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Abstract

In this paper, we address the problem of service availability in mobile ad-hoc WANs.

We present a secure mechanism to stimulate end users to keep their devices turned on, to

refrain from overloading the network, and to thwart tampering aimed at converting the

device into a \sel�sh" one. Our solution is based on the application of a tamper resistant

security module in each device and cryptographic protection of messages.

1 Introduction

1.1 The context

The Terminodes Project [1, 2] is a 10-year research program (2000-2010) with the aim to

investigate wide area, large, totally wireless, mobile networks that we call mobile ad-hoc

wide area networks. In this project, we follow a radically distributed approach, in which

all networking functions are embedded in the terminals themselves. Because they act as

network nodes and terminals at the same time, we call these devices terminodes. A network

of terminodes is an autonomous, self-organized network, completely independent of any �xed

infrastructure or other equipment.

Our vision of the Terminodes Project can be illustrated by a free, amateur, wireless ad-

hoc network covering a wide area, which operates at unlicensed frequencies. In this scenario,

terminodes are small personal devices that everyone in the area could potentially own. The

size of the network can reach several million devices in regions of high density population.

Communication among users is based on packet switched1, multi-hop, wireless communication

of voice and data. An important characteristic of terminode networks is that there are no

routing tables stored in the devices. Instead, a simple packet forwarding mechanism lets each

of the terminodes located on the route of a given packet compute the \best" next hop toward

the �nal destination [3].

�Technical Report No. DSC/2000/025
1While circuit switching is an advantage for supporting voice, the complexity associated with establishing,

maintaining, and releasing circuits, or any form of connection, is at odds with the requirement that intermediate

systems are user equipment, and may operate quite irregularly.
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1.2 The problem

The problem that we address in this paper is the availability of services in terminode net-

works. In civilian applications of ad-hoc networks, which we are exclusively concerned with

in the Terminodes Project, availability is often considered to be the security issue of greatest

relevance for users [4]. We concentrate on two aspects of availability in terminode networks:

� Stimulation for co-operation. Since all networking services (e.g., packet forwarding,

mobility management) should be provided by the terminodes themselves, these services

are available only if the terminodes (or, more precisely, their users) are willing to pro-

vide them. On the other hand, service provision is not in the direct interest of users,

because it consumes energy and thus, reduces battery lifetime. Therefore, a stimulation

mechanism that encourages users to leave their terminodes switched on and let them

provide services to other terminodes is required.

One can say that being able to receive messages is enough motivation for the user to

leave her terminode switched on. While this may indeed be true, it is certainly not

enough to encourage users to provide services to other terminodes. The hardware and

the software of the terminode can be tampered with and their behavior can be modi�ed

by the user in a way that the device can receive messages but it does not provide

any services to the community. Furthermore, criminal organizations can tamper with

terminodes and sell corrupted devices, which do not co-operate in order to save energy,

on a large scale.

So far, civilian applications of ad-hoc networks have been envisioned mainly in crisis

situations (e.g., rescue operations). For this reason, it was assumed that users are

naturally motivated to co-operate. In terminode networks, this assumption does not

hold, because of the size of the network, and because we consider that the network

lifetime can be long (typically, several years).

� Prevention of overloading. Often, services are unavailable because the network is

overloaded and it can no longer carry useful information. The network can become

overloaded because of a malicious denial-of-service attack, or simply because some of

the (otherwise legitimate) users want to send too much information. Therefore, we

need a mechanism that makes denial-of-service attacks \expensive" and discourages

users from ooding the network with useless tra�c. In cellular networks, this objective

is automatically achieved by charging the users.

1.3 The approach

One possible approach to stimulate a co-operative behavior and prevent congestion is to

introduce the concept of money and service charges. The natural idea is that terminodes

that used a service should be charged and terminodes that provided a service should be

remunerated. To this end, we introduce a terminode currency that we call beans. We assume

that the terminode hardware comes with an initial stock of beans. The terminode beans have

no monetary value, and they can only be used within terminode networks.

Now, if a terminode wants to use a service (e.g., wants to send a message), then it has to

pay for it in beans. This motivates each terminode to increase its number of beans, because

beans are indispensable for using the network. Thus, the terminode is no longer interested in
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sending useless messages and overloading the network because this would decrease its number

of beans, and it is better o� providing services to other terminodes because this is the only

way to earn beans2.

1.4 Outline

In the sequel, we focus on the rewarding of one of the most important services that the ter-

minodes should provide to each other, namely, packet forwarding. In Section 2, we introduce

two approaches to solve this problem: the Packet Purse Model and the Packet Trade Model.

The remaining sections are concerned with the implementation of these models. In Section 3,

we summarize our general assumptions. Then, we present implementations that enforce the

models in Section 4. Finally, in Section 5, we discuss the robustness and the e�ciency of our

solution, and, in Section 6, we conclude the paper.

2 Rewarding the packet forwarding service

2.1 The Packet Purse Model (PPM)

In this model, the originator of the packet pays for the packet forwarding service. The service

charge is distributed among the forwarding terminodes in the following way: When sending

the packet, the originator loads it with a number of beans su�cient to reach the destination.

Each forwarding terminode acquires one or several beans from the packet and thus, increases

the stock of its beans; the number of beans depends on the direct connection on which the

packet is forwarded (long distance requires more beans). If a packet does not have enough

beans to be forwarded, then it is discarded.

Packet forwarding in the Packet Purse Model is illustrated in Figure 1. Let us assume

that originally each terminode has 7 beans (1). Furthermore, let us assume that A wants to

send a packet to D. In order to do so, A loads, say, 5 beans in the packet and sends it to

the next hop B (2). B takes out 1 bean from the packet, and forwards it with the remaining

4 beans to C (3). C takes out 2 beans from the packet and forwards it with the remaining

2 beans to the �nal destination D (4). Note that terminodes B and C, which forwarded the

packet, increased their stock of beans, whereas terminode A, which originated the packet,

decreased its stock of beans.

The basic problem with this approach is that it might be di�cult to estimate the number

of beans that are required to reach a given destination. If the originator under-estimates

this number, then the packet will be discarded, and the originator loses its investment in

this packet. If the originator over-estimates the number (like in our example above), then

the packet will arrive, but the originator still loses the remaining beans in the packet3. The

model described in the next subsection overcomes this problem.

2Similar to money in real life, beans can be lost as well. This loss has to be compensated somehow, otherwise

the system gets poorer and poorer. One way to solve this problem is to let users buy beans. This would mean

that providing services is, actually, not the only way to earn beans. However, it can be made the preferred

way by appropriately choosing the price of one bean.
3Although, if the destination of the packet is a terminode that provides information services, then the

remaining beans can be used to pay for these.
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Figure 1: The Packet Purse Model

2.2 The Packet Trade Model (PTM)

In this approach, the packet does not carry beans, but it is traded for beans by intermediate

terminodes. Each intermediary \buys" it from the previous one for some beans4, and \sells"

it to the next one (or to the destination) for more beans. In this way, each intermediary that

provided a service by forwarding the packet, increases its number of beans, and the total cost

of forwarding the packet is covered by the destination of the packet.

As an example, let us consider Figure 2. Let us assume that originally each terminode

has 7 beans (1). Furthermore, let us assume that A wants to send a packet to D. A sends

the packet to the �rst hop B for free (2). B then sells it to the next hop C for 1 bean (3).

Finally, C sells it to the �nal destination D for 2 beans (4). Note that terminodes B and

C, which forwarded the packet, increased their number of beans, whereas the destination D

decreased its number of beans.
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Figure 2: The Packet Trade Model

An advantage of this approach is that the originator does not have to know in advance

the number of beans required to deliver a packet. Furthermore, letting the destination pay

for the packet forwarding makes this approach applicable in case of multicast packets as well.

A disadvantage is that this approach for charging does not directly deter users from

ooding the network. However, allowing each terminode to decide if it buys a packet or not

can provide a sort of \back pressure" mechanism, which may deter a user from generating

4Except for the �rst intermediary that receives the packet for free from the originator.

4



too much tra�c, by ensuring that eventually nobody will buy packets from users who try to

overload the network.

2.3 Problems to be solved

Clearly, the models described above must be enforced somehow, otherwise the terminodes

may depart from them. Terminodes (users) may misbehave in several ways if no enforcement

and no protection are applied. One important general problem is, for instance, to prevent

bean forgery.

In addition, the problems that we have to cope with in the Packet Purse Model include

the following:

� The originator of a packet should be denied the re-use of the beans that it loaded in

the packet purse.

� A forwarding terminode should be denied taking more beans out of the packet than it

deserves for the packet forwarding (i.e., \packet robbery" should be prevented).

� Each intermediary should be forced to indeed forward the packet after having taken the

beans out of it.

� The integrity of the packet purse should be protected during transit.

� The replay of a packet purse should be detected5.

� Detachment of a packet purse from its original packet and re-use of it with another

packet should be impossible.

Problems to be solved in the Packet Trade Model include the following:

� Each terminode should be denied the re-use of the beans that it spent for buying packets.

� A forwarding terminode should receive the beans from the next hop if, and only if, the

next hop receives the packet from the forwarding terminode (fairness of the exchange).

� An intermediary should be prevented from selling the same packet several times (pos-

sibly to di�erent next hops).

Furthermore, all the problems above should be solved in an e�cient way; forwarding a

single packet should not require complex cryptographic protocols and heavy computational

e�ort, because the cost of these may well exceed the value of the service. We believe that we

have found the best trade-o� between robustness and e�ciency in our implementations of the

Packet Purse Model and the Packet Trade Model, which we present in the following sections.

5Consider the following subtle replay attack. An intermediary receives a packet with a packet purse, it

copies them and then, simulates the reception of the same packet with the same packet purse several times

(each time increasing its stock of beans) without forwarding the packet. If this kind of replay was not detected,

then the intermediary can, actually, become arbitrarily rich from this single packet.
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3 General assumptions

In this section, we summarize our general assumptions, which our implementations of the

models described above rely on.

� Tamper resistant security module. We assume that each terminode has a tamper

resistant security module, such as, for instance, a special chip or a smart card, that is

used for the management of cryptographic parameters (e.g., keys) and beans. We assume

that this security module functions correctly and its behavior cannot be modi�ed by the

user of the terminode or other attackers. Contrary to the security module, other parts of

the terminode hardware and software are not tamper resistant and their behavior can be

modi�ed by anybody who has physical access to the device. We understand that regular

users usually do not have the required level of knowledge and skills to modify their

terminodes. Criminal organizations, however, can have enough interest and resources

to reverse engineer a terminode and sell tampered terminodes with modi�ed behavior

on a large scale. Users may be interested in buying these tampered devices if they o�er

advantages over correctly behaving ones (e.g., longer battery lifetime). Our design goal

is to distribute the terminode functions between the tamper resistant security module

and the rest of the terminode device, which can be altered by an attacker, in a way that

modi�cation of the latter cannot give any advantages to the attacker.

� Public key infrastructure. We assume that there exists a public key infrastructure

that the terminodes (or, more precisely, their security modules) can use to authenticate

each other and to establish secure communication links. The design of an appropriate

public key infrastructure for terminodes is an interesting and non-trivial problem that

is beyond the scope of this paper. An approach to solve this problem is described in

[5], other possible approaches are mentioned in [3].

� Slow mobility. We assume that the terminodes move \slowly" compared to the amount

of tra�c that goes through them. This is not to say that the terminodes must be

physically slow, but that the neighborhood of a terminode does not change very fast.

This makes it feasible for the terminode to keep track of its neighbors by running a

sort of \hello protocol" at regular time intervals. Besides discovering its neighbors, the

security module of the terminode uses the hello protocol to establish shared secrets

with the security modules of its neighbors (di�erent secrets with di�erent neighbors, of

course). The establishment of the shared secret is based on public key cryptography

and relies on the existing public key infrastructure. In addition to the shared secret,

we require that the security module agrees on the initial values of two counters with

each of its neighbors. The shared secret and the two counters are used to protect the

communication between neighboring security modules and will be discussed further in

Section 4.

� Omnidirectional antennae. We assume that the terminodes use omnidirectional

antennae, which means that a message sent by a terminode can be heard by all the

terminodes within the communication range of the sender. We further assume that such

a message can not only be heard, but it is understood by all of the neighbors. By this,

we mean that all the neighbors receive the message and can determine who the sender
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and the intended receiver are and what the content of the message is6. Depending on

the MAC layer used, this may require that the terminodes agree on further parameters

with their neighbors during the hello protocol. If, for instance, access to the shared

radio resource is based on code division (CDMA), then the terminode should inform

its neighbors about all the codes that it uses, in order for the neighbors to be able to

receive messages sent by the terminode.

� Reliable communication between neighbors. For the sake of simplicity, we assume

that the communication between neighboring terminodes is reliable. This means that if

a message is sent successfully (e.g., without any collision), then it arrives to the intended

next hop correctly. We will address the problem of unreliable communication links in

a future paper. We note, however, that this assumption does not imply that end-to-

end communication is reliable. Since messages can be modi�ed and intercepted by the

forwarding terminodes themselves, successfully sending a message to the next hop does

not mean that the message will correctly arrive to the �nal destination.

� Pricing. In the Packet Purse Model, we assume that there exists a mechanism to

estimate the number of beans that the originator of a packet must load in the packet

purse in order for the packet to be delivered to the �nal destination. Furthermore,

we also assume that there is a mechanism to determine the number of beans that a

forwarding terminode can acquire from a packet purse. Similarly, in the Packet Trade

Model, we assume that there exists a mechanism to determine the number of beans, for

which a forwarding terminode can sell a packet to the next hop.

In order to ease presentation, in this paper, we assume that each forwarding terminode

should be rewarded with exactly one bean for the packet forwarding. This means,

that in the Packet Purse Model, each intermediate terminode that forwards the packet

can take exactly one bean out of it, and in the Packet Trade Model, each forwarding

intermediary can sell the packet for one more bean than it paid for. Our solution,

however, works without modi�cations in the general case as well.

� Terminodes are greedy. We assume that terminodes are greedy, and they always

want to increase their number of beans. On one hand, this is reasonable, because beans

are indispensable for using the network. On the other hand, there might be situations,

where greediness is not the best strategy. Consider, for instance, a terminode that has

a lot of beans, but whose battery is almost exhausted. In this situation, earning more

beans has clearly less bene�t, than saving battery power. But if the terminode is greedy,

then it keeps on forwarding packets, and uses up all of its energy. It would be more

realistic to assume that the behavior of the terminode depends on both the number of

its beans and the status of its battery. This issue is left for further study.

� No network operator. We assume that the network is totally self-organized and

self-operated. Users simply purchase terminodes and use them. The inter-working with

existing �xed and wireless networks is left for future study.

6More precisely, each neighbor can see the bits of the message, although not necessarily understanding the

real meaning of the message (e.g., in case of end-to-end encrypted messages).
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4 Implementing the models

We use the tamper resistant security module to enforce the behavior described by the models.

In this section, we present the description of this module and the protocols that it runs with

its environment. Our leading design principle is to put as little as possible in the security

module in order to rely on as few assumptions as possible.

4.1 Long and medium term data in the security module

The security module stores and manipulates data that is critical for the correct behavior of

the system. Since the security module is tamper resistant, this data cannot be corrupted by

the user of the terminode or other attackers.

The following long term data are stored in the security module SM :

� Unique identi�er. The security module stores its system-wide unique identi�er, which

we denote by idSM .

� Private key. The security module has a public key and a corresponding private key.

The private key is exclusively known to SM and, thus, it must be stored by SM . The

public key does not need to be kept secret, therefore, it can be stored elsewhere. It is

important, however, that other security modules associate the right public key (i.e., the

public key of SM) with the unique identi�er of SM . This is ensured with the help of

the assumed public key infrastructure.

� Number of beans. Beans are represented by counters in the security modules of the

terminodes. The wealth of each terminode is equal to the value of the bean counter in

its security module. We denote the bean counter in the security module by bSM .

In addition, the security module keeps a list of current neighbors and maintains data

associated to each of these. SM stores the following medium term data for each neighboring

security module SM 0:

� Unique identi�er. The system-wide unique identi�er idSM 0 of the neighbor.

� Shared secret key. When SM and SM 0 become neighbors, they establish a shared

secret key kSM;SM 0 between them using the hello protocol and public key cryptography.

This shared secret is exclusively known to SM and SM 0, and it is used to protect

the communication between them. This protection, in turn, is based on symmetric

key cryptography for e�ciency reasons. Protection is necessary, because the security

modules cannot communicate directly but only through their hosting terminodes, which

are under the control of (potentially malicious) users.

� Sending and receiving counters. SM stores a sending counter nSM!SM 0 and a

receiving counter nSM SM 0 associated with SM 0. These counters are used to detect

message replay, which, as mentioned in Subsection 2.3, would fool the security module

to process the same message twice. SM 0 has similar counters nSM 0!SM and nSM 0 SM ,

which are associated with SM . When SM and SM 0 become neighbors, they initialize

their receiving counters to random values and use the hello protocol to set their sending

counters such that the following holds: nSM!SM 0 = nSM 0 SM + 1 and nSM 0!SM =
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nSM SM 0 + 1. Then, each time SM sends a message to SM 0, it includes the current

value of its sending counter nSM!SM 0 in the message, and then increments the counter.

When SM receives a message from SM 0, it veri�es if the message contains a counter

value that is greater than its current receiving counter nSM SM 0. If so, then it accepts

the message and increases its counter to the received value, otherwise it rejects the

message. SM 0 behaves similarly.

� Fine. Another counter is fSM;SM 0, the initial value of which is 0. SM uses this counter

to account for the misbehavior of the terminode that hosts SM 0 with respect to the

terminode that hosts SM . The protocols that are used by the security modules are

such that SM does not immediately increase its bean counter if its hosting terminode

forwarded a packet, but it waits for an acknowledgment from the security module SM 0

of the next hop in order to be sure that the packet has indeed been forwarded. If this

acknowledgement does not arrive, then SM records the misbehavior of the next hop

by increasing the �ne counter fSM;SM 0 associated with SM 0. The next time it sends a

packet to the same next hop, SM also sends the value of the �ne counter. If this packet

is processed by the next hop, then SM 0 takes into account the �ne by decreasing its

bean counter accordingly, and SM can reset its �ne counter. If, however, this packet

is not processed either (i.e., no acknowledgement arrives), then SM further increases

the �ne counter. If the counter exceeds a limit, then the hosting terminode of SM may

stop forwarding packets toward the misbehaving next hop. This mechanism stimulates

terminodes to send acknowledgements.

We should note that a missing acknowledgment does not necessarily mean that the next

hop is misbehaving and did not send it. It is also possible that the hosting terminode of

SM cheated and it did not actually forward the packet or it falsely claims the acknowl-

edgement to be missing. However, we assume that this is not the case, because it would

contradict our assumption about the greediness of the terminode: the terminode can-

not increase its number of beans by not forwarding the packet or claiming an arrived

acknowledgement missing, whereas it can increase its number of beans if it behaves

correctly.

4.2 Implementing the Packet Purse Model

4.2.1 The Packet Purse Header (PPH)

In the Packet Purse Model, each packet has to carry some beans required to forward the

packet. These beans are stored in the Packet Purse Header (PPH), which is an additional

header between the MAC Layer Header and the Network Layer Header as it is illustrated in

Figure 3. The PPH is created and manipulated by security modules. It is cryptographically

protected in order to prevent forgery and illegitimate modi�cation during transit.

The PPH is re-computed by the security module of each forwarding terminode. It has

three parts: a part that is intended for the security module of the next hop, another part

that is an acknowledgement for the security module of the previous hop, and a third one

that is common and intended for both the next and the previous hops. The common part

contains only the unique identi�er of the security module that computed this PPH. The

acknowledgement part contains the identi�er of the security module of the previous hop, the

sending counter that was received from that hop, and an Acknowledgement Authentication

Code (AAC) that is computed from the previous PPH, which was attached to the packet,
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Figure 3: The Packet Purse Header (PPH)

using a keyed cryptographic hash function g, where the key is the shared secret between this

security module and the security module of the previous hop. Finally, the purse part that

is intended for the security module of the next hop contains the identi�er of that security

module, the sending counter associated with that security module, the number of beans in the

packet, a �ne to be paid by the next hop, and a Purse Authentication Code (PAC), which is

computed from the purse part of the PPH and the cryptographic hash value h(NetworkPDU)

of the content of the packet using a keyed cryptographic hash function g, where the key is

the shared secret between this security module and the security module of the next hop.

As it can be seen from the description, the acknowledgement that is intended for the

previous hop is piggy backed on the packet that is sent to the next hop. Here, we rely on the

assumption that the terminodes have omnidirectional antennae, and they receive all messages

that are emitted by neighboring terminodes. Thus, when a terminode forwards a packet to

the next hop, the previous hop, from which this packet has arrived, also receives it, and

extracts the acknowledgement.

4.2.2 The packet forwarding protocol

The packet forwarding protocol is illustrated in Figure 4, where we assume that terminode Tq
has received a packet from terminode Tp (which received it from the previous hop To), and Tq
wants to forward it to Tr. To do so, Tq has to obtain a new Packet Purse Header PPH 0 from

its security module SMq by supplying it with the identi�er of the security module of the next

hop, the Packet Purse Header PPH received from the previous hop, and the cryptographic

hash value h(NetworkPDU) of the content of the packet.

SMq �rst veri�es PPH. It reads the identi�er of its sender SMp from the common part

of PPH. Then, it veri�es if the sending counter in PPH is greater than the receiving counter

nq p associated with SMp. If so, then this PPH is not a replay (i.e., it has not yet been

processed by SMq), and SMq proceeds by setting nq p to the received counter value. SMq

then veri�es the authenticity of PPH by re-computing the Purse Authentication Code and

comparing the computed value to the received one. If they match, then it knows that PPH
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Figure 4: The packet forwarding protocol

has indeed been created by SMp and has not been modi�ed . Finally, it checks if there is a

�ne to be paid, and if so, then it decreases its bean counter accordingly.

After successful veri�cation, SMq calculates the new Packet Purse Header PPH 0. This

is illustrated in Figure 5. It puts its own identi�er idSMq
in the common part. It decreases

the number of beans in the packet by one, and constructs the purse part by including the

identi�er of the next security module SMr, the sending counter nq!r associated with SMr,

the number of beans in the packet, the �ne counter fq;r associated with the next hop, and

the Purse Authentication Code PACq;r calculated from the purse and the hash value of the

content of the packet using the cryptographic hash function g and the shared secret kq;r.

Then SMq increases its sending counter nq!r, and constructs the acknowledgement part by

including the identi�er of SMp, the sending counter np!q form the purse part of PPH, and

the Acknowledgement Authentication Code AACq;p, which is calculated from PPH using

the cryptographic hash function g and the shared secret kq;p. Finally, SMq stores PPH 0

internally, and outputs a copy for Tq.

Tq attaches the new Packet Purse Header PPH 0 to the packet and sends it to Tr. Tp also

receives the forwarded message, and it can recognize that there is an acknowledgement for

its security module SMp in the packet, because PPH 0 contains the identi�er of SMp in the

acknowledgement part. Tp uploads PPH
0 to its security module. SMp tries to �nd PPH in

its internal memory by matching the identi�er of SMq and the sending counter received in the

acknowledgement part of PPH 0 to the identi�ers and sending counters in the purse part of

stored pending Packet Purse Headers. If SMp �nds PPH, then it veri�es the authenticity of

the acknowledgement in PPH 0 by re-computing the Acknowledgement Authentication Code

from PPH and comparing it to the value received in PPH 0. If they are equal, then SMp

increases its bean counter by one, decreases its �ne counter fp;q by the the value of the �ne

in PPH (but never lets it become less than 0), and deletes PPH from its internal memory.

Tp keeps track of the forwarded but not yet acknowledged packets. If no acknowledgement

arrives to a packet after a given time, then Tp noti�es its security module, which increases the

�ne counter that is associated with the misbehaving neighbor and deletes the corresponding

Packet Purse Header from its internal memory. Although it would be simpler if the security

module itself measured the time-out, we do not want to require the security module to have

11



idSMp idSMq b AACp,oidSMoPACp,qfp,qnp->q no->p

idSMq idSMr b - 1 AACq,pidSMpPACq,rfq,rnq->r np->q g

dec

gcon-
cat

kq,r

kq,p

h(Network PDU)

PPH:

PPH':

Figure 5: Re-computing the PPH

an internal clock, because this would also require an internal source of energy, and we believe

that building such a tamper resistant module is quite di�cult. Our solution still works well,

because Tp is not interested in signaling a missing acknowledgement if the acknowledgement

has indeed arrived: it can increase its number of beans by uploading the acknowledgement,

while it cannot gain anything by claiming it missing.

4.2.3 Packet creation and �nal delivery

Before the packet is sent by its originator, the security module decreases its bean counter by

the number of beans speci�ed by the originator and creates a PPH that contains the same

number of beans. This PPH is a special one, because it does not have any acknowledgement

part, since there is no previous hop that would need it.

When the packet is delivered to its �nal destination, then the PPH is loaded in the

security module, which creates a special PPH' that has only an acknowledgement part. The

destination should send an empty packet with this special PPH' to the previous hop. If it does

not send it, then the security module of the previous hop increases its �ne counter associated

with the destination, and the destination will be punished for the misbehavior later.

4.3 Implementing the Packet Trade Model

The Packet Trade Model can be implemented in the same way as the Packet Purse Model.

Like before, each packet has an additional header, which we call Packet Trade Header (PTH).

The structure of the PTH is the same as the structure of the PPH, with the only di�erence

that instead of the number of beans, it contains the price of the packet. The same packet

forwarding protocol described before applies in the Packet Trade Model as well with a minor

modi�cation. Now, the security module of each forwarding terminode decreases its bean

counter by the price in the PTH (buying) and increases the price by one when re-computing

the PTH, and increases its bean counter by the new price when the acknowledgement arrives

(selling).
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5 Analysis

In this section, we shortly analyze the implementation of the Packet Purse Model described

above. We show how the implementation solves our original problems of stimulation for co-

operation and prevention of overloading, and discuss its robustness and e�ciency. Essentially,

this analysis applies for the implementation of the Packet Trade Model as well, since it is

almost identical to the implementation of the Packet Purse Model. We will point out those

cases in which the analysis does not apply for the Packet Trade Model.

5.1 Stimulation for co-operation and prevention of overloading

Our implementation encourages users to keep their terminodes switched on and let them

forward packets, because this is the only way to increase their number of beans. If a terminode

does not forward a packet, then it will receive a �ne later, and its number of beans will be

decreased. In addition, if a terminode denies packet forwarding for a long time, then no more

packet will be sent to it.

Our implementation of the Packet Purse Model discourages users to send useless tra�c

and overload the network because this would decrease their number of beans. Our solution

ensures that the bene�t each user gets from the network does not exceed what she contributes

to it.

We should note, however, that our implementation of the Packet Trade Model does not

deter users from overloading the network. The reason is that, contrary to the original idea of

the Packet Trade Model, our implementation does not allow a terminode to decide whether

it buys a packet or not. Instead, a terminode is forced to buy each packet that is sent to it.

This means that any terminode can generate useless tra�c and overload the network without

any consequences. In order to solve this problem, our implementation must be modi�ed to

allow each terminode to decide whether to buy a packet or not. This would provide a sort of

\back pressure" mechanism, which may ensure that eventually nobody will buy packets from

misbehaving senders. This issue is left for further study.

5.2 Robustness

The implementation described above is robust and resists against various attacks. Bean

forgery is prevented, because it would require either an illegitimate increase of the bean

counter, or the generation of fake packet purses or acknowledgements. The former is impossi-

ble, because the bean counter is manipulated by the security module, which functions correctly

and its behavior cannot be altered. The latter is prevented by the use of cryptographic check-

sums (i.e., the Purse Authentication Code and the Acknowledgement Authentication Code),

which can be computed correctly only by the security module. These checksums also protect

the integrity of the PPH during transit. Furthermore, the packet purse cannot be detached

from the packet and re-used with another one, because the calculation of the Purse Authenti-

cation Code involves the cryptographic hash value of the content of the packet. Replay of the

packet purse is prevented by the use of an ever increasing counter that is placed in the purse.

This solution is preferable to the application of time-stamps, because it does not require the

security module to have an internal clock and to run clock synchronization protocols.

The originator of a packet cannot re-use the beans that it has already loaded in the

packet, because the security module decreases the bean counter when creating a PPH for a
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new packet. An intermediary cannot take out more beans from the packet than it deserves for

the packet forwarding, because its bean counter can be manipulated exclusively by its security

module, which behaves correctly. Moreover, the intermediary is stimulated to forward the

packet, because its bean counter will be increased only if an acknowledgment arrives from the

next hop, and this is only possible if the packet has been forwarded.

Our solution requires each hop to send an acknowledgement for the packet it received.

Terminodes, however, may be reluctant to send acknowledgements, because sending consumes

energy and it does not have any direct advantages. This problem is related to fair exchange [6,

7] (in our case, packets for acknowledgements), and it is usually solved with the involvement of

a trusted third party (TTP). We cannot, however, assume the existence of TTPs in terminode

networks. The problem of fair exchange without a TTP is analyzed in [8], where it is called

unenforced safe exchange. The author proves that isolated unenforced safe exchange is not

possible if the last step of the exchange has some costs. A proposed solution is that one should

not consider only a single isolated exchange, but one should also take into account possible

future exchanges, where the behavior of the parties in the future exchanges may depend on

the result of the current exchange. If misbehavior in the present can be punished in the future,

then unenforced safe exchange becomes possible. In our implementation, we used these ideas

in two ways to stimulate terminodes to send acknowledgments. First, we reduced the cost

of sending an acknowledgement by piggy backing it to a normal packet that the terminode

sends anyway (except for the destination of a packet). Second, we introduced �nes, in order

to punish misbehaving terminodes. Moreover, the �ne is sent in the purse together with the

beans, which enforces the terminode who wants the beans to upload the �ne as well to the

security module that will decrease the bean counter according to the received �ne.

We should note that exchanges without TTP can never achieve the same level of fairness

as those with TTP. The existence of di�erent levels of fairness is discussed in [9], where the

authors relate the di�erent levels to di�erent equilibrium concepts in game theory. According

to these results, our implementation achieves Nash-equilibrium fairness, which essentially

means that a misbehaving party may cause some damage to a correctly behaving one, but

it also loses something or at least cannot gain anything (apart from malicious joy) with the

misbehavior.

5.3 E�ciency

At �rst sight, our solution may seem a bit heavy to implement. However, the overhead

generated by it is small when compared to all the functions that are required to accomplish

packet forwarding. In particular, the calculation and veri�cation of the Packet Purse and

the Packet Trade Headers require only cryptographic hash function computations, which can

be done very e�ciently [10]. Public key cryptographic operations are used only rarely (in

the hello protocol). Moreover, most of the processing load will be supported by the security

module; to some extent, it can be accomplished in parallel with the processing performed by

the main processor of the terminode.

Another issue is the length of the Packet Purse Header. Assuming that the identi�ers

of the security modules are 8 byte long, the sending and receiving counters are 6 byte long,

the Purse and the Acknowledgement Authentication Codes are 20 byte long, and the beans

and the �ne are both represented on 2 bytes, we get that the Packet Purse Header is 80 byte

long. We cannot further assess whether this is acceptable or too much, because of the lack of

information about the length of other headers and the average length of the packets.
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E�ciency can be improved by using the Packet Purse Header and all the related mecha-

nisms only in a small fraction of packets. Then the majority of the packets would not carry

an additional header and would be processed without any call to the security module. This

means, however, that the terminodes would not be rewarded for the forwarding of each packet,

and we would have to ensure that they forward those packets as well from which they cannot

expect any beans. This issue is left for future work.

6 Conclusion

In this paper, we addressed the problem of service availability in terminode networks (mobile

ad-hoc WANs). We have presented a secure mechanism to stimulate end users to keep their

terminodes turned on, to refrain from overloading the network, and to thwart tampering

aimed at converting the device into a \sel�sh" one.

This work was motivated by the experience of cellular networks, which has proven that as

soon as mobile stations are under the control of end users, there is a strong temptation to alter

their behavior in one way or another. Therefore, all facets of security have to be carefully

analyzed and implemented. We are currently working on the integration of the proposed

solution with other security functions, such as con�dentiality and integrity protection of

communications.

Finally, we believe that introducing a kind of virtual currency can serve several other

purposes in mobile ad-hoc WANs. First, it can be used to remunerate not only communication

services, as described in this paper, but also information services. Second, it can be used as a

way to pay for the usage of backbones or satellite links, when a terminode has to communicate

with a very distant party. In this case, the virtual currency will have to be converted in some

way into \hard" currency.
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