Introducing Trusted Third Parties to the Mobile
Agent Paradigm

Uwe G. Wilhelm', Sebastian Staamann', and Levente Butty4n?

! Laboratoire de Systémes d’Exploitation
% Institut pour les Communications informatiques et leurs Applications
Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

{Uwe.Wilhelm, Sebastian.Staamann, Levente.Buttyan}@epfl.ch

Abstract. The mobile agent paradigm gains ever more acceptance for
the creation of distributed applications, particularly in the domain of
electronic commerce. In such applications, a mobile agent roams the
global Internet in search of services for its owner. One of the problems
with this approach is that malicious service providers on the agent’s
itinerary can access confidential information contained in the agent or
tamper with the agent.

In this article we identify trust as a major issue in this context and
propose a pessimistic approach to trust that tries to prevent malicious
behaviour rather than correcting it. The approach relies on a trusted
and tamper-resistant hardware device that provides the mobile agent
with the means to protect itself. Finally, we show that the approach is
not limited to protecting the mobile agents of a user but can also be
extended to protect the mobile agents of a trusted third party in order
to take full advantage of the mobile agent paradigm.

1 Introduction

New approaches for distributed computing based on mobile agent technology,
such as Aglets, Telescript, or Voyager become ever more pervasive and are con-
sidered as innovative new ideas to structure distributed applications. A partic-
ularly interesting and perhaps economically important class of applications, to
which mobile agents seem well adapted, is electronic commerce.

A typical use of mobile agents in the domain of electronic commerce includes
the scenario, in which an agent roams the global Internet in search of some service
for a user (the owner of the agent). Such a service can have many different forms,
for instance, the provision of a physical good, the execution of a search for an
information item, or the notification of the occurrence of some event. The agent
is configured by the user with all the relevant information about the desired
service, the constraints that define under which conditions an offer from a service
provider is acceptable, and a list of some potential providers of the service. It
will then migrate to the sites of these service providers in order to locate the
best offer for the service sought by the user and finalize the transaction with the
chosen service provider.

Since an agent is vulnerable when it is executing on the execution platform
of a service provider, it is necessary that the user obtains some guarantees con-
cerning the protection of his agents. Consider a mobile agent that holds data for
one or several payment methods, which it needs to finalize a purchase. These
payment data should not be available to any principal other than the one that
actually provides the service and, thus, is entitled to receive the payment. A
malicious service provider might try to obtain the data of the payment method
without providing the service or might otherwise tamper with the agent in order
to trick it into accepting the malicious provider’s offer (e.g., by removing some
information about a better offer from the memory of the agent). The usual ap-
proach that is taken to provide a user with certain guarantees concerning the
protection of his agents, is to assume that the service providers are trusted prin-
cipals [13] or to create a mechanism that enables the user to detect which of the
providers on the itinerary have misbehaved [21].

The notion of trust has long been recognized as being of paramount impor-
tance for the development of secure systems [6,10,28]. For instance, any con-
ceivable system for authenticating users needs trusted functionality that holds
the necessary authentication information (see e.g., [18,26]). Yet, the meaning
that is associated with trust or the notion of a trusted principal is hardly ever
clearly defined in these approaches and the reader is left with his intuition.

In this article we address the question of how trust in a certain principal can
be motivated based on technical reasoning and present a pessimistic approach
to trust that tries to prevent malicious behaviour rather than correcting it after
it has occurred. The approach relies on a trusted and tamper-resistant hardware
device that can be used to enforce a policy. If this policy is properly chosen, an
agent can take advantage of it in order to protect itself as well as the information
it contains from possibly malicious service providers.

The mobile agent paradigm usually identifies two interacting principals: the
owner of the agent who configures it and the executor of the agent, which may
be identical to the service provider. However, many protocols for security related
problems, especially those that are concerned with non-repudiation, require an
additional third party that often has to be trusted by the other parties. This
principal is called a trusted third party (TTP). Due to this trust requirement, the
functionality of a TTP must be realized in a trustworthy environment, which
is usually only available at the site of the TTP. Hence, the principals in the
mobile agent paradigm have to interact with the TTP server using the classical
client/server mechanisms. The approach described here, which provides protec-
tion for the mobile agents of regular users, can also be applied to mobile agents
that are owned by a TTP. This allows us to take full advantage of the mo-
bile agent paradigm and removes the need for remote messaging between the
interacting principals.

In the following Section 2, we introduce our model for mobile agents and
point out the problems related to trust within this model. Then, in Section 3,
we discuss the notion of trust and define its relation to policy, which enables us
to better assess the possible motivations for trust. In Section 4, we introduce

a trusted and tamper-resistant hardware device and a protocol, which allow us
to define certain guarantees for the execution of agents. In Section 5, we show
how this approach can be used to protect the agents of a regular user as well as
those of a TTP. In Section 6, we discuss why we consider this to be an adequate
way to approach the problem and what effects this has on the notion of open
systems. Finally, Section 7 concludes the paper with a summary of the main
contributions.

2 The mobile agent paradigm

The mobile agent paradigm has been identified by many authors as a promising
and innovative approach to structure problems in distributed computing [3,4,7,
8,11, 23]. However, it is still under lively discussion and it has been shown in [9]
that there is no single compelling reason to favour the mobile agent paradigm
over classic client /server approaches. On the other hand, the same authors point
out that the mobile agent paradigm provides interesting solutions to many real-
life problems, for instance in the context of:

— mobile users, where an agent is sent out from a mobile computer in order to
accomplish a well-defined task on behalf of the user while he is disconnected
from the communication network. Once the user reconnects, the agent re-
turns and reports the result of the task or the problems it encountered.

— high-bandwidth interactions, where an agent is sent to a database server
that holds a large amount of unstructured data to search for some specific
information for the user.

— customizable services, where a service provider can offer a small number of
simple operations on its service interface that can be combined by an agent
to obtain the desired functionality.

— resident agents, which are stationary agents that take residence at some
service provider and handle simple routine actions for their owner (e.g.,
communication management for a mobile user, where the agent decides how
to handle an incoming communication request).

2.1 Basic definitions

In this article, we do not focus on the underlying technology that is used to
implement the paradigm, but we only require a simple model of agents for our
discussion. Therefore, we identify the following major abstractions that we asso-
ciate with mobile agents. A mobile agent consists of code, data, and its current
execution state, which can be marshalled by the agent owner in a transport
format and subsequently sent to the agent executor. The agent can be confiden-
tiality and integrity protected during transit to prevent outside attacks through
the use of cryptographic mechanisms. These mechanisms can also provide data
origin authentication for the marshalled agent. The agent executor will then
eventually unmarshall the agent and instantiate it on a special environment

located at the agent executor, which is called agent platform (AP). Here, the
mobile agent can interact with services of the local AP as well as other agents
located at this AP and continue to accomplish the task it was given by its owner.

The literature on agents (e.g., [3,13]) distinguishes between two different
approaches to support agent mobility: weak mobility and strong mobility. The
former does not automatically support the transfer of the current execution
state of the agent. Thus, if an agent is supposed to visit more than a single AP
(which is often referred to as multi-hop agent), the current execution state has
to be explicitly encoded in the agent’s data before it can migrate to another AP.
The latter approach automatically supports the transfer of the current execution
state and allows an agent to continue its execution exactly where it left off before
initiating the migration. A mobile agent can thus easily visit as many APs as it
deems necessary to accomplish the desired task. In both approaches, the result
of the agent’s remote execution can be sent directly to the agent owner in the
form of a message or kept in the execution state of the agent and extracted by
the agent owner when the agent returns.

The reason for only providing weak instead of strong mobility is that the
execution environment in the AP and the agent transport format can be much
simpler since the AP does not have to provide the current execution state (which
is, for instance, not available from the Java virtual machine) and the transport
format does not have to encode it. Also, if an agent visits only a single AP,
which is supported by weak mobility, the trust model becomes much simpler.
Any damage incurred by the agent to the AP (and thus to the agent executor) or
by the AP to the agent (and thus to the agent owner) can easily be attributed
to the other entity. If more than two principals are involved, the problem of
accountability becomes much more difficult [13]. Each principal can defer any
damage to actions by one of the other principals on the agent’s itinerary.

In this article we will concentrate on the protection of a mobile agent on a
particular AP. In our solution, a multi-hop agent that visits several sites only
represents multiple instances of the same problem. Our main concern is how to
protect the agent and especially the data it contains from undue manipulation
by or undesired disclosure to the agent executor, which is mainly a question of
trust in the agent executor.

2.2 The need for trust

There are many examples where an agent might need confidential information
that should not be disclosed to the service provider, even though the agent needs
the information to accomplish its task:

— a shopping agent in an electronic-commerce system might hold data that
could give a bargaining advantage to the service provider if it were known
to him (e.g., a maximum price that the service user is willing to pay or the
lowest QoS that he is willing to accept before inquiring at another service
provider).

— another agent for electronic commerce might hold a private key with which
it can sign messages on behalf of its owner, for instance, to confirm an order
placed by the agent. This key has to be kept secret to prevent that the service
provider can also sign messages on behalf of the agent owner.

— an agent in a personalized information system might contain private data
from the customization by its owner that is needed to find appropriate infor-
mation. An agent searching for movies that are likely to interest its owner,
might contain some very personal information about the user’s special in-
terests, which the agent executor cannot infer from simply observing the
agent’s choice.

— finally, an agent that merely searches for some particular financial informa-
tion (e.g., stock quotes) might, depending on the owner of the agent, convey
some very sensitive information (the mere request already conveys the inter-
est in the information).

2.3 Threats to a mobile agent

In a conventional mobile agent system, when the agent owner sends a mobile
agent to an agent executor in order to use some service, the agent owner loses
all control over the code and data of the agent. The agent executor can:

— reverse engineer the agent’s code,

— analyze the agent’s data,

— arbitrarily change the agent’s code and data, or, if none of these direct
attacks is feasible,

— experiment with the agent (e.g., by feeding it with arbitrary data and reset-
ting it to its initial state, in order to observe the agent’s reactions).

This constellation puts the agent executor in a much stronger position than
the agent owner. The agent owner simply has to trust the agent executor not to
use the methods described above to illicitly obtain confidential information from
the agent that it has to carry in order to use the service. There is no way for the
agent owner to control or even know about the behaviour of the agent executor.

The reason for the imbalance between agent executor and agent owner in the
mobile agent model as compared to the principals in the client/server model is
that in the former approach, the agent owner has no guarantees whatsoever con-
cerning the execution of its agent. In the client/server approach, the client relies
on many guarantees that are so basic that one hardly ever thinks of them. Never-
theless, these guarantees allow the implementation of certain types of behaviour
in the client part of the distributed application that can not be implemented
in conventional agent systems (e.g., code will be executed at most once, code
will be executed correctly, or the code can rely on a reasonably accurate time
service). This is due to the fact that the client implementation is under the phys-
ical control of the service user, who can can observe what is happening in the
system and notice any irregularities. Thus, he is able to react accordingly, for
instance, to interrupt an ongoing transaction or to log any irregularities at the

client side so that they can be provided as evidence in the case of a dispute with
some server. This is opposed to the mobile agent paradigm, where logged data
can easily be deleted by the agent executor.

We intend to create an environment for mobile agents that allows them to
base their execution on assumptions similar to the client/server approach, so that
it becomes possible for a mobile agent to better protect itself from a malicious
agent executor.

3 The notion of trust

We already mentioned the importance of trust for security in distributed systems
and pointed out the lack of a clear definition of what is meant by the terms trust
or trusted principal. In the following, we present our analysis of possible trust
relations between different principals.

A reason for the lack of a clear definition of trust could be that trust is
more a social than a technical issue and consequently quite difficult to tackle
entirely in a technical approach. The major problem stems from the fact that
the notion of trust mixes the goals of a principal with its behaviour to achieve
these goals. In order to trust some principal, it is usually necessary to concur
with or at least to approve of its goals (which are not always clearly stated)
and to believe that it will behave accordingly. In our definition of trust, we will
try to clearly separate these two issues by identifying a policy that is consistent
with the goals of the principal. This policy is a set of rules that constrains the
behaviour of the principal for all conceivable situations. It has to be written
down and made available to all other principals that interact with the issuer of
the policy. Then, we define trust in another principal as the belief that it will
adhere to its published policy.

The question of whether a certain principal can be trusted now consists of
(a) checking its published policy in order to decide if it is acceptable and (b) to
establish a motivation for the belief that it will adhere to its published policy.
The former is quite difficult but can be supported by a formal specification
of the security policy (similar to the approach in [15]). The latter, however,
is a problem that is quite difficult to formalize. Depending on how the belief
in the adherence to the published policy is motivated, we have identified two
fundamentally different approaches to the problem of trust:

— the optimistic approach and
— the pessimistic approach.

In the optimistic approach, we give an entity the benefit of the doubt, assume
that it will behave properly, and try to punish any violation of the published
policy afterwards. In the pessimistic approach we try to prevent any violation of
the published policy in advance by effectively constraining the possible actions
of a principal to those conforming to the policy. Both of these approaches have
advantages and disadvantages.

3.1 The optimistic approach

This approach is easy to implement, since it does not require any special mea-
sures to make trusted interaction possible. This is probably the reason why it
is the basis for most business conducted today. On the other hand, it requires
some reliable mechanism to discover a policy violation after it has occurred. If
such a mechanism does not exist, then the approach degenerates to blind trust,
which indicates that there is no particular motivation to believe that a principal
will adhere to its published policy other than its own assertion. Blind trust is
obviously a very weak foundation for trust and not recommended for any im-
portant or financially valuable transaction. It is therefore important to make the
probability that a policy violation is discovered as high as possible by improving
controls and establishing checkpoints.

Once a policy violation is discovered and if it can further irrefutably be
attributed to one of the participants in the corresponding transaction, this prin-
cipal should be punished according to the appropriate laws and the damage
caused by the policy violation. The primary goal of this punishment is to deter
potential violators from committing a policy violation in the first place.

Depending on how this punishment is enacted, we identify the following two
motivations for the belief that an entity will adhere to its published policy:

— trust based on (a good) reputation and
— trust based on explicit punishment.

Trust based on reputation stems from the fact that the principal in question
is well known and has very little to gain through a violation of its own policy
but a lot to lose in case a policy violation is discovered. This loss is supposed
to transpire from the lost revenue due to customers taking their business to
another provider. Reputation is an asset that is expensive to build up and that
is invaluable for any company. Thus, we assume that a principal would not risk
to lose its good reputation for a small gain and will consequently rather adhere
to its policy.

Trust based on explicit punishment means that we do not trust the princi-
pal, but rather the underlying legal framework to ensure the principal’s proper
behaviour. Here, we explicitly introduce a similar tradeoff as in trust based
on reputation by imposing disciplinary actions such as fines or imprisonment,
depending on the severity of the offence. The short term gain that might be
achieved through a policy violation is supposed to be negated by appropriate
punishment.

Obviously, there are many problems with this approach, such as the enforce-
ment of laws, which is usually expensive, quite slow, and sometimes very complex
(in particular if the laws of different countries are applicable as can be expected
for transactions on the Internet). The difficulty of very different perceptions
of punishment, where a person who has not much to lose might readily risk
some years of imprisonment for the possibility of a relatively large gain. Another
problem in the optimistic approach stems from the fact that many abuses of
confidential information are not necessarily conducted for the purposes of the

company that holds this information, but rather by malicious insiders of such
a company, who do it for strictly personal reasons or financial benefits [20, 25].
Such abuses are even more difficult to discover (there are less people involved)
and to punish (it has to be decided if only the employee for malicious behaviour,
only the company for negligence, or both have to be pursued).

The problem to reliably discover a policy violation could be resolved by
requiring a high degree of transparency. However, this is difficult to achieve and it
is quite likely that even trustworthy principals with a good reputation might not
be eager to accept it in order to protect internal business processes. We therefore
assume that complete transparency is not a very useful tool for supervision.
A better approach would be to designate specialized appraisal companies that
execute frequent in-depth controls of the conduct of companies.

Finally, by definition, the optimistic approach cannot prevent malicious be-
haviour, but it only tries to compensate for it after it has been discovered. For
many situations in real-life, where a violation might have an irreparable effect or
where a proper functioning of the system is absolutely essential, this guarantee
might not be strong enough. A more detailed discussion of the notion of trust
described above, can be found in the paper of Swarup and Fabrega [19].

We would like to remark that most of the described problems are also present
in our every-day life and therefore quite well understood. However, the question
stands if we can do better than that.

3.2 The pessimistic approach

The pessimistic approach removes all these disadvantages by simply preventing
any violation of the published policy. This would clearly be the best foundation
for trust since we can solely rely on a principal’s policy to verify that its be-
haviour will be acceptable. The behaviour of the principal becomes completely
transparent as far as it is constrained by its policy without the need to actually
supervise any particular action. If the policy prescribes an action for some event
and if the policy is enforced then it is guaranteed that the action will take place.
Unfortunately, this policy enforcement can not be realized in its full generality,
but is limited to those policies (or rules of a policy) that can effectively be en-
forced with some uncircumventable mechanism. For non-enforceable policies, we
still have to rely on optimistic approaches to trust.

There is no simple way to conceive such an uncircumventable enforcement
mechanism. Until recently it was considered impossible without relying on some
piece of trusted and tamper-resistant hardware [4]. However, in [16] Sander and
Tschudin describe a new approach that might eventually be capable to provide
some protection for an agent without relying on such hardware. Unfortunately,
in its current form the approach does not allow to create agents that encode ar-
bitrary programs, but it only supports polynomial and rational functions. Thus,
the only viable way that can be implemented with current knowledge has to rely
on trusted and tamper-resistant hardware. In the following section, we will de-
scribe such a piece of hardware and the requirements that have to be met so that

it can be used to enforce certain rules of a policy. This hardware is comparable
to the Secure Coprocessor described by Yee in [27].

4 Tamper-resistant hardware and the CryPO protocol

We will first present the execution environment that we rely on and then describe
the protocol that uses it. Figure 1 gives an overview of the principals in the
system.

e
\\\\\\\\\\\\\\\ rust \\

~

3 S .
o ~_ provides
N

Fig. 1. Overview of the Principals in the CryPO protocol

A manufacturer (TM) produces the execution environment(TPE), which can
be bought by any agent executor (AE). An agent owner (AO) has to trust
the manufacturer to design and produce its execution environments properly
(see Section 6). The broker (Br) is basically a directory service to locate other
principals and to obtain their credentials.

4.1 Notation

The described approach relies on public key cryptography [5] (such as RSA [14]).
A detailed description of cryptography and the corresponding notations is not
within the scope of this presentation. For information on this topic see e.g., [12,
17]. The notation we will use is as follows.

A principal P has a pair (or several pairs') of keys (Kp, Kp') where Kp is
P’s public key and K ;1 its private key. Given these keys and the corresponding
algorithm, it is possible to encrypt a message m using the receiver P’s public
key Kp, denoted {m}k,, so that only P can decrypt it with its private key. A
signed message, including a digital signature on the message m, generated by P
using its private key K };1 and verifiable by anybody using the respective public
key Kp, is denoted {m}s,.

In the following we assume the usage of optimization schemes such as encrypt-
ing a large message with a symmetric session key, which in turn is encrypted

1 It is advisable to have at least two pairs of keys, one for encryption/decryption and
one for digital signatures.

using public key cryptography and prepended to the message as well as the use
of hash algorithms to reduce the computational complexity of signing. However,
for ease of presentation, we will not make this explicit.

4.2 The processing environment

As we have noted above, there is no way to enforce any particular behaviour from
another principal without a piece of trusted and tamper-resistant hardware. The
concept of tamper-resistance usually applies to a well-defined module, sometimes
called black-box, that executes a given task. The outside environment cannot in-
terfere with the task of this module other than through a restricted interface that
is under the complete control of the tamper-resistant module. We will call this
device trusted processing environment (TPE). The TPE (see Figure 2) provides
a complete agent platform that cannot be inspected or tampered with. Any
agent residing on the TPE is thus protected by the TPE both from disclosure and
manipulation.

110
library

Crypto
library

Hardware

Fig. 2. The trusted processing environment (TPE)

The TPE is a complete computer that consists of a CPU, RAM, ROM, and non-
volatile storage (e.g. hard-disk or flash RAM). It runs a virtual machine (VM)
that provides the platform for the execution of agents and guarantees the correct
execution of the agent’s code according to the definition of the used language
(e.g., Java byte-code). Below the VM is the operating system that provides the
external interface to the TPE and controls the VM (e.g., protection of agents from
each other). Furthermore, the TPE contains a private key K7pp that is known
to no principal other than the TPE — also the physical owner of the TPE does
not know the private key. This can, for instance, be achieved by generating the
private key on the TPE2. Using this approach, the private key is never available
outside of the TPE and, thus, protected by the operating system and the tamper-
resistance of the TPE. The secrecy of the private key is a crucial requirement for
the usage of the TPE to enforce a particular behaviour.

2 Other, more sophisticated approaches to create the pair of keys could be envisaged,
which could also incorporate key recovery mechanisms (e.g., escrowed key shares).

The TPE is connected to a host computer that is under the control of the
TPE’s owner. This host computer can access the TPE exclusively through a well
defined interface that allows, for instance, the following operations on the TPE:

— upload, migrate, or remove agents;

— facilitate interactions between host and agent or between agents on the TPE;

— verify certain properties of the TPE (such as which agents are currently
executing).

Due to its implementation as a tamper-resistant module and the restricted
access via the I/O interface, it is impossible to directly access the information
that is contained in the TPE. This property is ensured by the TPE manufacturer
(TM), which also provides the agent executor (AFE) with a certificate (signed
by TM). The certificate contains information about the TPE, such as its manu-
facturer, its type, the guarantees provided, and its public key. The agent owner
(AO) has to trust the TM (see Section 6) that the TPE actually does provide
the protection that is claimed in the certificate.

4.3 CryPO protocol

The CryPO (cryptographically protected objects®) protocol transfers agents ex-
clusively in encrypted form over the network to a TPE, using the TPE’s public
key. Therefore, it is impossible for anyone who does not know the private key to
obtain the code or data of such a protected agent.

The protocol is divided into two distinct phases. The first phase consists of an
initialization, which has to be executed once before the execution of the second
phase of the protocol. This second phase is concerned with the usage of the TPE
and the actual transfer of the agent. The protocol is based on the interactions
given in Figures 3 and 4.

Initialization In the initialization phase, the participants exchange the required
key information:

— we assume that the AO holds an authentic copy of the TM’s certification
key KTM-

— the TM sends the certificate Certrpr = {Krpg,...}sm, to the AE.

— the AE registers its reference Ref,z* with one or several brokers.

8 We had originally chosen the term object since it is more general than the term
agent.

4 A reference to an AE consists of its name, its physical address in the network, its
policy, and the certificate Cert rpg for its TPE. The broker can also verify that the AE
actually controls the corresponding TPE by executing a challenge-response protocol
with the TPE via the AE.

TPE: Trusted Processing Environment AO: Agent Owner |
TM: TPE Manufacturer AE: Agent Executo
Ref: Reference for an AE Br: Broker

Fig. 3. Initialization of the CryPO protocol

Usage After the participants have finished the initialization, they can execute
the usage part of the CryPO protocol:

— the AO queries the broker for the reference to the AE with which it wants
to interact (or it already holds this reference from a previous interaction).

— the AO verifies the policy of the AE whether it is acceptable as well as the
certificate Certrpg to check the manufacturer and the type of the TPE, in
order to decide if it satisfies the security requirements of the AO. If any of
these checks fail, the AO will abort the protocol.

— the AO sends the agent encrypted with the public key of the TPE, {A} k1pr)
to the AE.

— the AE cannot decrypt {A} k., nor can it do anything other than upload
the agent to its TPE.

— the TPE decrypts {A}x,,, using its private key K 75, and obtains the exe-
cutable agent A, which it will eventually start. The agent can then interact
with the local environment of the AE or with other agents on the TPE.

— the agent can, after it has finished its task, migrate back to its owner
({A}k,,) or to another AE to which it holds a reference.

The obvious problem of protecting the TPE from malicious agents is inde-
pendent of the described approach and has to be tackled with additional mecha-
nisms, such as code signing and sandboxing. The problem of protecting the TPE
from tampered agents can easily be solved by concatenating the agent with a
hash of the entire agent h(A), including its execution state, before encrypting
it {A, h(A)}k,pp- The TPE simply has to verify the correct hash before starting
the agent.

4.4 Notes on feasibility

The actual construction of a tamper-resistant module in the real world is difficult;
nevertheless, there are many applications that rely on them (e.g., payphones,

S

syl
\\\\\\\\\\\\\\\\}\ru st A

~

“~_ provides
<
N

TPE: Trusted Processing Environment AO: Agent Owner
TM: TPE Manufacturer AE: Agent Executol
Ref: Reference for an AE Br: Broker

Fig. 4. Usage of the CryPO protocol

debit cards, or SIM cards for GSM). Given sufficient time and resources, it
becomes very probable that an attacker can violate the protection of such a
module (see e.g., [1]). We believe that the actual realization of the presented TPE
with reasonably strong guarantees in real-world settings is also quite difficult,
but nonetheless feasible. Especially, since we do not require the prevention but
only the detection of tampering with the TPE for most envisioned applications.

We imagine the TPE as a regular computer with a special operating system.
It is physically protected with a special hardware that can effectively be sealed to
detect tampering, is under continuous video surveillance similar to the systems
used to supervise automatic teller machines, and is subject to challenge inspec-
tions by the TM or an independent appraisal and inspection organization. As
explained in [1], such an installation is conceivable and can even resist massive
attacks. A thorough analysis of the remaining risks has to be undertaken, but
this is not within the scope of this presentation.

5 Usage of the TPE

The CryPO protocol together with the concept of a TPE guarantee the integrity
of the agent platform to the AO and protect the code and data of an agent against
manipulation and disclosure, both in transit and during execution. These guar-
antees are based on the trust relation between the AO and the TM, in which the
AO trusts the TM to properly manufacture its TPEs and to control them regu-
larly (if necessary) so that the claimed guarantees hold. The certificate enables
the AO to ensure that it really deals with a TPE from a certain manufacturer.
The above guarantees can be extended by additional properties, formulated
as rules of a policy, that can effectively be enforced by a TPE. In [24], we have
discussed how this approach can be used to allow an agent to base its execution
on results of possible previous executions on the same TPE. This can, for instance,
be used to limit the number of times an agent can be executed on a given TPE. To

achieve this, it is necessary to identify a policy that provides sufficient support
for the agent and to ensure that this policy is enforced on the TPE on which the
agent executes. With this approach, the AO does not need to trust the AE on
the proper protection of his agent, but it suffices to trust the TM. The question
why the AO should trust the TM rather than the AE is discussed in section 6.

Now we want to address a problem that requires the cooperation with a
trusted third party (TTP). Many security related protocols, in particular those
that deal with non-repudiation, rely on such a cooperation [12]. The role of the
TTP is to provide a well defined functionality (e.g., timestamping or logging of
messages) to create non-repudiable evidence that can later be used to resolve a
dispute. The special character of this functionality requires that it is provided
on a trustworthy environment, which can be guaranteed in the administrative
domain of the TTP. Thus, a user of this functionality has to interact with the
TTP server via a remote interaction, which suffers from the usual problems of
limited bandwidth, high latency, and inflexibility of the interface. In order to get
rid of this remote message exchange we propose to encapsulate the functionality
of the TTP in a TTP agent that can be executed on a TPE, which is also a
trustworthy environment. This allows us to gather all interacting parties on a
single platform and to take full advantage of the mobile agent paradigm (see
Section 5.4).

We will first introduce a policy for a TPE and discuss its effect on the agent
of a regular user at the example of a shopping agent. Then we will show how
the same concepts can be applied to a TTP agent and discuss the implications
of the approach.

5.1 The policy of the TPE

We assume that the TPE of the service provider enforces the following set of
rules, detailed in its policy:

a) the code of an agent will never be disclosed or altered by the TPE.

b) any invocation of the agent’s methods will be executed exactly according to
the code in the agent.

c) the data of an agent can exclusively be accessed and manipulated through
the interface of the agent. If the agent does not provide methods to directly
access a particular data item, its value can at most be inferred from the
responses to other method invocations.

d) an agent is protected against interference from other agents executing on the
same TPE (other than calls on its public interface).

e) prior to a migration, an agent will obtain the certificate of the designated
receiver’s TPE that also contains the policy. The agent can decide whether it
wants to be transferred and the current TPE will honour the agent’s decision.
The actual transfer follows the CryPO protocol.

f) the TPE provides an internal clock with reasonable accuracy (on the order
of several seconds). It will try to synchronize this clock with a trusted time
service and will inform the agent if this synchronization did not succeed.

The first rules a) and b) guarantee the basic protection of the agent’s code
as well as its proper execution, while ¢) guarantees the protection of the agent’s
data from undesired disclosure and manipulation. Rule d) requires the protection
of agents from one another, which is a regular operating system functionality.
The next rule e) ensures that the agent knows the policy of the TPE to which
it is transferred. Thus, the agent can ensure that it will not be sent to a TPE
that provides insufficient protection. Finally, rule f) can be used for several
purposes. For instance, it allows an agent that contains an expiration date to
implement a limited lifetime (on the order of a few days or hours). Upon its
arrival the agent requests the current time and checks if this time is still within
its attributed lifetime. If its expiration date has passed or if the TPE did not
succeed to synchronize its clock, the agent can simply abort. An AE can not
prevent this if the code of the agent is protected and if it will be executed
correctly.

5.2 The shopping agent

Consider a shopping agent that searches for a particular service for its owner.
Once it has found a suitable offer, it will negotiate the details of the service
provision, such as exact price and various QoS parameters, with the service
provider. As a special requirement, we specify that the shopping agent has to
create a log entry with a TTP server® that contains the details of the negotiated
contract before providing the payment data. This allows the AO to reconstruct
the activities of his agent in the case of a dispute or if the agent is lost.

In order for the shopping agent to effectively conduct a negotiation it needs
to conceal some of its configuration information from the service provider, such
as the highest acceptable price or the lowest acceptable QoS parameters. Fur-
thermore, the shopping agent holds the public key of the TTP, which it needs
to verify the acknowledgement from the TTP server, as well as the payment
data, which should only be provided to the selected service provider after the
successful creation of a log entry.

If the shopping agent executes only on TPEs that enforce the policy discussed
in Section 5.1, it is clear that it is protected from any interference. Provided
that the agent is correct, no other entity will be able to access or manipulate
any data contained in the agent other than what is accessible via the methods
of its public interface. Thus, the agent can effectively negotiate with a service
provider, request the logging of the contract with a TTP server, and delay any
further actions until it has received a signed acknowledgement from the TTP
server.

® The agent could send the corresponding information directly to the AO, but since
it needs an acknowledgement for the receipt of the log message and since the AO
might not have a permanent connection to the network, it is preferable to delegate
this task to a TTP.

5.3 The TTP agent

The interaction described above allows for an efficient negotiation between the
agent and the service provider exploiting all the performance advantages of the
mobile agent paradigm. However, due to the special requirements of the AQ, the
agent has to interact with a TTP server via a remote interaction. Apart from
the performance penalties of this remote interaction, the TTP server can also
become a bottleneck if its resources are consumed by a large number of clients.
Therefore, we propose to encapsulate the functionality of the TTP in a TTP
agent (TA) that can be executed on the TPE, relying on the same protection
mechanisms as the shopping agentS.

In the case of message logging, the functionality of the TTP consists of ac-
cepting arbitrary messages, storing them up to a well defined point in time ¢,
and responding with an acknowledgement asserting that the message has been
logged. This acknowledgement has to be signed by the TTP and must clearly
identify the message that was supposed to be logged, either by including the
message itself or, preferably, a hash of the message. Furthermore, the TTP must
be capable to reproduce a logged message up to the time ¢ and to provide it
(exclusively to authorized principals) upon request. If necessary, a log message
can be confidentiality protected with regular encryption methods.

The task of the TA is to act as the proxy for the actual TTP on the TPE. It
will accept messages that have to be logged from agents on the TPE, store them
in a local cache, and respond with an acknowledgement in which it guarantees
that it will forward the message to the TTP server unless the TPE is destroyed
(see below). Once a log message arrives at the TTP server, it will be handled
like a normal message. In order for the TA to provide such a guarantee, it needs
access to a sufficient amount of non-volatile storage on the TPE, in which it can
safely store the log messages. Since this non-volatile storage is a limited resource
of the TPE, the TA needs a special authorization to use it. If the TPE owner does
not grant this authorization, the TA will abort.

Apart from the access to the non-volatile storage of the TPE, the requirements
of the TA are very similar to those of the shopping agent. It has to be protected
against manipulation of its code and data and it also has to conceal certain data
items from the agent executor such as two different cryptographic keys. The first
key is necessary as a means to securely forward the logged messages to the TTP
server. Since the TA is configured by the TTP, this can simply be a secret key of
a symmetric key cryptosystem. The second key is needed as a signature key to
sign the acknowledgements for logged messages. This does not necessarily have
to be the long-term signature key of the TTP, but can be a temporary key that
is validated by a certificate signed with the TTP’s long-term signature key.

Again, if the TTP ensures that the TA only executes on TPEs that enforce
the policy discussed in Section 5.1 with sufficiently high assurance, it is clear that
the keys are protected and that the proper execution of the TA is guaranteed.

6 A TTP might require a higher level of assurance in the protection of the TPE than
a regular user. This could be a differentiating feature of TPEs from different manu-
facturers.

The remaining problem is how the TA can guarantee that logged messages that
are stored in the non-volatile storage of the TPE will eventually be forwarded to
the TTP server. The TPE owner could simply intercept all the messages of the
TA to the TTP server or, ultimately, request the TPE to terminate the TA. This
functionality has to be offered by the TPE to protect its owner from malicious
or simply buggy agents that refuse to terminate.

This problem can be solved with a supervision of the TA by the TTP and
with the help of the internal clock provided by the TPE. The TTP has to keep
track of all the TAs it sent to the various service providers and of an expiration
date that is associated with each TA. A TA will accept log messages only until
its expiration date. After this date it will refuse to accept and acknowledge any
further messages. Thus, the TTP has to receive a final message from the TA
after its expiration date (there should be an additional delay to accommodate
for clock skew) indicating that no further messages for the TTP are stored in
the non-volatile storage of the TPE. Provided that the TA only deletes mes-
sages from this non-volatile storage after sending them to the TTP server and
obtaining an acknowledgement, the TTP knows that all the messages that the
TA acknowledged have been forwarded to the TTP server. If this final message
is not received, the TTP will request the TPE owner to restart the TA and to
forward any messages it sends to the TTP server. Under the assumption that
the TTP has a possibility to enforce the access to the TPE by legal means, the
only possibility of the TPE owner to avoid the provision of missing messages is to
destroy the TPE. Thus, the approach cannot guarantee that all logged messages
will be delivered to the TTP server. But it can guarantee that a TPE owner can
not cheat without being discovered. Furthermore, if it can be proven that the
TPE owner intentionally destroyed the TPE, he can be punished with adequate
fines.

The problem of destruction of storage media is not new and also applies
to a regular TTP. However, it is assumed that the TTP operator implements
adequate measures to avoid this problem.

5.4 Discussion

The relocation of the TTP functionality from a remote site to the locally man-
aged TPE allows us to prevent it from becoming a bottleneck that slows down
other components. This is possible since the TPE owner can allocate as many re-
sources as necessary to the TA without having to coordinate this with the TTP.
Also, since the TA can collect and merge several log messages from interactions
of different agents with the service provider, it can accumulate several log mes-
sages and forward them in a single remote interaction. Another major advantage
of the described approach is that the remote interaction with the TTP server
is taken off the critical communication path between the agent and the service
provider. They can continue their interaction as soon as the TA has stored the
log message and sent the acknowledgement. Moreover, the entire interaction can
exploit the locally available communication links with higher bandwidth and
lower latency. This enables not only a better overall performance of the system,

but allows interactions that were not possible before due to an unreasonable
overhead. For instance, a TA could be used by two interacting parties as an
intermediate through which all messages are exchanged. The TA could, thus,
easily log the entire interaction and forward it to the TTP.

The concept of the TA is suitable for any TTP functionality that can be
wrapped up in a reasonably small object and that does not have to rely on a
large centrally managed database. Other interesting examples are timestamp-
ing or fair-exchange. The former consists of a TA that adds a timestamp to a
message and signs the resulting message with its signature key. The latter is a
classical security problem, for which several solutions relying on a TTP have
been proposed [2]. The problem of fair-exchange is that of principals A and B
who want to exchange the data items D4 and Dp, but neither of them wants
to provide its data item before receiving that of the other principal. A TA can
facilitate the exchange by accepting the data items as well as a description of the
data items expected by the designated receivers. It will verify if the descriptions
match the actual data items (e.g., in the case of payment, it verifies if the paid
amount corresponds with the amount expected by the receiver) and, if this is
the case, deliver the data items to the designated receiver.

6 Trust in the TPE manufacturer

We have introduced the mechanism, with which an agent can take advantage of
the policy enforced by a TPE. However, as we have mentioned above, in order
for a principal to trust in the proper enforcement of this policy, it is necessary
that he also trusts the TPE manufacturer to properly design, implement, and
produce its TPEs. Since there is no way (to the knowledge of the authors) to
enforce a correct behaviour of the TPE manufacturer, it seems that the presented
approach simply replaces one required trust relationship with another one. This
is a correct observation from a theoretical point of view. Nevertheless, we believe
that the replacement of trust in an arbitrary service provider with trust in a TPE
manufacturer has several more subtle implications. We will briefly discuss the
following advantages that we identified:

better understanding of security and privacy problems
centralized control

— resources to build reputation

— separation of concern

The TPE manufacturer is a specialized service provider, which primarily deals
in the field of the provision of security devices. Therefore it has a better under-
standing of security and privacy problems, which makes it a much more capable
entity to ensure this service since it is more aware of the potential problems and
pitfalls.

We assume that there will be relatively few TPE manufacturers (on the order
of several hundreds) compared to the number of possible operators of the TPE
(on the order of several millions). This makes the control of their behaviour much

easier for expert appraisal organizations. Also, it is quite conceivable that a TPE
manufacturer might invite external experts to control its internal operation, in
order to obtain a better position in the market (similar to the approach for
quality assurance in the ISO-9000).

The production of TPEs is considered to be a difficult task (see Section 4.4).
Therefore, we assume that it will be undertaken by major corporations, which
have the necessary resources to build a good reputation and which have an
incentive to protect this reputation. This allows us to rely on good reputation
as foundation for trust in the TPE manufacturer.

The TPE manufacturer that is responsible for the enforcement of the proper
policy rules on the TPE, has nothing to gain by not accomplishing its task.
Since the TPE will be operated independent from the TPE manufacturer by a
completely different principal and since the TPE manufacturer has no means to
access the data that is processed on the TPE (no physical connection), there is
no possibility for the TPE manufacturer to draw a direct benefit from a TPE that
does not properly enforce its policy”.

We assume that the above arguments of high expertise, effective controlla-
bility, good reputation, and lack of incentive are sound reasons to trust a TPE
manufacturer to build reliable and powerful TPEs. The main advantage of the
approach lies in the possibility to leverage this trust in the TPE manufacturer
onto a completely different principal in the role of the service provider, which

— might not have the proper expertise to ensure a secure operation of its hard-
ware and to guarantee the protection of the processed data.

— is quite difficult to control, due to the sheer number of such service providers.
— might have no particular reputation (and therefore none to lose).

— might have short term goals that (in its point of view) justify a policy vio-
lation.

With the presented approach, such a service provider can easily define the
policy rules that it would like its TPE to enforce (by selecting from the options
offered by the TPE manufacturer) and buy the appropriate TPE from a reputable
TPE manufacturer. The service provider can then immediately benefit from the
trust that users have in the manufacturer of its TPE to convince them that it
will not maliciously abuse an agent sent by a user.

With this, the approach favours the open systems philosophy, where any
principal can possibly become a provider of services. Such a service provider
simply has to obtain a TPE from some reputable manufacturer and can then
easily convince a client that the client’s confidential information is sufficiently
well protected. Thus, it becomes much easier for a new service provider to es-
tablish itself in the market.

" There is the possibility that a TPE operator bribes a TPE manufacturer to provide
an incorrect TPE. We assume that such a behaviour is a severe offence that is subject
to criminal investigation and not within the scope of this discussion.

7 Conclusion

In this paper, we have discussed the notion of trust in the context of mobile agent
systems and introduced a structuring for this problem domain. Starting from this
structure, we have proposed an approach that relies on a trusted and tamper-
resistant hardware device, which allows the prevention of malicious behaviour
rather than its correction. We believe this to be the better form of protection for
confidential data. We have shown how the approach can be used to effectively
protect the confidential data contained in the shopping agent of a user and
how it can be extended to protect specialized agents from TTPs that provide
facilitation services.

In real-life, there are limitations to the approach. Given sufficient time and
resources, a TPE operator might succeed in breaking the system and it would
thus be possible for him to violate the policy that should be enforced by the TPE.
Our goal is to make this attack so costly that it would negate a possible gain
(there may be many different implementations that provide different levels of
assurance in the protection of a TPE). As further deterrent, we assume that a non-
repudiable proof for a policy violation of an enforced policy or for an attempted
or successful breaking of a TPE might be punished much more severely than a
mere policy violation since it proves a much larger determination to commit a
criminal offence.

Acknowledgements

This research was supported by a grant from the EPFL (“Privacy” project) and
by the Swiss National Science Foundation as part of the Swiss Priority Pro-
gramme Information and Communications Structures (SPP-ICS) under project
number 5003-045364.

References

1. R. Anderson and M. Kuhn. Tamper resistance — a cautionary note. In The Second
USENIX Workshop on Electronic Commerce Proceedings, pages 1-11, Oakland,
California, November 1996.

2. H. Biirk and A. Pfitzmann. Value exchange systems enabling security and unob-
servability. Computers & Security, 9(8):715-721, 1990.

3. A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed applications with
mobile code paradigms. In R.Taylor, editor, Proceedings of the 19th International
Conference on Software Engineering (ICSE’97), pages 22—-32. ACM Press, 1997.

4. D. M. Chess, B. Grosof, C. G. Harrison, D. Levine, C. Parris, and G. Tsudik.
Itinerant agents for mobile computing. IEEE Personal Communications, 2(3):34-
49, October 1995.

5. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6), November 1976.

6. DoD. Trusted Computer System Evaluation Criteria (TCSEC). Technical Report
DoD 5200.28-STD, Department of Defense, December 1985.

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28

J. Gosling and H. McGilton. The java language environment. White paper, Sun
Microsystems, Inc., 1996.

R.S. Gray. Agent Tcl: A transportable agent system. In Proceedings of the CIKM
Workshop on Intelligent Information Agents, Baltimore, MD, December 1995.

C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents: Are they a
good idea? In Mobile Object Systems: Towards the Programmable Internet, volume
1222 of Lecture Notes in Computer Science, pages 25—47. Springer Verlag, 1997.
ITU. ITU-T Recommendation X.509: The Directory — Authentication Framework.
International Telecommunication Union, 1993.

D. B. Lange and M. Ishima. Program and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, 1998.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC Press, Inc., 1997.

J. Ordille. When agents roam, who can you trust? Technical Report Technical
Report, Computing Science Research Center, Bell Labs, 1996.

RSA Data Security, Inc. PKCS #1: RSA Encryption Standard. RSA Data Security,
Inc., November 1993.

R. A. Rueppel. A formal approach to security architectures. In EuroCrypt, pages
387-398, Brighton, England, 1991.

T. Sander and C. Tschudin. Towards mobile cryptography. In IEEE Symposium
on Security and Privacy, May 1998.

B. Schneier. Applied cryptography. Wiley, New York, 1994.

J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication service
for open network systems. In Proceedings of the USENIX Winter 1988 Technical
Conference, pages 191-202. USENIX Association, Berkeley, USA, February 1988.
V. Swarup and J. T. Fabrega. Understanding trust. In Secure Internet Program-
ming [22], pages 7777

New York Times. U.S. workers stole data on 11,000, agency says, April 6, 1996.
G. Vigna. Protecting mobile agents through tracing. In Proceedings of the Third
Workshop on Mobile Object Systems, Finland, June 1997.

Jan Vitek and Christian Jensen. Secure Internet Programming: Security Issues
for Mobile and Distributed Objects. Lecture Notes in Computer Science. Springer-
Verlag Inc., New York, NY, USA, 1999.

J. E. White. Telescript technology: The foundation for the electronic market place.
White paper, General Magic, Inc., 1994.

U. G. Wilhelm, L. Buttyan, and S. Staamann. On the problem of trust in mobile
agent systems. In Symposium on Network and Distributed System Security, pages
114-124. Internet Society, March 1998.

I. S. Winkler. The non-technical threat to computing systems. Computing Systems,
USENIX Association, 9(1):3-14, Winter 1996.

T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. IEEE
Computer, 25(1):39-52, January 1992.

B. Yee. A sancturary for mobile agents. In Secure Internet Programming [22],
pages 7777

P. Zimmermann. PGP User’s Guide. MIT Press, Cambridge, 1994.

