei, J. Sushil, and B. Alexander. Simulatable binding: Beyond simulatable audit-
ing. In Proceedings of the 5th VLDB workshop on Secure Data Management, pp.
16–31. Springer-Verlag, 2008.

9. L. Lovász and S. Vempala: The geometry of logconcave functions and sampling
algorithms. In Journal Random Struct. Algorithms, 30:307–358, May 2007.

10. S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani: Towards
robustness in query auditing. In Proceedings of the 5th VLDB workshop on Secure
Data Management, pp. 151–162, 2006.

11. S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani: Towards
robustness in query auditing. Technical Report, Stanford University, 2006.

12. J. Renegar: A polynomial-time algorithm, based on Newton’s method, for linear
programming. Mathematical Sciences Research Institute (Berkeley, Calif.), 1st edi-
tion, 1986.

13. T. V. Thong and L. Buttyán: Query auditing for protecting max/min values of sen-
sitive attributes in statistical databases. http://www.crysys.hu/members/tvthong/
QA/ThB12QATech.pdf, 2012.

14. L. Yingjiu, W. Lingyu, W. X. Sean, and J. Sushil: Auditing interval-based infer-
ence. In Proceedings of the 14th International Conference on Advanced Information
Systems Engineering, CAiSE ’02, pp. 553–567. Springer-Verlag, 2002.

