Risk analysis lab 2019. 10. 08. (Calculating risk)

1. Let h_{i} denote the amount of deposit belongs to each client $i=1, \ldots, M$ with $p_{i}=P\left(X_{i}=h_{i}\right)$ and $X_{i} \in\left\{0 ; h_{i}\right\}$ probability of withdrawal. In a new script generate these vectors randomly as $h_{i} \sim N(\mu=1600, \sigma=200)$ and $p_{i} \sim U(0,1) . M=17$
(1 point)
2. Let $y_{i} \in\{0 ; 1\}$ stands for the event when the i-th customer withdraws their deposit, while $\psi \in\{0,1\}$ denotes the event that the bank exceeds its cash C. Calculate $E(\psi)=P\left(\sum_{i=1}^{M} y_{i} h_{i}>C\right) \quad$ analytically (Sum $\psi \prod_{i=1}^{M} p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \quad$ over all possible \mathbf{y} vectors).
a. First, create an array of all possible \boldsymbol{y} vectors. The simplest solution is to make a binary counter, and store its results. You should create a function for this.
(2 points)
b. Then make the summation.
(2 points)
c. Test it for $C=\{10000,11000,12000,13000,14000,15000\}$.
```
P = analytical(h, p, C)
```


