Risk analysis lab 2019. 12. 03. (Optimizing mean-reverting portfolios)

1. Load the supplied data (S.Csv). The data is a $T \mathrm{x} N$ matrix containing daily closing prices for N asset and T days. Calculate the covariance matrix \mathbf{G} for the given time series $\mathbf{s}(t)=\left\{s_{1}(t), s_{2}(t), \ldots, s_{N}(t)\right\}, t=1, \ldots, T$.
2. Assume that $\mathbf{s}(t)$ is subject to a first order vector autoregressive process $-\operatorname{VAR}(1)-$, defined as follows: $\mathbf{s}(t)=\mathbf{A s}(t)+\mathbf{W}(t)$, where \mathbf{A} is a matrix of size $N x N$ and $\mathbf{W}(t) \sim N(\mathbf{0}, \sigma \mathbf{I})$ are i.i.d. random variables for some $\sigma>0$.

Estimate \mathbf{A} using least squares estimation techniques, as $\hat{\mathbf{A}}=\min _{\mathbf{A}}\left\|\sum_{t=2}^{T} \mathbf{s}(t)-\mathbf{A s}(t-1)\right\|^{2}$ where $\|.\|^{2}$ denotes the Euclidian norm. Solving the minimization problem above, by equating the partial derivatives to zero with respect to each element of the matrix \mathbf{A}, we obtain a system of linear equations. Solving that for \mathbf{A} and switching back to vector notation for \mathbf{s}, we obtain

$$
\hat{\mathbf{A}}=\left(\mathbf{s}^{T}(t-1) \mathbf{s}(t-1)\right)^{+}\left(\mathbf{s}^{T}(t-1) \mathbf{s}(t)\right)
$$

where M^{+}denotes the Moore-Penrose pseudoinverse of a matrix \mathbf{M}. Use only the last sample for the estimation. (Note that the Moore-Penrose pseudoinverse is preferred to regular matrix inversion, in order to avoid problems which may arise because of the potential singularity.)

```
def est_A(s)
    return A
```

3. The traditional way to identify the optimal mean-reverting portfolio is to find a portfolio vector subject to maximizing its predictability. One may note that

$$
\mathbf{w}_{\text {opt }}=\max \lambda=\max _{x} \frac{\mathbf{w}^{T} \mathbf{A} \mathbf{G A} \mathbf{A}^{T} \mathbf{w}}{\mathbf{w}^{T} \mathbf{G w}}
$$

is equivalent to finding the eigenvector corresponding to the maximum eigenvalue in the following generalized eigenvalue problem:

$$
\mathbf{A G A}^{T} \mathbf{w}=\lambda \mathbf{G} \mathbf{w}
$$

Calculate the optimal mean reverting portfolio and print its λ parameter.

