
Lightweight Authentication Protocols
for Low-Cost RFID Tags

István Vajda and Levente Buttyán
Laboratory of Cryptography and Systems Security (CrySyS)

Department of Telecommunications
Budapest University of Technology and Economics, Hungary

http://www.crysys.hu/

August 5, 2003

Abstract

Providing security in low-cost RFID tags is a challenging task because tags are highly resource con-
strained and cannot support strong cryptography. Special lightweight algorithms and protocols need to
be designed that take into account the limitations of the tags. In this paper, we propose a set of extremely
lightweight tag authentication protocols. We also provide an analysis of the proposed protocols.

1 Introduction

Radio Frequency Identification (RFID) systems are composed of RF tags and RF tag readers. Most tags
consist of an antenna connected to a microchip. The use of silicon-based microchips enables a range
of functionality to be integrated into the tags, including readable/writable storage and limited computing
capability. Tag readers broadcast an RF signal to access information stored on the tags. This information
can range from static identification numbers to user written data or data computed by the tag.

In the near future, low-cost RFID tags attached to consumer items as “smart-labels” may become an
economical and efficient replacement for optical bar codes. Indeed, RFID tags offer several advantages over
optical bar codes: data may be read automatically, without line of sight, through non-conducting material,
at a rate of several hundred tags per second, and from a distance of several meters. Besides replacing
optical bar codes, the above described characteristics of tags makes them useful in other applications as
well, including access control to buildings, environmental sensing, livestock and automobile identification,
inventory control, theft detection, etc. Because of their numerous applications and their low cost, RFID
tags has a strong potential to become a ubiquitous computing technology.

However, several researchers have pointed out that the universal deployment of RFID systems may cre-
ate new security and privacy problems (see e.g., [7, 10, 4]). The potential risks include corporate espionage,
and violation of consumer (personal) privacy and location privacy. In traditional computing systems, many
security and privacy problems can be solved by using cryptographic technics [8]. Unfortunately, RFID tags
are highly resource constrained and cannot support strong cryptography. To be more precise, tags could be
equipped with resources to support strong cryptographic primitives, tamper resistant packaging, and other
security enhancing features, but only at a higher cost of 0.5–1 USD/tag. On the other hand, significant
market penetration can be expected only if tags are priced below 0.1 USD or even below 0.05 USD [7]. In
this price range, tags come with the following typical characteristics:

• storage capacity of a few hundreds bits;

• a few thousands gates available for logical functions;

• tags are passively powered, which excludes background calculations in idle time when the tag is not
“powered” by the tag reader;

1

• limited distance and quality of radio transmission due to the low gain antenna and severe power
constraints of the tags;

• no tamper resistance.

This means that supporting strong cryptographic primitives on low-cost tags is not a viable option today.
Note that implementing even a standard cryptographic hash function, such as MD5 [5] or SHA-1 [1], is
beyond the capabilities of today’s tags. Hence, there is a strong need for new, lightweight cryptographic
primitives that can be supported by low-cost RFID tags.

In this paper, we propose a set of extremely lightweight challenge-response type authentication pro-
tocols that can be used in low-cost RFID systems for authenticating the tags. Tag authentication is an
important primitive that serves as a fundamental building block in more sophisticated security and privacy
protecting mechanisms. As a motivating example, consider a theft detection system where RFID tags are
attached to stocked items, and a central tag reader periodically polls and authenticates each tag. The sys-
tem should be designed in such a way that a thief cannot steal an item and go undetected by installing a
cloned replacement tag that can continue authenticating itself successfully to the reader. Our protocols are
designed to prevent this cloning attack.

A main contribution of our work is that we also provide an analysis of the proposed protocols. The
goal of the analysis is to obtain a lower bound on the resource requirement of the best guessed attack
against a given protocol, where the resource requirement is measured in the computational complexity of
the attacking algorithm as well as in the number of runs that the attacker needs to observe or interfere with.
Identifying a lower bound on the “cost” of the attack may help system designers to choose the best trade-
off between complexity of the protocol and resistance against attacks. This is important, as the resource
constraints of the tags do not allow arbitrarily complex protocols.

Outline. In Section 2, we report on some related work. In Section 3, we introduce our system model.
In Section 4, we present our proposed protocols together with their analysis. Finally, in Section 5, we
conclude the paper.

2 Related work

To the best of our knowledge, the first paper that calls attention to the security and privacy risks and
challenges of widely deployed RFID systems is the paper of Sarmaet al. [7]. In particular, the authors
mention scarcity of tag resources as a primary challenge in providing security and privacy mechanisms
in low-cost RFID systems. They suggests that new, lightweight cryptographic primitives and protocols
should be developed that take into account the strong resource constraints of RFID tags. Our work is an
effort in this vein. The authors of [7] also mention the problem of tag spoofing, which would enable a thief
to replace an item with a cloned tag and fool a “smart shelf” that the valid item were still in stock. The tag
authentication protocols we propose can be used to protect against this attack.

Several papers propose lightweight cryptographic primitives for resource constrained applications such
as smart cards and sensor networks. In [2], Hoffsteinet al. propose a lightweight public-key cryptosystem
called NTRU. In [9], Stern and Stern propose a lightweight digital signature scheme. While both of those
proposals lead to very efficient mechanisms compared to previously known public-key cryptosystems and
digital signature schemes, they still require resources well beyond what is available on low-cost RFID tags.
In [6], Perriget al. propose TESLA, an efficient broadcast authentication mechanism for sensor networks,
which is based on symmetric-key cryptography. However, TESLA uses hash chains and standard message
authentication codes, none of which can be implemented in low-cost RFID tags. Moreover, TESLA relies
on time synchronization between the base station and the sensors, which is also beyond what is feasible
in low-cost RFID systems. In contrast to these proposals, our protocols use only elementary logical and
arithmetical operations that can be implemented with a few gates.

In [10], Weiset al. propose various schemes for controlling access to RFID tags. In their proposal, each
tag can be in two states: in alockedstate, where it responds to all queries with only its meta-ID and offers no
other functionality, and in anunlockedstate, where it can perform privileged operations related to security
and configuration. The goal of the proposed schemes is to ensure that the tag enters into the unlocked state

2

only if it receives an appropriate command from a legitimate tag reader. Hence, the proposed protocols
mainly provide reader authentication. In contrast to this, in this paper, we are mainly concerned with tag
authentication. In addition, the protocols proposed in [10] use standard cryptographic hash functions and
one of the protocols also requires a secure pseudo-random number generator to be implemented on the
tags, which seems to be infeasible with current technology.

In [3], Juels addresses the problem of privacy protection in low-cost RFID systems. He proposes
a scheme where each tag stores a list of pseudonyms. Each time the tag is queried, it emits the next
pseudonym from its list. In addition, the query-response rate of the tags is deliberately reduced, which
guarantees that tags emit pseudonyms with a relatively low rate. Thus, an attacker can track a tag only
if he has access to it for a long period of time. Due to their small storage capacity, tags can store only a
short list of pseudonyms. Juels solves this problem by allowing the list to be refreshed by authorized tag
readers. For this reason, mutual authentication is required between the tag and the reader (otherwise an
attacker could update the list of pseudonyms in a tag). Juels proposes a lightweight mutual authentication
protocol, which is based on the release of “keys” that are supposed to be secret and associated to the parties
running the protocol. After mutual authentication, the keys are refreshed; for this purpose, new keys are
generated by the tag reader, and transmitted in an encrypted form to the tag. Encryption is based on a
one-time pad, where the pad is selected from a series of pads maintained by the tag. The series of pads
is also updated (overlayed) with new padding material in each run of the authentication protocol. The
new padding material is sent in clear to the tag, but the updating procedure ensures that a pad is used
(becomes “live”) only after a certain number of updates. This numberm should be chosen in such a way
that an attacker cannot observem consecutive updates. The rationale is that observing a run of the protocol
requires physical proximity, and one may assume that an attacker cannot stay in the vicinity of a tag for an
arbitrary long time.

The protocol proposed by Juels does not require the tag to perform any cryptographic operations (apart
from XOR), hence it is feasible to implement it in current low-cost RFID systems. However, the protocol
uses 4 messages, and updating the keys and the pads has a cost (in terms of bits that has to be pushed from
the tag reader to the tag). In addition, in some applications, the assumption that the number of consecutive
runs of the protocol that an attacker can observe can be upper bounded does not hold. In particular, if the
tags do not move (e.g., they are attached to items stored in a depot), then the attacker can relatively easily
install itself at a nearby location and eavesdrop a huge number of consecutive runs of the authentication
protocol. In this case, Juels’ protocol would not be appropriate for authenticating the tags. In contrast, our
protocols were developed with this application in mind; on the other hand, we do not make any attempt to
prevent the tracking of tags.

3 System model and assumptions

We consider a system that consists of one RFID tag reader and several RFID tags. We assume that each
tag shares a secret with the reader, which is established in a secure manner before the beginning of the
operation of the system. Message passing between the reader and the tags is based on single-hop wireless
communication. Tags are passively powered, so they can operate only if the reader provides the necessary
energy. Tags are highly resource constrained: they have limited computing power, limited storage capacity,
and limited communication capabilities.

We assume that the reader regularly polls the tags, each time with a new challenge, and the tags must
authenticate themselves by correctly responding to the challenge. There are known protocols to do this
in a secure manner, but they use standard cryptographic primitives (MAC, digital signature, encryption),
which are too costly for low-cost RFID tags. We assume that computing even a standard cryptographic
hash function, such as MD5 or SHA-1, exceeds the capabilities of the tags, and thus, it is infeasible in
our system. In the case of standard cryptography, the speed and simplicity of an algorithm are usually
qualifying factors; in our case, however, low complexity of the primitives has a first place importance.

The attacker’s aim is to produce a response to a challenge. If he can do this in a feasible way, then we
say that the protocol is broken. Such a success of the attacker might be achieved with or without recovering
the secret key shared by the reader and the tag. This means that it is not enough to prove that the secret key
cannot be calculated in a feasible way by the attacker, because he might reach his goal without it. In the

3

analysis of the protocols presented below, we will consider also degrading if the attacker is able to reduce
the key space or can calculate some of the bits of the key in a feasible way.

The data from which the attacker tries to prepare for a successful response could be obtained in a passive
or in an active manner. In case of a passive attack, the attacker collects messages from one or more runs
without interfering with the communication between the parties. In case of an active attack, the attacker
impersonates the reader and/or the tag, and typically replays purposefully modified messages observed in
previous runs of the protocol.

4 Protocols

In this section, we propose 5 lightweight tag authentication protocols that matches the stringent charac-
teristics of the system described above. The presentation of each protocol is broken into three parts: first
we describe the protocol and its rationale, then an analysis follows, and finally, based on the weaknesses
explored by the analysis, some improvements and strengthening are suggested. Before starting the presen-
tation of the protocols, we would like to illustrate some of the concepts on a simple example. Notations
used in this example will be kept hereafter. Let us consider the following protocol:

R → T : x⊕ k = a

T → R : f(x)⊕ k = b

whereR andT stand for the reader and the tag, respectively;k is the secret key shared byR andT ; x is an
n bit random challenge; andf is ann-bits ton-bits mapping.

The mutual informationI(h, k) between the observable message pairh = (a, b) and the keyk is
I(h, k) = H(x⊕f(x)), whereH(x⊕f(x)) is the entropy ofx⊕f(x). This can be proven as follows. By
definitionI(h, k) = H(h)−H(h|k). Because of the random selection ofx, H(h|k) = n. Furthermore,

H(h) = H(a, b) = H(a, a⊕ b) = H(a⊕ b) + H(a|a⊕ b) =
= H(x⊕ f(x)) + H(x⊕ k|x⊕ f(x)) = H(x⊕ f(x)) + n

Thus,I(h, k) = H(x⊕ f(x)) + n− n = H(x⊕ f(x)).
For instance, iff is the identity mapping (i.e.,f(x) = x), then no information about the key can be

gained from the observation of the run. However, choosingf as the identity mapping would trivially be a
bad choice, because the attacker could simply replay the challenging message as the response. The other
extreme is whenf maps to a constant (i.e., the response message is shifted by a know constant vector). In
this case, the mutual information is at maximum. Furthermore, ifx ⊕ f(x) is a uniform mapping into an
m dimensional subspace of then dimensional vectors, thenn − m bits of the key remain independently
selected.

Selection of a linear binary mapping forf is dangerous. LetM andI be twon × n binary matrices,
whereM represents mappingf andI is the identity matrix. The attacker can set up the following system
of linear equations:

(M ⊕ I)k = Ma⊕ b. (1)

The solution of this system for unknownk is not unique if the rank of matrixM ⊕ I is less thann. Note,
however, that the attacker does not have to know the exact key to be able to efficiently produce a successful
response message; it is enough to know an arbitrary solution of (1).

Keeping the main structure of the protocol, possible ways of strengthening would be the following:

• non-linearity: use of a nonlinearf could make it harder for the attacker to calculate the set of pre-
images (practically one way property);

• mixed operations:instead of the XOR operation (which is linear over binary vectors), modular
integer addition or modular integer powering could be used; this would make it harder to combine
the messages as well as to analyze them;

4

• compression:explicit dimension shrinking “provably” decreases the information about sensitive el-
ements (key, the actual challenge) that the attacker has access to (in other words, authentication does
not need to be based on invertible transformations).

• keys:different keys are used in the two directions.

However, strengthening must be done carefully and gradually: only light weight modifications are allowed
and they must be followed by the reiteration of the analysis.

4.1 Protocol 1:XOR

Our first protocol has a structure similar to that of our example above, but it uses different keys in different
directions:

R → T : x⊕ k1 (2)

T → R : x⊕ k2

This would be provably secure if the keysk1 andk2 are selected uniformly at random in each run of
the protocol. However, this clearly leads to a key establishment problem, which is further complicated by
the special characteristics of our system (limited storage capacity of tags, impossibility of frequent manual
key refreshing, etc.). In order to address these problems, a provably secure algorithmic key update scheme
is needed, and it should also be based on a one-time pad. Note, however, that no more fresh random bits
can be sent by one-time pad than that consumed for transmission!

One possibility for XOR rekeying is the following: in runi, R randomly selects a new keyk(i) and
transmits it XOR encrypted with the keyk(i−1) used in the previous run. This leads to the following
protocol:

R → T : a(i) = x(i) ⊕ k(i), k(i) ⊕ k(i−1) (3)

T → R : b(i) = x(i) ⊕ k(0)

wherei = 2, 3, . . . is a counter, which is increased by one in every new run of the protocol,x(i) is thei-th
challenge, andk(0) andk(1) are initially shared secret keys. This protocol uses only XOR operations, and
from this point of view it would be ideal. However, it is breakable from two observed consecutive runs.
Note that the series of keysk(1), k(2), . . . do not change randomly; the difference of them is a known value
for the attacker.

Therefore, we diverge from the pure XOR protocols and we determine the consecutive session key used
by R by a lightweight block stream generator with secret seeding valuek(0), which outputs a new block in
each new session. Consider the following protocol:

R → T : a(i) = x(i) ⊕ k(i) (4)

T → R : b(i) = x(i) ⊕ k(0)

wherek(i) = Π(k(i−1)), andΠ : {0, 1}n → {0, 1}n is a permutation, a special key stream generator that
expands seedk(0). PermutationΠ is defined as follows.

For simpler explanation, let us assume that the key length is128 bits (i.e.,n = 128). Let us cut each
byte ofk(i−1) into two half bytes. The left halvesk(i−1)

1,L , k
(i−1)
2,L , . . . k

(i−1)
16,L are concatenated into a vector

denoted byk(i−1)
L . Similarly, the right halvesk(i−1)

1,R , k
(i−1)
2,R , . . . k

(i−1)
16,R are collected into a vector denoted

by k
(i−1)
R . Then, the calculation is continued in two main steps:

• Step 1:The elements ofk(i−1)
R are permuted, where the permutation is controlled byk

(i−1)
L . The

result is denoted byk(i)
R .

• Step 2:The elements ofk(i−1)
L are permuted, where the permutation is controlled byk

(i−1)
R . The

result is denoted byk(i)
L .

5

Π(k(i−1)) = k(i) is obtained from rearranging (interleaving) the vectors of half bytesk
(i)
L andk

(i)
R into a

vectork(i) of bytes.
Within Step 1, the following sub-steps are made (similar sub-steps are made within Step 2): In the

first sub-step, the first andk(i−1)
1,L -th elements ofk(i−1)

R are swapped. In the second sub-step, the second

and thek
(i−1)
2,L -th elements of the vector resulted after the first sub-step are swapped. And so on until

in the 16th sub-step, the 16th andk
(i−1)
16,L -th elements of the vector resulted after the 15th sub-step are

swapped. For a small instance(k(i−1)
L , k

(i−1)
R) = ((3, 2, 4, 1), (2, 4, 1, 3)) is mapped into(k(i)

L , k
(i)
R) =

((4, 1, 3, 2), (2, 4, 3, 1)).

Passive attack. By observing the messages of thei-th and(i + 1)-st runs of the protocol, the attacker can
calculate the following:

k(i) ⊕ k(0) = a(i) ⊕ b(i) (5)

k(i+1) ⊕ k(0) = a(i+1) ⊕ b(i+1) (6)

Adding together equations (5) and (6), the attacker gets

k(i) ⊕ k(i+1) = a(i) ⊕ a(i+1) ⊕ b(i) ⊕ b(i+1) (7)

where the right side is known to the attacker. This means that the attacker is able to see the difference of
consecutive session keys. The aim of the attacker is to find the seedk(0) in order to be able to impersonate
T .

Assume that the attacker has a guess on session keyk(i), i ≥ 1. Then, according to (7), he also has a
guess on the new session keyk(i+1). He can check this guess by also calculatingk(i+1) from k(i) usingΠ.
However, guessing the session key is a brute force attack, which is easily foiled by selecting the dimensions
sufficiently large. It is an open question whether knowing the vector difference of two consecutive outputs
of the above defined block stream generator can be used for feasible attacks against its seeding blockk(0).

4.2 Protocol 2:SUBSET

Consider the following protocol, where an XOR encryptedn-bit challenge is sent to the tag, which sends
anm-bit portion of the challenge back as the reply:

R → T : x⊕ k (8)

T → R : f(x) = (xL,xR,[0..7] , xL,xR,[8..15] , . . . , xL,xR,[8m..8m+7])

The challenge is divided into two parts:x = (xL, xR). The j-th byte ofxR, denoted byxR,[8j..8j+7],
addresses a bit ofxL, denoted byxL,xR,[8j..8j+7] , which is considered as thej-th bit of the output vector.

For concreteness and simpler presentation, let us assume the following parameters:n = 384(= 256 +
128), |xL| = 256, |xR| = 128 (bits), andm = 16. The probability of successful impersonation of
the tag using a random response message is2−m = 2−16 for the above instance, which is considered
unacceptably high in “standard” cryptography. This might not be the case for some RFID applications.
Consider, for instance, our theft detection example, where the needed strength of security depends on the
value of the protected goods. Taking the bit selector bytes overlapped makes it possible to increasem
without increasing the length of the challenge (and the key).

One might think that, in practice, it would be easy to thwart random attacks in general, because in
case of wrong responses, the reader could send an alarm signal toward the physical security subsystem.
Unfortunately, it seems to be a plausible assumption that low capability devices like RFID tags are not able
to run efficient forward error control mechanisms. This fact together with the poor quality of the radio
channel might lead to packet error probabilities preventing the application of reliable alarms.

Passive/active attack. The attacker listens to one run of the protocol and stores messages. He guesses the
first byte ofkR, therefore he also has a guess on the first byte ofxR (byte guess) and a guess on one bit
of kL (bit guess). By listening to different runs, the attacker builds a list of guesses on the bits ofkL. He
continues listening to new runs until inconsistent bit guesses appear on his list (i.e., he gets both a guess of

6

0 and 1 forkL,j for somej). When the attacker gets contradicting values on the same key bit, then he can
be sure that the actual guess on the first byte ofkR is wrong.

The probability distribution of the number ofs-fold collisions when drawing with replacement from
within a single set is known (the case of 2-fold collisions is known as the birthday paradox). For instance,
the probability of two byte guesses leading to a guess of the same bit ofkL (2-fold collision) is around
0.504 if at least 19 runs are observed. Because the bit guesses are random (except when the byte guess
is right), the probability that the two bit guesses obtained from incorrect byte guesses are different is 1/2.
Therefore, according to the birthday paradox, the attacker detects an incorrect byte guess with probability
0.252(= 0.504/2) (from 19 observed runs). Refining the calculation by taking into account both 2- and
3-fold collisions we get, for instance, that by observing 50 runs, the detection probability of a false byte
guess improves to0.83.

Note that the attacker can accelerate the guessing process by guessing in parallel all possible values
of the first byte ofkR. He builds a matrix with 256 columns, where the columns correspond to different
possible values of the key byte, and different rows correspond to different observed runs. Within a row,
we have a guess for different bits ofkL. Exactly one of these key bits is guessed correctly, all others are
guessed randomly. Therefore the attacker can filter out all incorrect byte guesses in parallel by finding
inconsistent guesses in the corresponding rows.

Once having a reliable byte guess on the first byte ofkR, the attacker can start to explore further bits of
kL. In case of an active attack, the attacker – knowing the 1st byte ofxR – shifts the value of this byte by
XOR adding the corresponding shift values to the corresponding – observed – challenge message. In this
way, he can obtain all the bits ofkL from the answers by close to 256 active attacks (note that at least one
bit of kL can be obtained during the byte guess step). If an active attack is costly, then the attacker has to
wait until the first byte of the randomly chosenxR scans all (or a large portion of the) bit positions ofkL,
which may lead to a number of observed runs well above 256.

The exploration of the remaining bytes ofkR needs less effort, because the attacker already knowskL.

Strengthening. One of the main weaknesses of the above protocol is that the attacker is able to scan the bit
positions ofkL through the manipulation of a single byte. Therefore, instead of only one byte, all bytes of
kR should be involved in the selection of each bit of the output. This could be done in the following way:
the bits off(x) are linearly combined by bits of a separate portion of the key. In this way, the attacker is
forced to guess multiple bytes ofkR.

4.3 Protocol 3:SQUARING

Consider the following protocol:

R → T : x (9)

T → R : kL ⊕ ((kR + x)2 mod 2n)

wherekL andkR are two halves of a2n bit secret keyk = (kL, kR), furthermore “+” denotes integer
addition.

Active attack. The attacker challengesT two times by sendingx = 0 andx′ = 1 as challenges. Then, he
calculates the XOR sum of the responses:

z = k2
R ⊕ (kR + 1)2 mod 2n (10)

= k2
R ⊕ (k2

R + 2kR + 1) mod 2n (11)

Note that in expression (11), two different operations are mixed.
Let bi denote thei-th bit of b, where the LSB isb0. Using this notation, we get thatz0 = 1, and

z1 = kR,0. This means that the attacker can obtain the LSB of the key. If this key bit is zero, he can
obtain alsoz2 = kR,1, and so on until he arrives at the first non-zero key bit (starting from the LSB). He
cannot proceed further from this point, because he should also know the appropriate bit ofk2

R that affects
the actual carry bit.

A further helpful observation is the following: when adding two bits, there is a carry bit only in case
of addition1 ⊕ 1, which happens only for 1/4 of the combinations of bit pairs. Therefore, when we have

7

to stop at the first non-zero bit of the key, we know that - in average - the chance that the appropriate bit of
k2

R will not cause a carry bit is 3/4, so we proceed further in exploring more key bits under the assumption
that there is no carry bit.

The above attack can be extended to the case whenx = a andx′ = a + 2j for arbitrarya. As an
example, let us considera = 0, j = 3, andkR = 12|10 = 1100|2. Then,122 = 144|10 = 10010000|2, and
(12 + 23)2 = 400|10 = 110010000|2. The XOR of the fourth bits from the right (shown in bold) gives the
LSB bit of 12.

Note that if we find a few bits fromkR, we also know some bits ofk2
R, and consequently, we can learn

also a few bits ofkL.

Strengthening. The use of XOR addition instead of the integer addition before squaring could be a modifi-
cation to be considered. This is becausez ⊕ 1 = z + 1 if z0 = 0, andz ⊕ 1 = z − 1 if z0 = 1 (where “−”
denotes integers subtraction), and hence, the “difference” depends on the bit which the attacker would like
to find.

4.4 Protocol 4: RSA

Assume an RSA encryption functionE with block lengthn, public exponente and secret exponentd.
Consider the following protocol:

R → T : x (12)

T → R : E(x ∧ k)

wherex is a mask vector, in which there are0 < m ≤ n bits set to 1 at randomly selected positions;x ∧ k
denotes the bitwise AND ofx andk, which masks the vectork by keeping the values of the bits ofk at
positions where the corresponding bits inx are 1 and setting all other bits ofk to 0.

The number of operations when an RSA encryption function is evaluated depends on the binary weight
of the exponent (according to the repeated square and multiply algorithm) as well as on the binary weight
of the plain text. The second step of the protocol ensures that the binary weight of the plain text is at most
m. Furthermore low weight public exponent is applied (e.g.216 + 1).

Passive attack. The attacker can also try to determinem bits ofk by listening on the channel and breaking
the encryptionE(x ∧ k) by exhaustive search for the bits ofk on coordinates determined by the maskx.
This means at most2m trials. The workload of the attacker can be increased by increasingm, but this also
increases the workload ofT . Moreover, the more runs of the protocol are attacked, the more information
can be obtained aboutk.

Active attack. The attacker changes two bit positions of an observed challengex: a 1 bit ofx is turned to 0
bit and a 0 bit ofx is changed to 1 bit. In other words, a difference vector with Hamming weight 2 is XOR
added to the challenge. The observation is that the response message will not change if keyk had zeros at
both of these two bit positions and it typically changes for the other three pairs (i.e., 01, 10, 11). Obviously,
the probability of a zero pair is 1/4. In this way, the attacker has a probabilistic chance for scanning bit
pairs of the key.

Strengthening. Key k is cyclically shifted with shiftS before the masking operation is done, where the
random shift is an appropriate mapping of an additional secret valuek′ and of the actual maskx: S =
g(k′, x).

4.5 Protocol 5:K NAPSACK

The base station maps a random challenge by a trapdoor (practically) one way function and sends the result
of this mapping together with the XOR encrypted one time trapdoor value to the tag:

R → T : d⊕ k, κ(x, d) (13)

T → R : x⊕ k′

8

wherek is anm-bit secret key andk′ is ann-bit secret key,x is ann-bit challenge, andd is anm-bit
trapdoor. Furthermore,κ is a punctured multiplicative knapsack: A public set ofs-bit prime numbers
consisting ofn primes is stored both byR andT . R selects randomlyn/2 elements from this set and
multiplies together the selected primes. Then-bit challengex contains 1 at those bit positions which
correspond to the primes selected (an order is assumed among the primes) and 0 at the remaining positions.
R choosest integers randomly from the range of1, 2, . . . , s · n/2, and marks bits of binary representation
of the product at bit positions corresponding to the selected integers. The marked bits are deleted and
the binary string is shrunk in size accordingly. The resulted punctured string is the output of mappingκ.
Trapdoord consist of the integers used in puncturing, by appending these integers in order. It follows that
the output ofκ has lengths · n/2− t bits, furthermore the trapdoor ism = t · log(s · n/2) bits long.

For illustration consider the following instance:s = 8, n = 24. The set of primes are the primes from
127 to 255: 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251.

The tag knows the punctured position according to the trapdoor and by exhaustive search finds the
punctured bits. Consequentlyt must be a small integer. The tag checks the correctness of the guessed
values of the punctured bits by dividing the guessed product by a few primes. Letu denote the product
of n/2 primes selected byR. WhenT guesses the punctured bits an integerv = u + w is produced,
where integerw equals 0 only for the right guess of punctured bits. The probability that a randomly
selected integerw (hencev) is a multiple of a given prime from the set of primes is2−(s−1). Similarly, the
probability that a wrong guess passes the test withj primes is2−j·(s−1).

Note that this protocol – in contrast to the previous ones – provides some level of reader authentication,
asκ(x, d) can be viewed as a “message” andd⊕ k as A keyed “checksum” of the message.

Passive attack. Without knowing the trapdoor (i.e., the punctured positions in the product), the attacker can
follow two brute force strategies. First, he can exhaustively try all the possible subsets of the primes by
trying to match it to the punctured product (n choosen/2). The other way is an exhaustive search for the
punctured bits (positions and values,2t timess · n/2 chooset) and checking by integer divisions. Because
t must be selected small, this second search would be favored by the attacker. Therefore, we guess that the
security depends on the feasibility of performing around2t · (s · n/2)t divisions (dividing ans · n/2 bit
integer with ans-bit integer). For the above instance and fort = 4, when the output ofκ is 96 − 4 = 92
bits and the attacker can break the protocol (find the keys) on the cost of around109 divisions, This number
is small, and cannot be increased without increasing the load of the tag (see also the strengthening below).

Active attack. The attacker produces the second part of the challengeκ(x, d). However, without knowing
key k, he can send the first part only at random. The tag starts running its algorithm, which will fail to
produce the challenge valuex, because the two parts of the challenging message is inconsistent. This way,
the tag is able to detect the attack. Therefore, such an attack falls in the category of DoS attacks.

Strengthening. Parametert can be increased if thet-bit long stringz of the punctured bits is appended to
the trapdoor and sent also to the tag. Let the new, lengthened trapdoor bed′ = (d, z ◦ g(d)) where function
g compressesd into t-bits. Keyk is lengthened byt bits. Selection of mappingg and operation◦ affect the
strength of the protocol.

5 Conclusion and future work

In this paper, we proposed a set of extremely lightweight authentication protocols for low-cost RFID tags,
and we also provided an analysis of the proposed protocols.

In general, the ultimate goal of the protocol designer is to design a protocol that has provable security
under a given attacker model. Security proofs may be based on arguments from information theory (e.g., in
case of one time pad), or on a reduction of the problem of breaking the protocol to a mathematical problem
that is believed to be hard. Unfortunately, provable security of this kind comes with some cost: the one time
pad has known key management problems, while protocols that are based on hard mathematical problems
require large amount of resources even from the legal participants.

Another, more empirical design approach is to check if the protocol is resistant to the strongest known

9

attacks against similar kind of protocols. However, the designer may have inaccurate knowledge of the
capabilities of the attacker. In order to alleviate this problem, the protocol is usually oversized in dimension
(e.g., number of rounds in block ciphers) and complexity. This, however, is not desirable in low-cost RFID
tags where tag resources are extremely scarce.

In this paper, we followed another approach. We built protocols from primitives that can surely be
supported on low-cost RFID tags, and analyzed them, in order to see how resistant they are against various
attacks. Clearly, our protocols can be broken by a powerful attacker; our goal was not to prevent this.
Rather, we wanted to propose simple protocols that are amenable to analysis, and to give lower bounds on
the complexity of attacking them. This allows the designer to adjust the security parameters of the system
appropriately, and to find the best trade-off between security and performance. For instance, knowing a
lower bound on the complexity of compromising the secret shared by the tag reader and a given tag would
be useful in choosing the frequency of re-keying.

The work presented in this paper is an ongoing work. Important related problems, such as the issue
of re-keying, will be addressed in future reports. We also intend to work towards a general framework in
which the kind of protocols we propose here can be analyzed more systematically.

References

[1] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). Internet RFC 3174, September 2001.

[2] J. Hoffstein, J. Pipher, and J. Silverman. NTRU: A ring based public key cryptosystem. In ANTS III
(LNCS no. 1423), pp. 267–288, 1998.

[3] A. Juels. Privacy and authentication in low-cost RFID tags. In submission. Available at
http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/

[4] A. Juels and R. Pappu. Squealing Euros: Privacy protection in RFID-enabled banknotes. InProceed-
ings of the 7th Financial Cryptography Conference, 2003.

[5] R. Rivest. The MD5 message-digest algorithm. Internet RFC 1321, April 1992.

[6] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The TESLA broadcast authentication protocol.Cryp-
toBytes, 5(Summer), 2002.

[7] S. Sarma, S. Weis, and D. Engels. Radio-frequency identifcation: Security risks and challenges.
CryptoBytes, 6(1), 2003.

[8] B. Schneier.Applied Cryptography. John Wiley and Sons, 1996.

[9] J. Stern and J. Stern. Cryptanalysis of the OTM signature scheme from FC’02. InProceedings of the
7th Financial Cryptography Conference, 2003.

[10] S. Weis, S. Sarma, R. Rivest, and D. Engels. Security and privacy aspects of low-cost radio frequency
identification systems. InProceedings of the 1st International Conference on Security in Pervasive
Computing, 2003.

10

