
Applying ICA and NARX networks for
algorithmic trading

Attila Ceffer1, Janos Levendovszky1, and Norbert Fogarasi1

Department of Networked Systems and Services
Budapest University of Technology and Economics

Budapest, Hungary
ceffer@hit.bme.hu, levendov@hit.bme.hu, fogarasi@hit.bme.hu

Abstract. In this paper, a Nonlinear AutoRegressive network with eX-
ogenous inputs (NARX) is proposed for algorithmic trading by predicting
the future value of financial time series. This network is highly capable
of modeling vector autoregressive VAR(p) time series. In order to avoid
overfitting, the input is pre-processed by Independent Component Anal-
ysis (ICA) to filter out the most noise like component. In this way, the
accuracy of the prediction is increased. The proposed algorithm has a
reduced number of free parameters which makes fast learning and trad-
ing possible. The method is not only tested on single asset price series,
but also on predicting the value of mean reverting portfolios obtained
by maximizing the predictability parameter of VAR(1) processes. The
tests were first performed on artificially generated data and then on real
data selected from Exchange Traded Fund (ETF) time series including
bid-ask spread. In both cases profit has been achieved by the proposed
method.

Keywords: algorithmic trading, financial time series, neural networks,
independent component analysis, mean reverting portfolio

JEL classification: C45

1 Introduction

In the recent decades, algorithmic trading combined with portfolio optimization
has been one of the most intensively researched areas of financial mathematics.
Ever since the seminal paper of Markowitz [14], selecting portfolios which are
optimal in terms of risk-adjusted returns has been in the centre of interest of both
academics and financial practitioners. There are many approaches to algorithmic
trading on profitable portfolios ranging from prediction based trading [18, 21, 25]
to mean reverting trading [4, 12, 20].

Many researchers use autoregressive (AR) models to describe financial time
series. For model identification and prediction, the results of machine learning
have been deployed using different learning architectures (e.g. Feed Forward
Neural Networks, Support Vector Machines etc.) [11, 16, 24]. However, in most

2

of the cases these methods fail to provide high performance on real data due
to overfitting (a large number of free parameters are built in and due to small
training sets the model remains poorly trained), and because of the large amount
of noise superposed on the data. Furthermore, profit resulted by algo-trading
tends to be very slim in the presence of bid-ask spread and transaction costs.

To increase trading efficiency, one of the most important questions is how
to decrease the side-effects of overfitting. One can reduce the number of free
parameters of the model by minimizing the dimension of input data. In this way,
one possible approach is to use Principal Component Analysis (PCA), however,
by aggressive dimension reduction, one may also leave out important information
from the input [6, 7]. A better approach to reduce the chance of overfitting is
noise filtering using Independent Component Analysis (ICA), in which case we
decompose the process into independent components and leave out the most
”noise-like” component.

The authors advocating this method, so far have used only the mean square
error criterion [10] to decide upon which model to trade with. However, it would
be more important to look into the effect of ICA on the trading performance
itself, because simply achieving low mean square error will not necessarily yield
profitable trading [16].

As a result, the objective of this paper is to develop profitable trading algo-
rithms by using NARX networks (Nonlinear AutoRegressive network with eXoge-
nous inputs) together with the pre-processing algorithm, ICA, which is optimized
for trading performance.

The rest of this paper is organized as follows:

• in section 2, the model and the notations are introduced;
• in section 3, the computational model is detailed;
• in section 4, a detailed performance analysis is given based on historical and

generated data;
• in section 5, conclusions are drawn.

2 Model and notations

In this section we describe the underlying mathematical model for algorithmic
trading and then we introduce the prediction architecture (NARX) together with
Independent Component Analysis as a pre-processing method.

Financial time series are often modeled as p-th order vector autoregressive VAR(p)
processes. Let us denote the asset price vector at time t by s(t) = {s1(t), . . . ,
si(t), . . . , sN (t)}, where si(t) is the the price of asset i at time t and N is the
number of assets available. The return vector r(t) = {r1(t), . . . , ri(t), . . . , rN (t)}
is defined as

ri(t) :=
si(t)

si(t− 1)
− 1, i = 1, . . . , N. (1)

We consider r(t) as a VAR(p) process

r(t) = b + A1r(t− 1) + A2r(t− 2) + . . .+ Apr(t− p) + W(t) (2)

3

where b is a vector of dimension N and W(t) ∼ N (0,Σ) [23]. Based on the
observation of r(t), t = 1, . . . , T , the model parameters (vector b and matrices
Ai, i = 1, . . . , p can be identified by the Ordinary Least Squares (OLS) method
[22].

2.1 Mean reverting portfolios

Besides predicting a single asset value, we are also going to predict prices of a
portfolio. Thus, we briefly summarize the theory of mean reverting portfolios.

Mean reversion is a good indicator of predictability, therefore identifying
mean reverting portfolios has become a key research area [4, 15, 20]. However,
portfolio optimization becomes very complex when introducing cardinality con-
straints in order to minimize the transaction costs. In this case, optimizing sparse
portfolios is proven to be NP hard [8].

One can introduce a portfolio vector xT = (x1, ..., xN), where component xi
denotes the amount of asset i held in the portfolio. In portfolio optimization
we seek the optimal portfolio vector exhibiting mean reverting property under
sparseness constraint, i.e. card(x) ≤ L where card denotes the number of non-
zero components in the portfolio and L is a given positive integer 1 ≤ L ≤ N .

The stochastic nature of a mean reverting portfolio is described by the so-
called Ornstein–Uhlenbeck process [19]:

dp(t) = λ (µ− p(t)) dt+ σdW (t), (3)

where W (t) is a Wiener process. By using the Itō-Doeblin formula [17], one can
obtain the following solution:

p(t) = p(0)e−λt + µ(1− e−λt) + σ

∫ t

0

e−λ(t−s)dW (s), (4)

which implies that

lim
t→∞

p(t) ∼ N

(
µ,

√
σ2

2λ

)
. (5)

For trading, the mean reversion coefficient λ is the key parameter, as it
determines how fast the process gets back to the mean, as well as inversely
indicating the level of uncertainty around the mean. Larger λ is more suitable
for convergence trading, as it quickly returns to the mean and it contains a
minimum amount of uncertainty around the mean. In this case we assume, that
the asset prices follow a stationary, first order, vector autoregressive VAR(1)
process:

s(t) = As(t− 1) + W(t). (6)

So far, our objective here is to maximize the mean reversion coefficient, which
can be done as follows (see [20]):

xopt = max
x

xTAGATx

xTGx
. (7)

4

under the constraint card(x) ≤ L, where G is the stationary covariance matrix
of s(t) and A is estimated by:

Â =
(
sT (t− 1)s(t− 1)

)+ (
sT (t− 1)s(t)

)
, (8)

where M+ denotes the Moore-Penrose pseudo-inverse of matrix M.

The brute force approach is constructing all N !
L!(N−L)! L-dimensional sub-

matrices of G and AGAT and then solving all the corresponding eigenvalue
problems to find the theoretical optimum. However, for large values of N and
L, it is computationally infeasible, in our case, where N = 29 and L = 3 can be
done real-time.

Once we have the optimal portfolio at hand, we do prediction based trading
on it by using NARX network.

2.2 NARX neural networks

For predicting the future price of a portfolio and indicating the necessary trading
action, we will use the NARX model which is widely used in economics [11, 16].
This network implements the following input-output mapping [13]:

y(t) = f (y(t− 1), . . . , y(t− p), r(t− 1), . . . , r(t− q),w) , (9)

where r(t) is the vector valued time series (the return vector defined by equation
(1)). In the model p and q are arbitrary parameters, which are now chosen as
p = q and the dimension of the output is taken to be one. Vector w represents
the weights (free parameters) of the NARX network. The network is depicted
by Fig. 1.

Feed Forward Network

T T T…

T T T…

 ŷ t

 y t

 tr
 1t r  2t r  t qr

 1y t   2y t   y t p

Fig. 1. NARX model

5

The output of the NARX network has three values corresponding to the
actions of buying, selling, and position holding, respectively, given as follows:

y(t) =


1 if r(t)

r̄(t) > ε

−1 if r(t)
r̄(t) < −ε

0 otherwise

(10)

where

r̄(t) =
1

J

J∑
j=1

|r(t− j)|, (11)

and r(t) is the return of either a single asset or a portfolio. Here ε is a pre-
defined threshold by which one can control the reaction of the system (i.e. how
large price changes will initiate actions). In this way, 1 at the output will refer
to large price rises, while -1 at the output indicates sharp drops in price. In the
case of small changes the output will yield zero.

Due to the autoregressive nature of the network (the output is determined
by the past p output values of y and an independent input r, which is now the
return vector of the observed financial time series), after learning it is able to
capture the characteristics of VAR(p) processes. The network then can provide
trading decisions either on a single asset or on a portfolio.

Because of the simple structure of NARX model, it does not require complex
training algorithm, therefore learning can be done by the Levenberg-Marquardt
error back propagation procedure [9]:

L =
1

T

T∑
t=1

(ŷ(t)− y(t))
2
, (12)

where L is the loss function (mean square error) to minimize and ŷ(t) is the
estimation of future values of time series (either a single asset or a portfolio) at
time instant t.

2.3 Application of ICA to filter the input noise

Since ICA has the capability of decomposing a random time series into inde-
pendent random processes, we use this property to represent the financial time
series under investigation. If one tries to predict the future values of the time
series based on the decomposed representation when leaving out the noise term,
then this prediction may perform much better than the one carried out on the
original representation. This is due to the fact that the most ”noise-like” term
causing the largest amount of randomness have been filtered out. As a result,
by leaving out the noise we can eliminate the tendency to overfitting which will
increase the quality of prediction.

In the case of ICA we seek N independent random variables S = [S1,S2...SN]
which represent the so-called sources. Let X = [X1,X2...XM] be the observed
time series, which may come from the S&P 500 series. For the sake of brevity let

6

M = N (the number of observations is the same as the number of dimensions).
Performing ICA, the observations are expressed as the linear combination of the
sources S, where A is the so-called mixing matrix:

X = AS =

N∑
i=1

aisi. (13)

The objective is to find the best de-mixing matrix W which results in that the
components of Y = WX are maximally independent from each other. Based on
the work of [1], let wT be a row vector of the reconstruction matrix. Then the
estimation of an independent component is given as

y = wTX = wTAS = zTS. (14)

If the components of Si are independent then adjusting the elements of zT , the
sum will be less similar to a Gaussian random variable. In order to obtain the
independent components, one must maximize the nongaussianity of wTX, which
can be measured by the negentropy [1].

For trading we use the standard FastICA package for MATLAB [3]. This
algorithm preprocesses the data for the NARX network.

In the related literature, the Relative Hamming Distance (RHD) based error
is used [27] in order to determine and leave out the ”noise-like” components,
defined as follows:

RHD (x, y) =
1

T − 1

T−1∑
t=1

(
Rx (t)−Ry (t)

)2
, (15)

where Rx (t) = sign
(
x (t+ 1)− x (t)

)
and Ry (t) = sign

(
y (t+ 1)− y (t)

)
.

The task is to find those components which minimize the RHD error between
the original and reconstructed time series. In the case of high dimension, the
solution cannot be found by exhaustive search, thus the so-called Testing and
Acceptance (TnA) heuristic is used [27]. Since we only want to leave out one (the
most noise-like) component, this amounts to running TnA for a single step. In
this way, our procedure is faster than the standard TnA, however, it will yield
a suboptimal solution.

3 Trading by NARX networks combined with ICA

The structure of the proposed trading system is given by the following block
diagram (Fig. 2) and detailed as follows:

• First we determine the optimal portfolio that maximizes the mean reversion
coefficient λ (see equation 7). In case of single asset trading, this step is
skipped.

• The FastICA algorithm determines the independent sources from which the
most ”noise-like” component is identified by calculating the RHD reconstruc-
tion error (see section 2.3).

7

Portfolio
selection

Preprocessing
Identification and

prediction
Trading

Vector valued
time series

Performance
analysis

Fig. 2. Computational model

• After discarding the most ”noise-like” component, the system is trained. At
the input of NARX network there are the returns of the available financial
time series r and the feedbacks from the earlier outputs y. In order to prevent
over-learning, we use early stopping [5]. For the sake of comparison, there is
also a possibility to use PCA instead of ICA, or to skip preprocessing and
training the system with raw data.

• Based on the prediction of NARX network, one can form a trading signal: If
the output exceeds a given threshold then the position becomes opened. The
same holds for the case when the output falls below another given threshold,
but then a short position is taken. This operation is depicted by Fig. 3.

ShortLong Cash

 ŷ t   ŷ t  

 ŷ t  ŷ t  

Fig. 3. Trading strategy

In case of portfolio trading, after closing the position (sell or buy back), we
recalculate the optimal portfolio and retrain NARX network.

Finally, we compare the profitability of the different methods by testing and
evaluating various numerical indicators (see section 4).

4 Numerical results

An extensive back-testing framework was created to handle trading actions on
various input data sets and provide numerical results for the sake of comparing
the performance of methods.

The tests have been parametrized as follows:

8

• in the case of using raw data, the inputs of the network are the returns of
the available assets;

• in the case of PCA we selected the first few principal components, which the
sum of the variances exceed 95% of the total variance of the original data;

• in the case of ICA the input data was first filtered according to the method
described in section 2.3.

In each simulation we have used a 3-layer network containing 20 neurons in
the hidden layer and the number of learning samples has been 500. For the sake
of comparison, we have also implemented the Buy-and-Hold strategy.

The following performance measures were calculated for each experiments on
the corresponding time series (either ETF or generated):

• profit: G = cT
c0
− 1;

• maximum drawdown, that is the maximum loss from a peak to a trough of
a portfolio [2].

Here ct denotes the sum of owned cash and the market value of the owned port-
folio at time instance t, while c0 denotes the initial cash (in each case the agent
started with $10,000).

In this section, we discuss the numerical results obtained on the following
data sets:

• generated time series (VAR(p));
• Exchange Traded Funds: EEM, EFA, EWA, EWC, EWJ, EWZ, FAS, FAZ,

FXI, GDX, GLD, IGE, IWM, IYR, QID, QQQ, SDS, SKF, SPY, SSO, TZA,
UNG, USO, VWO, VXX, XLE, XLF, XLI, XRT from the year of 2013 to
2015 in daily resolution [26].

The generated data have been constructed by using the 2013-2014 ETF time
series. We have modeled the vector valued time series by a VAR(3) process
and with the optimized parameters we simulate the process for 5000 steps (this
roughly amounts daily data for 20 years). We added a 0 mean Gaussian noise to
simulated N dimensional process and then multiply it with a randomly selected
mixing matrix A. The output then will be N + 1 dimensional. This process is
illustrated by Fig. 4.

Fit VAR(p)
model

Simulate
VAR(p) process

Add Gaussian
noise

Mixing

Vector valued
time series

Test data

Fig. 4. Test data generation

9

Based on this method, we have generated a 6-dimensional 5000-tick long
data series. First, the efficiency of the Buy-and-Hold strategy was investigated
for each data series, separately, shown by Table 7. After this, the performance
of ICA and PCA based methods have been evaluated and the results are shown
in Table 3. In the case of mean reverting trading, the agent could trade with
any asset within the confines of the cardinality constraints. The profitability has
been investigated in the cases of L = 1, 2, 3, 4 and the results are shown by Table
4.

In the case of ETF data we have run both the Buy-and-Hold and our proposed
methods on all the 29 data series and we have also compared the performance
PCA and ICA. The results are shown by tables 8 and 5, respectively. Similarly to
the analysis of generated data, in the case of mean reverting trading, the agent
could trade with any asset within the confines of the cardinality constraints. The
profitability has been investigated in the cases of L = 1, 2, 3, 4 and the results
are shown by Table 6.

In each simulation bid-ask spread of 0.01$ has been taken into account.

In the tables below, the average results of our own method has been depicted.

Simulation Profit Drawdown

Single asset, Buy-and-Hold 94.88 % 46.97 %

Single asset, raw 825.36 % 48.21 %

Single asset, PCA 83.75 % 61.71 %

Single asset, ICA 1665.83 % 40.28 %

Portfolio, raw 544.47 % 40.68 %

Portfolio, PCA 34.86 % 58.13 %

Portfolio, ICA 536.88 % 32.6 %
Table 1. Average trading performance on generated data

On Table 1 one can see the results of 4500 trading days (note, the first 500
was used for learning). As demonstrated, in almost each case we managed to
secure positive profit. In the case of generated data, the smallest profit (83.75
%) was achieved by using PCA based preprocessing, while the highest (1665.83
%) was secured by ICA based preprocessing. This is not surprising taking into
account how the dataset has been generated (see section 2.3). Trading with mean
reverting portfolios on the generated data set did not considerably increased the
profit, but it has decreased the drawdown.

10

Simulation Profit Drawdown

Single asset, Buy-and-Hold -2.13 % 42.95 %

Single asset, raw 13.89 % 11.89 %

Single asset, PCA 9.85 % 7.64 %

Single asset, ICA 27.89 % 11.69 %

Portfolio, raw 10.6 % 7.62 %

Portfolio, PCA 16.6 % 9.66 %

Portfolio, ICA 18.77 % 8.31 %
Table 2. Average trading performance on daily ETF data

Table 2 indicates real test running on ETF data obtained at daily tick time.
PCA has performed better on the real data and it got near to the performance of
ICA. Both preprocessing yielded better trading performance than trading on raw
data. It is clear that in the single asset case ICA achieved better profit (27.89 %)
but it increased the maximum drawdown. Trading with mean reverting portfolios
resulted in lower profit than trading with a single asset, but the drawdown
became lower.

These are indeed good results, but in this case trading was only done on 250
trading days.

5 Conclusions

In this paper we have introduced NARX network combined with ICA in order
to increase the accuracy of prediction of financial time series. Filtering out the
”noise-like” components from the input data helps avoid overfitting. Instead of
mean square error criterion, we optimized ICA based on the trading performance.

The method has been tested not only on single asset time series, but on
predicting the values of mean reverting portfolios, as well. The performance
analysis on generated data and real data has proven that profit can be gained
by the new methods even in the presence of bid-ask spread.

We have demonstrated that PCA does not perform well on generated data
sets, but in real data it helps avoid the problem of over learning. Applying ICA
can yield higher profit and it can also decrease the drawdown in the case of trad-
ing with mean reverting portfolios. It is important to mention that preprocessing
always improves the performance as opposed to trading on raw data.

11

Appendix

In the tables below, we give the results in details.

Raw PCA ICA

Asset Profit Drawdown Profit Drawdown Profit Drawdown

GEN1 259.24 % 63.69 % -44.86 % 63.81 % 4624.19 % 31.18 %

GEN2 1900.73 % 37.75 % 438.03 % 51.77 % 824.05 % 44.47 %

GEN3 1207.89 % 42.71 % 191.16 % 44.08 % 469.61 % 43.90 %

GEN4 724.89 % 44.65 % 0.93 % 65.73 % 2980.76 % 37.97 %

GEN5 681.22 % 39.11 % -0.10 % 54.48 % 414.12 % 51.52 %

GEN6 178.21 % 61.33 % -82.65 % 90.40 % 682.25 % 32.62 %

Average 825.36 % 48.21 % 83.75 % 61.71 % 1665.83 % 40.28 %

Standard
deviation

587.78 10.38 180.36 14.75 1589.27 7.11

Table 3. Trading performance of our strategy on generated data

Raw PCA ICA

Profit Drawdown Profit Drawdown Profit Drawdown

L=1 1391.63 % 25.53 % 140.69 % 62.02 % 492.28 % 32.13 %

L=2 52.80 % 51.31 % 18.16 % 63.60 % 792.12 % 24.37 %

L=3 183.23 % 44.19 % 40.10 % 39.69 % 280.74 % 44.23 %

L=4 550.23 % 41.68 % -59.52 % 67.19 % 582.38 % 29.67 %

Average 544.47 % 40.68 % 34.86 % 58.13 % 536.88 % 32.60 %

Standard
deviation

522.00 9.43 71.44 10.81 183.59 7.28

Table 4. Trading performance of our strategy using mean reverting portfolios on gen-
erated data

12

Raw PCA ICA

Asset Profit Drawdown Profit Drawdown Profit Drawdown

SPY 5.06 % 9.61 % 3.04 % 3.66 % 19.31 % 8.75 %

XLF 28.19 % 1.90 % 5.00 % 1.25 % 2.36 % 7.67 %

QQQ -11.91 % 16.22 % 5.11 % 8.96 % 6.12 % 12.01 %

EEM 7.70 % 9.28 % 6.87 % 1.88 % 17.19 % 10.85 %

IWM 2.71 % 4.91 % -0.58 % 5.10 % 24.68 % 4.55 %

FAS 29.14 % 2.31 % 38.84 % 11.19 % 55.02 % 23.92 %

FAZ 63.07 % 19.41 % 4.75 % 9.53 % 30.11 % 14.03 %

SDS 30.72 % 6.07 % 2.64 % 3.21 % 23.48 % 13.21 %

TZA 1.58 % 32.41 % 35.42 % 4.41 % 76.96 % 22.60 %

FXI -7.16 % 17.01 % 15.73 % 2.13 % 3.45 % 12.88 %

UNG 85.35 % 14.17 % 46.68 % 13.09 % 101.57 % 11.46 %

EFA 10.31 % 14.64 % 8.58 % 3.02 % 13.17 % 6.45 %

SSO 6.91 % 17.72 % 3.26 % 9.89 % -5.84 % 13.93 %

EWJ -6.40 % 10.31 % -9.12 % 11.16 % 10.31 % 12.33 %

XLE 7.12 % 5.40 % 0.70 % 3.74 % 11.62 % 9.26 %

EWZ 0.18 % 4.40 % -0.09 % 12.98 % 2.92 % 10.50 %

QID 2.28 % 18.05 % 4.80 % 22.85 % 37.20 % 8.85 %

VXX 133.24 % 16.00 % 62.38 % 17.75 % 332.88 % 6.27 %

IYR 2.53 % 4.53 % 8.95 % 6.56 % 9.37 % 3.62 %

XLI -8.19 % 14.05 % 4.53 % 5.02 % 9.99 % 9.11 %

GLD 5.19 % 7.83 % 11.58 % 0.24 % 5.51 % 6.40 %

GDX 8.84 % 18.86 % -8.14 % 8.14 % -16.81 % 24.68 %

SKF 15.66 % 3.37 % 14.68 % 21.95 % 35.42 % 11.18 %

XRT -4.89 % 10.35 % -0.36 % 6.92 % 12.04 % 5.88 %

USO 3.21 % 12.19 % 5.51 % 5.69 % -18.05 % 21.14 %

VWO 2.28 % 12.19 % 13.07 % 2.33 % -4.92 % 22.58 %

EWA -12.48 % 23.56 % -10.79 % 13.76 % 11.91 % 9.84 %

EWC 1.70 % 6.69 % 3.74 % 4.55 % -1.71 % 7.66 %

IGE 0.96 % 11.37 % 8.81 % 0.56 % 3.53 % 7.53 %

Average 13.89 % 11.89 % 9.85 % 7.64 % 27.89 % 11.69 %

Standard
deviation

30.61 6.88 16.11 5.92 62.85 5.81

Table 5. Trading performance of our strategy on daily ETF data

13

Raw PCA ICA

Sparsity Profit Drawdown Profit Drawdown Profit Drawdown

L=1 3.74 % 9.05 % 30.01 % 4.55 % 3.32 % 11.16 %

L=2 4.99 % 9.64 % 34.03 % 8.57 % 17.90 % 1.87 %

L=3 25.50 % 5.90 % 10.96 % 6.75 % 23.37 % 11.47 %

L=4 8.19 % 5.89 % -8.58 % 18.79 % 30.48 % 8.76 %

Average 10.60 % 7.62 % 16.60 % 9.66 % 18.77 % 8.31 %

Standard
deviation

8.75 1.74 16.95 5.46 9.97 3.86

Table 6. Trading performance of our strategy using mean reverting portfolios on daily
ETF data

Buy-and-Hold

Asset Profit Drawdown

GEN1 12.42 % 51.38 %

GEN2 177.17 % 43.10 %

GEN3 42.69 % 50.13 %

GEN4 131.96 % 43.91 %

GEN5 183.66 % 43.30 %

GEN6 21.40 % 50.02 %

Average 94.88 % 46.97 %

Standard
deviation

71.82 3.57

Table 7. Trading performance of the Buy-and-Hold strategy on generated data

14

Buy-and-Hold

Asset Profit Drawdown

SPY 33.72 % 18.61 %

XLF 16.46 % 33.70 %

QQQ 44.45 % 16.09 %

EEM 9.45 % 30.87 %

IWM 38.15 % 28.91 %

FAS -7.37 % 76.21 %

FAZ -83.61 % 86.53 %

SDS -60.11 % 65.70 %

TZA -90.08 % 92.16 %

FXI -0.33 % 36.64 %

UNG -77.80 % 83.55 %

EFA 10.07 % 25.85 %

SSO 55.88 % 36.23 %

EWJ 2.43 % 23.96 %

XLE 27.29 % 29.23 %

EWZ -21.21 % 35.82 %

QID -67.96 % 75.59 %

VXX -93.92 % 94.84 %

IYR 58.27 % 22.58 %

XLI 42.04 % 25.83 %

GLD 47.56 % 19.03 %

GDX -0.81 % 40.78 %

SKF -64.23 % 68.76 %

XRT 79.99 % 22.21 %

USO -17.13 % 34.75 %

VWO 11.88 % 30.58 %

EWA 21.78 % 30.38 %

EWC 11.21 % 28.47 %

IGE 12.28 % 31.70 %

Average -2.13 % 42.95 %

Standard
deviation

47.93 24.33

Table 8. Trading performance of the Buy-and-Hold strategy on daily ETF data

15

References

1. A. Hyvärinen and E. Oja: Independent Component Analysis: Algorithms and Ap-
plications. Neural Networks, 13(4-5):411-430, 2000.

2. Alexei Chekhlov, Stanislav Uryasev, Michael Zabarankin: Drawdown measure in
portfolio optimization. International Journal of Theoretical and Applied Finance,
vol.8, no.1, pp.13-58, 2005.

3. Aalto University, Department of Computer Science: The FastICA package for
MATLAB, Online available: http://research.ics.aalto.fi/ica/fastica/. 2015.

4. Alexander D’Aspremont: Identifying small mean-reverting portfolios. Quantitative
Finance, 2011 11:3, pp. 351-364.

5. Alpaydin Ethem: Introduction to Machine Learning. Massachusetts Institute of
Technology. 2010.

6. Andrew D. Back, Andreas Weigend: A first application of independent component
analysis to extracting structure from stock returns. International Journal of Neural
Systems, 1997 Aug, 8(4):473-84.

7. Andrew D. Back, Andreas Weigend: Discovering Structure in Finance Using Inde-
pendent Component Analysis. Decision Technologies for Computational Finance,
Volume 2 of the series Advances in Computational Management Science pp 309-
322, 1998.

8. B.K. Natarajan: Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2), pp. 227-234, 1995.

9. Bogdan M. Wilamowski, J. David Irwin: Intelligent Systems. CRC Press. 2011.
10. Chi-Jie Lu, Tian-Shyug Lee, Chih-Chou Chiu: Financial time series forecasting us-

ing independent component analysis and support vector regression. Decision Sup-
port Systems, Volume 47, Issue, May 2009, Pages 115-125.

11. Emad W. Saad, Danil V. Prokhorov, Donald C. Wunsch: Comparative Study of
Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural
Networks. IEEE Transactions on Neural Networks, vol.9, no.6, pp.1456-1470, Nov
1998

12. Ernest P. Chan: Algorithmic Trading: Winning Strategies and Their Rationale.
Wiley Trading Series, 2013.

13. Gérard Dreyfus: Neural Networks: Methodology and Applications. Springer, 2005.
14. Harry Markowitz: Portfolio Selection. The Journal of Finance, 1952 Vol. 7 (1), pp

77–91.
15. I. Robert Sipos, Janos Levendovszky: Optimizing sparse mean reverting portfolios.

Algorithmic Finance, 2013, 2.2: 127-139.
16. Iebeling Kaastra, Milton Boyd: Designing a neural network for forecasting financial

and economic time series. Neurocomputing 10, pp.215-236, 1996.
17. Kiyosi Itō: Stochastic integral. Proceedings of the Imperial Academy 20 (8):

519–524, 1944.
18. Kyoung-jae Kim: Financial time series forecasting using support vector machines.

Neurocomputing 55 (2003) pp 307–319.
19. L. S. Ornstein, G. E. Uhlenbeck. On the Theory of the Brownian Motion. Physical

Review, 36(5), p. 823 (1930).
20. Norbert Fogarasi, Janos Levendovszky: Sparse, mean reverting portfolio selection

using simulated annealing. Algorithmic Finance, 2013, 2.3: 197-211.
21. P. N. Kumar, G. Rahul Seshadri, A. Hariharan, V. P. Mohandas, P. Balasubra-

manian: Financial Market Prediction Using Feed Forward Neural Network. Tech-
nology Systems and Management, Volume 145 of the series Communications in
Computer and Information Science pp 77-84, 2011.

16

22. Richard A. Johnson, Dean W. Wichern: Applied Multivariate Statistical Analysis.
Pearson Education Inc. 2007.

23. Ruey S. Tsay: Analysis of Financial Time Series. Wiley-Interscience. 2005.
24. Salim Lahmiri: A Comparison of PNN and SVM for Stock Market Trend Prediction

using Economic and Technical Information. International Journal of Computer
Applications Volume 29 No.3, September, 2011.

25. Tony Van Gestel, Johan A. K. Suykens, Dirk-Emma Baestaens, Annemie Lam-
brechts, Gert Lanckriet, Bruno Vandaele, Bart De Moor, and Joos Vandewalle:
Financial Time Series Prediction Using Least Squares Support Vector Machines
Within the Evidence Framework. IEEE Transactions on Neural Networks, Vol. 12,
No. 4, July 2001.

26. Yahoo Finance: Online available at https://finance.yahoo.com. 2015.
27. Yiu-ming Cheung, Lei Xu: Independent component ordering in ICA time series

analysis. Neurocomputing 41 (2001) pp. 145-152

