
Risk analysis lab 2019. 12. 03. (Optimizing mean-reverting portfolios) 

 

1. Load the supplied data (s.csv). The data is a TxN matrix containing daily closing prices for 

N asset and T days. Calculate the covariance matrix G for the given time series 
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2. Assume that ( )ts  is subject to a first order vector autoregressive process – VAR(1) –, defined 

as follows: ( ) ( ) ( )t t t= +s As W , where A is a matrix of size NxN and 𝐖(𝑡) ∼ 𝑁(𝟎, 𝜎𝐈) are 

i.i.d. random variables for some 0  . 

Estimate A using least squares estimation techniques, as 
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∥. ∥2denotes the Euclidian norm. Solving the minimization problem above, by equating the 

partial derivatives to zero with respect to each element of the matrix A, we obtain a system of 

linear equations. Solving that for A and switching back to vector notation for s, we obtain 
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where 𝑀+denotes the Moore-Penrose pseudoinverse of a matrix M. Use only the last sample 

for the estimation. (Note that the Moore-Penrose pseudoinverse is preferred to regular matrix 

inversion, in order to avoid problems which may arise because of the potential singularity.) 

def est_A(s) 

 return A 

3. The traditional way to identify the optimal mean-reverting portfolio is to find a portfolio 

vector subject to maximizing its predictability. One may note that 
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is equivalent to finding the eigenvector corresponding to the maximum eigenvalue in the 

following generalized eigenvalue problem:  

T =AGA w Gw . 

Calculate the optimal mean reverting portfolio and print its   parameter. 

 


